Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (99)

Search Parameters:
Keywords = bidirectional buck-boost converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5309 KB  
Article
Wide Voltage Gain Range Bidirectional DC-DC Converter with Reduced Switches Count and Buck-Boost Characteristic in Both Power Flow Directions
by Victor Fernão Pires, Armando Cordeiro, Daniel Foito, Tito Amaral and José Fernando Silva
Energies 2026, 19(1), 43; https://doi.org/10.3390/en19010043 - 21 Dec 2025
Viewed by 438
Abstract
Several applications require bidirectional power converters with high-voltage gain. While several topologies have been proposed, none of them exhibit Buck-Boost characteristics in both forward and reverse power transfer. Most proposals behave as a Boost converter in forward direction and as a Buck converter [...] Read more.
Several applications require bidirectional power converters with high-voltage gain. While several topologies have been proposed, none of them exhibit Buck-Boost characteristics in both forward and reverse power transfer. Most proposals behave as a Boost converter in forward direction and as a Buck converter in the reverse direction. Therefore, this paper proposes a novel DC-DC bidirectional power converter that exhibits Buck-Boost characteristics in both power flow directions while providing very high wide voltage gain range. The proposed converter has, in addition, the ability to maintain continuous currents in the input and output. The theoretical analysis of the converter under bidirectional power flow conditions will be presented and examined, along with the design of its components. The validation of the characteristics and behavior of the proposed bidirectional power converter were tested in several laboratory experiments. The experimental results obtained from both power flow directions show agreement with the theoretical considerations. Full article
(This article belongs to the Special Issue Design and Control Strategies for Wide Input Range DC-DC Converters)
Show Figures

Figure 1

43 pages, 7118 KB  
Review
Recent Advances in Non-Isolated DC/DC Converter Topologies: A Review and Future Perspectives
by Rafael Antonio Acosta-Rodríguez, Javier Rosero-García, Marco Rivera and Knapoj Chaimanekorn
Appl. Sci. 2025, 15(24), 12868; https://doi.org/10.3390/app152412868 - 5 Dec 2025
Cited by 1 | Viewed by 824
Abstract
Continuous advancements in power conversion techniques address the growing need for efficiency and adaptability in contemporary energy applications, including e-mobility, renewable energy, and energy storage systems. This work presents a review grounded in the fundamental topologies of power converters and subsequently analyzes their [...] Read more.
Continuous advancements in power conversion techniques address the growing need for efficiency and adaptability in contemporary energy applications, including e-mobility, renewable energy, and energy storage systems. This work presents a review grounded in the fundamental topologies of power converters and subsequently analyzes their modern modifications and technological advances. Traditional structures such as Buck, Boost, Ćuk, and flyback converters remain effective solutions for voltage and current regulation; however, they exhibit limitations when extremely high voltage conversion ratios are required. These constraints have motivated the emergence of more sophisticated architectures capable of overcoming such challenges. In this context, the paper provides a novel characterization and comparative analysis of quadratic and bidirectional converter topologies, emphasizing their capability to efficiently achieve both high and low conversion ratios while minimizing component stress and avoiding extreme load cycles. Quadratic converters demonstrate high performance in nonlinear systems with significant energy demands, whereas bidirectional converters enhance energy management in applications requiring bidirectional power flow, such as electric vehicles and energy storage systems. Full article
Show Figures

Figure 1

30 pages, 16943 KB  
Article
Grid-Connected Bidirectional Off-Board Electric Vehicle Fast-Charging System
by Abdullah Haidar, John Macaulay and Zhongfu Zhou
Energies 2025, 18(22), 5913; https://doi.org/10.3390/en18225913 - 10 Nov 2025
Viewed by 677
Abstract
The widespread adoption of electric vehicles (EVs) is contingent on high-power fast-charging infrastructure that can also provide grid stabilization services through bidirectional power flow. While the constituent power stages of such off-board chargers are well-known, a critical research gap exists in their system-level [...] Read more.
The widespread adoption of electric vehicles (EVs) is contingent on high-power fast-charging infrastructure that can also provide grid stabilization services through bidirectional power flow. While the constituent power stages of such off-board chargers are well-known, a critical research gap exists in their system-level integration, where sub-optimal dynamic interaction between independently controlled stages often leads to DC-link instability and poor transient performance. This paper presents a rigorous, system-level study to address this gap by developing and optimizing a unified control framework for a high-power bidirectional EV fast-charging system. The system integrates a three-phase active front-end rectifier with an LCL filter and a four-phase interleaved bidirectional DC/DC converter. The methodology involves a holistic dynamic modeling of the coupled system, the design of a hierarchical control strategy augmented with a battery current feedforward scheme, and the system-wide optimization of all Proportional–Integral (PI) controller gains using the Artificial Bee Colony (ABC) algorithm. Comprehensive simulation results demonstrate that the proposed optimized control framework achieves a critically damped response, significantly outperforming a conventionally tuned baseline. Specifically, it reduces the DC-link voltage settling time during charging-to-discharging transitions by 74% (from 920 ms to 238 ms) and eliminates voltage undershoot, while maintaining excellent steady-state performance with grid current total harmonic distortion below 1.2%. The study concludes that system-wide metaheuristic optimization, rather than isolated component-level design, is key to unlocking the robust, high-performance operation required for next-generation EV fast-charging infrastructure, providing a validated blueprint for future industrial development. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

26 pages, 5632 KB  
Article
Current-Mode Controlled Battery Emulator
by Srđan Lale, Mateo Bašić, Slobodan Lubura, Božidar Popović and Marko Ikić
Processes 2025, 13(10), 3281; https://doi.org/10.3390/pr13103281 - 14 Oct 2025
Viewed by 564
Abstract
This paper proposes a battery emulator based on a bidirectional non-inverting buck-boost power electronics converter. With the capability of bidirectional operation, it can emulate both charging and discharging processes. The proposed emulator is controlled with the advanced I2 dual current-mode control ( [...] Read more.
This paper proposes a battery emulator based on a bidirectional non-inverting buck-boost power electronics converter. With the capability of bidirectional operation, it can emulate both charging and discharging processes. The proposed emulator is controlled with the advanced I2 dual current-mode control (I2DCMC) algorithm, combined with a feedforward control, which ensures fast and accurate tracking of the voltage and current characteristics of the batteries. The emulator is universal in terms of the various mathematical models of the batteries, which can be implemented in real time. It has no limitations regarding different battery types. Detailed analysis and the design procedure of the proposed battery emulator are presented. The performances of the emulator are validated with simulation and experimental results for three battery types: polymer Li-ion, conventional Li-ion, and lead–acid battery. Both steady and transient states are analyzed, especially transitions between charging and discharging phases. The possibility of simple time scaling of charging/discharging processes is successfully achieved and demonstrated, which is very important in making tests faster, with preserved battery characteristics. Considering its low-cost and user-friendly operation, the proposed emulator can be a good alternative to the real batteries in experimental tests of different power electronics systems. The prototype, which is developed for the experimental verification of the emulator, is designed for and limited to the research of lower power ratings systems of up to 100 W. It is suitable in education to easily demonstrate the behavior of the batteries in multiple scenarios in controlled laboratory conditions. Full article
Show Figures

Figure 1

26 pages, 6174 KB  
Perspective
An Overview of Level 3 DC Fast Chargers: Technologies, Topologies, and Future Directions
by Alan Yabin Hernández Ruiz, Susana Estefany De león Aldaco, Jesús Aguayo Alquicira, Mario Ponce Silva, Omar Rodríguez Benítez and Eligio Flores Rodríguez
Eng 2025, 6(10), 276; https://doi.org/10.3390/eng6100276 - 14 Oct 2025
Viewed by 2037
Abstract
The increasing adoption of electric vehicles has driven the development of charging technologies that meet growing demands for power, efficiency, and grid compatibility. This review presents a comprehensive analysis of the EV charging ecosystem, covering Level 3 DC charging stations, power converter topologies, [...] Read more.
The increasing adoption of electric vehicles has driven the development of charging technologies that meet growing demands for power, efficiency, and grid compatibility. This review presents a comprehensive analysis of the EV charging ecosystem, covering Level 3 DC charging stations, power converter topologies, and the role of energy storage systems in supporting grid integration. Commercial solutions and academic prototypes are compared across key parameters such as voltage, current, power, efficiency, and communication protocols. The study highlights trends in charger architectures—including buck, boost, buck–boost, LLC resonant, and full-bridge configurations—while also addressing the integration of stationary storage as a buffer for fast charging stations. Special attention is given to wide-bandgap semiconductors like SiC and GaN, which enhance efficiency and thermal performance. A significant gap persists between the technical transparency of commercial systems and the ambiguity often observed in prototypes, highlighting the urgent need for standardized research reporting. Although converter efficiency is no longer a primary constraint, substantial challenges remain regarding infrastructure availability and the integration of storage with charging stations. This paper seeks to offer a comprehensive perspective on the design and deployment of smart, scalable, and energy-efficient charging systems, with particular emphasis on cascaded and bidirectional topologies, as well as hybrid storage solutions, which represent promising pathways for the advancement of future EV charging infrastructure. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

24 pages, 5112 KB  
Article
Power Management for V2G and V2H Operation Modes in Single-Phase PV/BES/EV Hybrid Energy System
by Chayakarn Saeseiw, Kosit Pongpri, Tanakorn Kaewchum, Sakda Somkun and Piyadanai Pachanapan
World Electr. Veh. J. 2025, 16(10), 580; https://doi.org/10.3390/wevj16100580 - 14 Oct 2025
Cited by 1 | Viewed by 1303
Abstract
A multi-port conversion system that connects photovoltaic (PV) arrays, battery energy storage (BES), and an electric vehicle (EV) to a single-phase grid offers a flexible solution for smart homes. By integrating Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) technologies, the system supports bidirectional energy flow, [...] Read more.
A multi-port conversion system that connects photovoltaic (PV) arrays, battery energy storage (BES), and an electric vehicle (EV) to a single-phase grid offers a flexible solution for smart homes. By integrating Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) technologies, the system supports bidirectional energy flow, optimizing usage, improving grid stability, and supplying backup power. The proposed four-port converter consists of an interleaved bidirectional DC-DC converter for high-voltage BES, a bidirectional buck–boost DC-DC converter for EV charging and discharging, a DC-DC boost converter with MPPT for PV, and a grid-tied inverter. Its non-isolated structure ensures high efficiency, compact design, and fewer switches, making it suitable for residential applications. A state-of-charge (SoC)-based power management strategy coordinates operation among PV, BES, and EV in both on-grid and off-grid modes. It reduces reliance on EV energy when supporting V2G and V2H, while SoC balancing between BES and EV extends lifetime and lowers current stress. A 7.5 kVA system was simulated in MATLAB/Simulink to validate feasibility. Two scenarios were studied: PV, BES, and EV with V2G supporting the grid and PV, BES, and EV with V2H providing backup power in off-grid mode. Tests under PV fluctuations and load variations confirmed the effectiveness of the proposed design. The system exhibited a fast transient response of 0.05 s during grid-support operation and maintained stable voltage and frequency in off-grid mode despite PV and load fluctuations. Its protection scheme disconnected overloads within 0.01 s, while harmonic distortions in both cases remained modest and complied with EN50610 standards. Full article
Show Figures

Graphical abstract

20 pages, 6299 KB  
Article
State-Set-Optimized Finite Control Set Model Predictive Control for Three-Level Non-Inverting Buck–Boost Converters
by Mingxia Xu, Hongqi Ding, Rong Han, Xinyang Wang, Jialiang Tian, Yue Li and Zhenjiang Liu
Energies 2025, 18(17), 4481; https://doi.org/10.3390/en18174481 - 23 Aug 2025
Viewed by 1129
Abstract
Three-level non-inverting buck–boost converters are promising for electric vehicle charging stations due to their wide voltage regulation capability and bidirectional power flow. However, the number of three-level operating states is four times that of two-level operating states, and the lack of a unified [...] Read more.
Three-level non-inverting buck–boost converters are promising for electric vehicle charging stations due to their wide voltage regulation capability and bidirectional power flow. However, the number of three-level operating states is four times that of two-level operating states, and the lack of a unified switching state selection mechanism leads to serious challenges in its application. To address these issues, a finite control set model predictive control (FCS-MPC) strategy is proposed, which can determine the optimal set and select the best switching state from the excessive number of states. Not only does the proposed method achieve fast regulation over a wide voltage range, but it also maintains the input- and output-side capacitor voltage balance simultaneously. A further key advantage is that the number of switching actions in adjacent cycles is minimized. Finally, a hardware-in-the-loop experimental platform is built, and the proposed control method can realize smooth transitions between multiple operation modes without the need for detecting modes. In addition, the state polling range and the number of switching actions are superior to conventional predictive control, which provides an effective solution for high-performance multilevel converter control in energy systems. Full article
(This article belongs to the Special Issue Control and Optimization of Power Converters)
Show Figures

Figure 1

26 pages, 10899 KB  
Article
Investigation of Pulse Power Smoothing Control Based on a Three-Phase Interleaved Parallel Bidirectional Buck-Boost DC–DC Converter
by Jingbin Yan, Tao Wang, Feiruo Qin and Haoxuan Hu
Symmetry 2025, 17(8), 1247; https://doi.org/10.3390/sym17081247 - 6 Aug 2025
Cited by 1 | Viewed by 851
Abstract
To address the issues of DC-side voltage fluctuation and three-phase current distortion in rectifier systems under pulsed load conditions, this paper proposes a control strategy that integrates Model Predictive Control (MPC) with a Luenberger observer for the Power Pulsation Buffer (PPB). The observer [...] Read more.
To address the issues of DC-side voltage fluctuation and three-phase current distortion in rectifier systems under pulsed load conditions, this paper proposes a control strategy that integrates Model Predictive Control (MPC) with a Luenberger observer for the Power Pulsation Buffer (PPB). The observer parameters are adaptively tuned using a gradient descent method. First, the pulsed current generated by the load is decomposed into dynamic and average components, and a mathematical model of the PPB is established. Considering the negative impact of DC voltage ripple and lumped disturbances such as parasitic parameters on model accuracy, a Luenberger observer is designed to estimate these disturbances. To overcome the dependence of traditional Luenberger observers on empirically tuned gains, an adaptive gradient descent algorithm based on gradient direction consistency is introduced for online gain adjustment. Simulation and experimental results demonstrate that the proposed control strategy—combining the Luenberger observer with gradient descent and MPC—effectively reduces current tracking overshoot and improves tracking accuracy. Furthermore, it enables sustained decoupling of the PPB from the system, significantly mitigating DC-side voltage ripple and three-phase current distortion under pulsed load conditions, thereby validating the effectiveness of the proposed approach. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

23 pages, 4451 KB  
Article
Energy Management and Power Distribution for Battery/Ultracapacitor Hybrid Energy Storage System in Electric Vehicles with Regenerative Braking Control
by Abdelsalam A. Ahmed, Young Il Lee, Saleh Al Dawsari, Ahmed A. Zaki Diab and Abdelsalam A. Ezzat
Math. Comput. Appl. 2025, 30(4), 82; https://doi.org/10.3390/mca30040082 - 3 Aug 2025
Cited by 1 | Viewed by 1826
Abstract
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking [...] Read more.
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking control strategy is developed to maximize kinetic energy recovery using an induction motor, efficiently distributing the recovered energy between the UC and battery. Additionally, a power flow management approach is introduced for both motoring (discharge) and braking (charge) operations via bidirectional buck–boost DC-DC converters. In discharge mode, an optimal distribution factor is dynamically adjusted to balance power delivery between the battery and UC, maximizing efficiency. During charging, a DC link voltage control mechanism prioritizes UC charging over the battery, reducing stress and enhancing energy recovery efficiency. The proposed EMS is validated through simulations and experiments, demonstrating significant improvements in vehicle acceleration, energy efficiency, and battery lifespan. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

22 pages, 19012 KB  
Article
An Enhanced Integrated Optimization Strategy for Wide ZVS Operation and Reduced Current Stress Across the Full Load Range in DAB Converters
by Longfei Cui, Yiming Zhang, Xuhong Wang and Dong Zhang
Appl. Sci. 2025, 15(13), 7413; https://doi.org/10.3390/app15137413 - 1 Jul 2025
Cited by 2 | Viewed by 1335
Abstract
The dual-active-bridge (DAB) converter has emerged as a promising topology for renewable energy applications and microgrid systems due to its high power density and bidirectional energy-transfer capability. Enhancing the overall efficiency and reliability of DAB converters requires the simultaneous realization of zero-voltage switching [...] Read more.
The dual-active-bridge (DAB) converter has emerged as a promising topology for renewable energy applications and microgrid systems due to its high power density and bidirectional energy-transfer capability. Enhancing the overall efficiency and reliability of DAB converters requires the simultaneous realization of zero-voltage switching (ZVS) across all switches and the minimization of current stress over wide load and voltage ranges—two objectives that are often in conflict. Conventional modulation strategies with limited degrees of freedom fail to meet these dual goals effectively. To address this challenge, this paper introduces an enhanced integrated optimization strategy based on triple phase shift (EIOS-TPS). This approach formulates the power transmission requirement as an equality constraint and incorporates ZVS and mode boundary conditions as inequalities, resulting in a comprehensive optimization framework. Optimal phase-shift parameters are obtained using the Karush–Kuhn–Tucker (KKT) conditions. To mitigate zero-current switching (ZCS) under a light load and achieve full-range ZVS with reduced current stress, a modulation factor λ is introduced, enabling a globally optimized control trajectory. An experimental 1176 W prototype is developed to validate the proposed method, which achieves full-range ZVS while maintaining low current stress. In the low-power region, it improves efficiency by up to 2.2% in buck mode and 2.0% in boost mode compared with traditional control strategies, reaching a peak efficiency of 96.5%. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

29 pages, 6105 KB  
Review
A Review of Control Strategies for Four-Switch Buck–Boost Converters
by Guanzheng Lin, Yan Li and Zhaoyun Zhang
World Electr. Veh. J. 2025, 16(6), 315; https://doi.org/10.3390/wevj16060315 - 5 Jun 2025
Viewed by 7698
Abstract
In order to meet the demand for high-voltage architectures of 400 V and 800 V in electric vehicle systems, high-power DC-DC converters have become a key focus of research. The Four-Switch Buck–Boost converter has gained widespread application due to its wide voltage conversion [...] Read more.
In order to meet the demand for high-voltage architectures of 400 V and 800 V in electric vehicle systems, high-power DC-DC converters have become a key focus of research. The Four-Switch Buck–Boost converter has gained widespread application due to its wide voltage conversion range, consistent input and output polarity, and the capability of bidirectional power transfer. This paper focuses on the energy conversion requirements in high-voltage scenarios for electric vehicles, analyzing the working principle of this converter and typical control strategies. It summarizes the issues encountered under different control strategies and presents improvements. Hard-switching multi-mode control strategies aim to improve control algorithms and logic to mitigate large duty cycle variations and voltage gain discontinuities caused by dead zones. For control strategies based on controlling the inductor current to achieve soft-switching, the discussion mainly focuses on optimizing the implementation of soft-switching, reducing overall system losses, and improving the computation speed. Finally, the paper summarizes FSBB control strategies and outlines future directions, providing theoretical support for high-voltage fast charging and onboard power supplies in electric vehicles. Full article
(This article belongs to the Special Issue Power Electronics for Electric Vehicles)
Show Figures

Figure 1

26 pages, 3971 KB  
Article
Design of a Controller for Supercapacitor’s Bidirectional High-Gain Interleaved Converter
by Jessica C. A. Sousa, Thiago M. Soares, Jonathan M. Tabora and Hugo G. Lott
Energies 2025, 18(10), 2605; https://doi.org/10.3390/en18102605 - 17 May 2025
Viewed by 1881
Abstract
This study focuses on the mathematical modeling, control design, and analysis of an interleaved bidirectional high-voltage-gain DC-DC converter for energy management in supercapacitors. The state of the art is reviewed, with an emphasis on research related to DC-DC converters and energy storage systems. [...] Read more.
This study focuses on the mathematical modeling, control design, and analysis of an interleaved bidirectional high-voltage-gain DC-DC converter for energy management in supercapacitors. The state of the art is reviewed, with an emphasis on research related to DC-DC converters and energy storage systems. The characteristics and modeling of the supercapacitors are thoroughly analyzed. The converter’s operation in both buck and boost modes is described, detailing its operating stages, design parameters, and component sizing. The modeling accounts for the dynamics of the converter in both operational modes. PI controllers and compensation techniques were implemented to ensure the desired performance and meet the design criteria. Simulations were conducted using PSIM software, version 2023.1, with a power flow of 1 kW, a 48 V DC bus (buck mode), and a 162 V supercapacitor module (boost mode), operating at 500 kHz. The performance of the controllers was evaluated during both the charging and discharging processes of the supercapacitor, analyzing the dynamic response and behavior in the continuous mode, even in the presence of system disturbances. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

28 pages, 7959 KB  
Article
Current-Adaptive Control for Efficiency Enhancement in Interleaved Converters for Battery Energy Storage Systems
by Andrej Brandis, Kristian Knol and Denis Pelin
Electronics 2025, 14(9), 1862; https://doi.org/10.3390/electronics14091862 - 2 May 2025
Viewed by 1164
Abstract
Battery energy storage systems are essential for grid stability and the efficient integration of renewable energy sources. Their performance is influenced by the efficiency of bidirectional converters, particularly under varying load conditions. This study presents a novel current-adaptive control strategy for a two-stage [...] Read more.
Battery energy storage systems are essential for grid stability and the efficient integration of renewable energy sources. Their performance is influenced by the efficiency of bidirectional converters, particularly under varying load conditions. This study presents a novel current-adaptive control strategy for a two-stage non-isolated bidirectional DC-DC converter designed to dynamically adjust the number of active branches based on real-time load variations. The proposed approach introduces a current-adaptive algorithm for branch activation and deactivation, combined with real-time temperature-based control decision making, which has not been explored in existing studies. The validation was conducted using real-time Hardware-in-the-Loop simulation with the Typhoon HIL 402 system, ensuring accurate system representation. The results show an increase in average efficiency from 77.69% to 83.15% in Buck mode and from 81.00% to 83.71% in Boost mode, with a reduction in average power losses by 8.67% and 13.31%, respectively. These findings underscore the need for further research on temperature-adaptive control for efficiency optimization and thermal management, which is currently ongoing and will be expanded in future work. Future efforts will focus on experimental validation using a physical prototype and further refinement of temperature-adaptive control strategies. Full article
Show Figures

Figure 1

29 pages, 9574 KB  
Review
Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review
by Yan Tong, Issam Salhi, Qin Wang, Gang Lu and Shengyu Wu
Energies 2025, 18(9), 2312; https://doi.org/10.3390/en18092312 - 1 May 2025
Cited by 19 | Viewed by 6648
Abstract
Electric Vehicles (EV) significantly contribute to reducing carbon emissions and promoting sustainable transportation. Among EV technologies, hybrid energy storage systems (HESS), which combine fuel cells, power batteries, and supercapacitors, have been widely adopted to enhance energy density, power density, and system efficiency. Bidirectional [...] Read more.
Electric Vehicles (EV) significantly contribute to reducing carbon emissions and promoting sustainable transportation. Among EV technologies, hybrid energy storage systems (HESS), which combine fuel cells, power batteries, and supercapacitors, have been widely adopted to enhance energy density, power density, and system efficiency. Bidirectional DC-DC converters are pivotal in HESS, enabling efficient energy management, voltage matching, and bidirectional energy flow between storage devices and vehicle systems. This paper provides a comprehensive review of bidirectional DC-DC converter topologies for EV applications, which focuses on both non-isolated and isolated designs. Non-isolated topologies, such as Buck-Boost, Ćuk, and interleaved converters, are featured for their simplicity, efficiency, and compactness. Isolated topologies, such as dual active bridge (DAB) and push-pull converters, are featured for their high voltage gain and electrical isolation. An evaluation framework is proposed, incorporating key performance metrics such as voltage stress, current stress, power density, and switching frequency. The results highlight the strengths and limitations of various converter topologies, offering insights into their optimization for EV applications. Future research directions include integrating wide-bandgap devices, advanced control strategies, and novel topologies to address challenges such as wide voltage gain, high efficiency, and compact design. This work underscores the critical role of bidirectional DC-DC converters in advancing energy-efficient and sustainable EV technologies. Full article
Show Figures

Figure 1

40 pages, 4760 KB  
Review
Sustainable Electric Micromobility Through Integrated Power Electronic Systems and Control Strategies
by Mohamed Krichi, Abdullah M. Noman, Mhamed Fannakh, Tarik Raffak and Zeyad A. Haidar
Energies 2025, 18(8), 2143; https://doi.org/10.3390/en18082143 - 21 Apr 2025
Cited by 7 | Viewed by 2857
Abstract
A comprehensive roadmap for advancing Electric Micromobility (EMM) systems addressing the fragmented and scarce information available in the field is defined as a transformative solution for urban transportation, targeting short-distance trips with compact, lightweight vehicles under 350 kg and maximum speeds of 45 [...] Read more.
A comprehensive roadmap for advancing Electric Micromobility (EMM) systems addressing the fragmented and scarce information available in the field is defined as a transformative solution for urban transportation, targeting short-distance trips with compact, lightweight vehicles under 350 kg and maximum speeds of 45 km/h, such as bicycles, e-scooters, and skateboards, which offer flexible, eco-friendly alternatives to traditional transportation, easing congestion and promoting sustainable urban mobility ecosystems. This review aims to guide researchers by consolidating key technical insights and offering a foundation for future exploration in this domain. It examines critical components of EMM systems, including electric motors, batteries, power converters, and control strategies. Likewise, a comparative analysis of electric motors, such as PMSM, BLDC, SRM, and IM, highlights their unique advantages for micromobility applications. Battery technologies, including Lithium Iron Phosphate, Nickel Manganese Cobalt, Nickel-Cadmium, Sodium-Sulfur, Lithium-Ion and Sodium-Ion, are evaluated with a focus on energy density, efficiency, and environmental impact. The study delves deeply into power converters, emphasizing their critical role in optimizing energy flow and improving system performance. Furthermore, control techniques like PID, fuzzy logic, sliding mode, and model predictive control (MPC) are analyzed to enhance safety, efficiency, and adaptability in diverse EMM scenarios by using cutting-edge semiconductor devices like Silicon Carbide (SiC) and Gallium Nitride (GaN) in well-known configurations, such as buck, boost, buck–boost, and bidirectional converters to ensure great efficiency, reduce energy losses, and ensure compact and reliable designs. Ultimately, this review not only addresses existing gaps in the literature but also provides a guide for researchers, outlining future research directions to foster innovation and contribute to the development of sustainable, efficient, and environmentally friendly urban transportation systems. Full article
Show Figures

Figure 1

Back to TopTop