Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (201)

Search Parameters:
Keywords = beneficiation tailings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7363 KiB  
Article
Agronomic Evaluation of Compost Formulations Based on Mining Tailings and Microbial Mats from Geothermal Sources
by María Jesús Puy-Alquiza, Miren Yosune Miranda Puy, Raúl Miranda-Avilés, Pooja Vinod Kshirsagar and Cristina Daniela Moncada Sanchez
Recycling 2025, 10(4), 156; https://doi.org/10.3390/recycling10040156 - 5 Aug 2025
Abstract
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, [...] Read more.
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, Mg, and S), micronutrients (Fe, Zn, B, Cu, Mn, Mo, and Ni), organic matter (OM), and the carbon-to-nitrogen (C/N) ratio. All composts exhibited neutral pH values (7.38–7.52), high OM content (38.5–48.4%), and optimal C/N ratios (10.5–13.9), indicating maturity and chemical stability. Nitrogen ranged from 19 to 21 kg·t−1, while potassium and calcium were present in concentrations beneficial for crop development. However, EC values (3.43–3.66 dS/m) and boron levels (>160 ppm) were moderately high, requiring caution in saline soils or with boron-sensitive crops. A semi-quantitative Compost Quality Index (CQI) ranked BFS3 highest due to elevated OM and potassium content, followed by BFS1. BFS2, while rich in nitrogen, scored lower due to excessive boron. One-way ANOVA revealed no significant difference in nitrogen (p > 0.05), but it did reveal significant differences in potassium (p < 0.01) and boron (p < 0.001) among formulations. These results confirm the potential of mining tailings—microbial mat composts are low-cost, nutrient-rich biofertilizers. They are suitable for field crops or as components in nursery substrates, particularly when EC and boron are managed through dilution. This study promotes the circular reuse of geothermal and industrial residues and contributes to sustainable soil restoration practices in mining-affected regions through innovative composting strategies. Full article
Show Figures

Figure 1

17 pages, 9104 KiB  
Article
Analysis and Chromium Recovery from Ferrochrome Waste (Stockpiled Refined Ferrochrome Slags)
by Otegen Sariyev, Lyazat Tolymbekova, Murat Dossekenov, Bauyrzhan Kelamanov, Dauren Yessengaliyev, Assel Davletova and Assylbek Abdirashit
Metals 2025, 15(7), 740; https://doi.org/10.3390/met15070740 - 30 Jun 2025
Viewed by 233
Abstract
This study investigates the effectiveness of various beneficiation methods for recovering chromium from refined ferrochrome slag. Dry magnetic separation at different field intensities (0.45 T and 0.8 T) showed that selective extraction of metallic chromium (Crmet) is more efficient at 0.45 [...] Read more.
This study investigates the effectiveness of various beneficiation methods for recovering chromium from refined ferrochrome slag. Dry magnetic separation at different field intensities (0.45 T and 0.8 T) showed that selective extraction of metallic chromium (Crmet) is more efficient at 0.45 T, achieving a recovery rate of up to 90.05%. Pneumatic separation using SEPAIR technology demonstrated promising results, especially for wide particle size fractions (0–20 mm), where chromium recovery reached 40.32% due to density differences between slag particles and metallic inclusions. Enrichment on a shaking table proved to be the most selective method, producing a concentrate with 29.9% Cr and 90.7% recovery, although the yield was low (3.8%). SEM-EDX and SEM-BSE analyses confirmed the heterogeneous phase composition of slag grains, revealing chromium–iron alloys embedded in oxide matrices. Based on laboratory experiments and material characterization, it is concluded that magnetic separation can be used for preliminary concentration, pneumatic classification is effective for processing bulk slag with economic potential, and gravity concentration on shaking tables is suitable for producing high-grade concentrates. The resulting tailings, low in chromium, are suitable for reuse in the production of building materials after carbonation treatment. Full article
Show Figures

Figure 1

17 pages, 2367 KiB  
Article
Sustainable Mineral Processing Technologies Using Hybrid Intelligent Algorithms
by Olga Shiryayeva, Batyrbek Suleimenov and Yelena Kulakova
Technologies 2025, 13(7), 269; https://doi.org/10.3390/technologies13070269 - 24 Jun 2025
Viewed by 478
Abstract
This study presents a sustainable and adaptive approach to mineral processing. A hybrid intelligent control system was developed to beneficiate fine chromite ore in a jigging machine. The objective is to enhance separation efficiency and reduce chromium losses through real-time optimization of process [...] Read more.
This study presents a sustainable and adaptive approach to mineral processing. A hybrid intelligent control system was developed to beneficiate fine chromite ore in a jigging machine. The objective is to enhance separation efficiency and reduce chromium losses through real-time optimization of process parameters under variable feed conditions. The method addresses ore composition fluctuations by integrating three components: Physical modeling of particle motion, regression analysis, and neural network-based prediction. The jig bed level and pulsation frequency are used as control variables, while the Cr2O3 content in the feed (Cr) is treated as a disturbance. A neural network predicts the Cr2O3 content in the concentrate (Cc) and in the tailings (Ct), representing chromite-rich and gangue fractions, respectively. The optimization is performed using a constrained Interior-Point algorithm. The model demonstrates high predictive accuracy, with a mean squared error (MSE) below 0.01. The proposed control algorithm reduces chromium losses in tailings from 7.5% to 5.5%, while improving concentrate quality by 3–6%. A real-time human–machine interface (HMI) was developed in SIMATIC WinCC for process visualization and control. The hybrid framework can be adapted to other mineral processing systems by adjusting the model structure and retraining the neural network on new ore datasets. Full article
Show Figures

Graphical abstract

23 pages, 6269 KiB  
Article
Feeding Frequency Affects the Growth Performance and Intestinal Health of Juvenile Red-Tail Catfish (Hemibagrus wyckioides) with the Same Amount of Daily Feed
by Baohong Xu, Zheyu Wen, Chen Zheng, Shengguo Tang, Tiaoyi Xiao, Yaqun Qiu and Qiaolin Liu
Animals 2025, 15(11), 1621; https://doi.org/10.3390/ani15111621 - 30 May 2025
Viewed by 507
Abstract
To investigate the effects of feeding frequency on the growth, intestinal health, and metabolism of larval red-tailed catfish (Hemibagrus wyckioides) cultured in land-based circular tanks, a 56-day feeding trial was conducted. A total of 450 fish (8.47 ± 0.36 g) were [...] Read more.
To investigate the effects of feeding frequency on the growth, intestinal health, and metabolism of larval red-tailed catfish (Hemibagrus wyckioides) cultured in land-based circular tanks, a 56-day feeding trial was conducted. A total of 450 fish (8.47 ± 0.36 g) were randomly allocated to three feeding frequencies: twice (F2), three times (F3), and four times (F4) daily. The results revealed that the F3 group had a significantly better feed conversion rate, specific growth rate, and weight gain rate compared to the F4 group (p < 0.05). Lipase activity and villus height were also significantly greater in the F3 group compared to the other groups (p < 0.05). The transcriptome of the F3 group showed significant enrichment in immune- and metabolism-related pathways. Additionally, the F3 group had a higher abundance of beneficial Clostridium compared to the other groups. Plesiomonas was identified as the main contributor in the F3 group, and its abundance was significantly decreased in the F4 group (p < 0.05). These findings indicated that a feeding frequency of three times per day improves the growth performance of H. wyckioides in aquaculture by increasing the abundance of beneficial Clostridium and Plesiomonas, activating multiple immune pathways, and enhancing amino acid metabolism. Full article
(This article belongs to the Special Issue Advances in Aquaculture Nutrition for Sustainable Health Management)
Show Figures

Figure 1

17 pages, 8431 KiB  
Article
Optimizing Technological Parameters for Chromium Extraction from Chromite Ore Beneficiation Tailings
by Nazym Akhmadiyeva, Rinat Abdulvaliyev, Sergey Gladyshev, Bulat Sukurov, Yerkezhan Abikak, Alfiyam Manapova and Nauryzbek Bakhytuly
Minerals 2025, 15(6), 555; https://doi.org/10.3390/min15060555 - 22 May 2025
Viewed by 422
Abstract
This study focuses on optimizing the alkali roasting conditions for chromite beneficiation tailings with the goal of enhancing chromium oxide (Cr2O3) extraction. Within the experimental framework, the variables included roasting temperature, the amount of added Na2CO3 [...] Read more.
This study focuses on optimizing the alkali roasting conditions for chromite beneficiation tailings with the goal of enhancing chromium oxide (Cr2O3) extraction. Within the experimental framework, the variables included roasting temperature, the amount of added Na2CO3, and reaction time. The results revealed that temperature is the most critical factor directly affecting the extraction efficiency. Increasing the amount of Na2CO3 contributed to an increase in Cr2O3 recovery, although excessive addition may not be economically justified. The optimal conditions—1000 °C, 120%–130% Na2CO3 (relative to tailings mass), and 120 min—enabled a Cr2O3 extraction rate of up to 98.6% through aqueous leaching. The phase transformation analysis confirmed the breakdown of the spinel structure and formation of water-soluble sodium chromate. Microanalysis observations and measurements validated the progressive destruction of chromite grains and sodium enrichment in the reaction zones. The remaining leaching residue consisted of inert Na2Mg2Si2O7 and MgO, suitable for further metal recovery. The proposed approach enables efficient detoxification of hazardous tailings and serves as a basis for integrated utilization of Cr-bearing industrial waste. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 1849 KiB  
Article
Identifying and Mapping Ticks on Wild Boars from Romania
by Ioan Cristian Dreghiciu, Mirela Imre, Diana Hoffman, Ion Oprescu, Vlad Iorgoni, Simona Giubega, Sorin Morariu and Marius Stelian Ilie
Animals 2025, 15(8), 1092; https://doi.org/10.3390/ani15081092 - 9 Apr 2025
Viewed by 802
Abstract
Globally, due to climate change, urbanization, and the intensification of interactions between humans and animals, tick populations have increased, and areas where these arthropod vectors can develop and transmit diseases have expanded. Ixodidae ticks infect a wide variety of species and serve as [...] Read more.
Globally, due to climate change, urbanization, and the intensification of interactions between humans and animals, tick populations have increased, and areas where these arthropod vectors can develop and transmit diseases have expanded. Ixodidae ticks infect a wide variety of species and serve as major vectors for zoonotic pathogens of veterinary importance. This study aimed to identify and map ticks collected from boar tails in six Romanian counties. A total of 141 ticks were identified and differentiated on the basis of their morphological characteristics via stereomicroscopy and electron microscopy. Among the 141 ticks examined, five species, Ixodes ricinus, Haemaphysalis concinna, Haemaphysalis erinacei, Dermacentor reticulatus, and Dermacentor marginatus, were identified. The identification and mapping of ticks present on wild boars is beneficial for both veterinary and human medicine due to the pathogens they can transmit. The results of our study indicate that parasitism with different tick species in wildlife—in this case, wild boar—is present in the Romanian counties under study. This is one of the most recent tick identification and mapping studies. Tick parasitism represents a threat to the health of wild/domestic animals, and frequent monitoring is necessary. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

17 pages, 562 KiB  
Article
A New Higher-Order Convergence Laplace–Fourier Method for Linear Neutral Delay Differential Equations
by Gilbert Kerr and Gilberto González-Parra
Math. Comput. Appl. 2025, 30(2), 37; https://doi.org/10.3390/mca30020037 - 28 Mar 2025
Cited by 1 | Viewed by 378
Abstract
In this article, a new higher-order convergence Laplace–Fourier method is developed to obtain the solutions of linear neutral delay differential equations. The proposed method provides more accurate solutions than the ones provided by the pure Laplace method and the original Laplace–Fourier method. We [...] Read more.
In this article, a new higher-order convergence Laplace–Fourier method is developed to obtain the solutions of linear neutral delay differential equations. The proposed method provides more accurate solutions than the ones provided by the pure Laplace method and the original Laplace–Fourier method. We develop and show the crucial modifications of the Laplace–Fourier method. As with the original Laplace–Fourier method, the new method combines the Laplace transform method with Fourier series theory. All of the beneficial features from the original Laplace–Fourier method are retained. The solution still includes a component that accounts for the terms in the tail of the infinite series, allowing one to obtain more accurate solutions. The Laplace–Fourier method requires us to approximate the formula for the residues with an asymptotic expansion. This is essential to enable us to use the Fourier series results that enable us to account for the tail. The improvement is achieved by deriving a new asymptotic expansion which minimizes the error between the actual residues and those which are obtained from this asymptotic expansion. With both the pure Laplace and improved Laplace–Fourier methods, increasing the number of terms in the truncated series obviously increases the accuracy. However, with the pure Laplace method, this improvement is small. As we shall show, with the improved higher-order convergence Laplace–Fourier method, the improvement is significantly larger. We show that the convergence rate of the new Laplace–Fourier solution has a remarkable order of convergence. The validity of the new technique is corroborated by means of illustrative examples. Comparisons of the solutions of the new method with those generated by the pure Laplace method and the unmodified Laplace–Fourier approach are presented. Full article
Show Figures

Figure 1

11 pages, 2695 KiB  
Article
Variation in Oxidized Proanthocyanidins in Chinese Weedy Rice Seeds and Their Impact on Ecological Adaptation
by Yujiang Yan, Jing Chao, Bingjie Ruan, Xiaoyan Yuan, Qiyuan Qin, Zhihua Shi, Sheng Qiang, Xiaoling Song and Weimin Dai
Agronomy 2025, 15(4), 835; https://doi.org/10.3390/agronomy15040835 - 27 Mar 2025
Viewed by 357
Abstract
Weedy rice, also known as red rice, mainly originates from the de-domestication of cultivated rice and is a vicious weed in paddy fields around the world. Its red seeds are rich in oxidized proanthocyanidins (OPAs). This study investigates whether OPA content varies among [...] Read more.
Weedy rice, also known as red rice, mainly originates from the de-domestication of cultivated rice and is a vicious weed in paddy fields around the world. Its red seeds are rich in oxidized proanthocyanidins (OPAs). This study investigates whether OPA content varies among different weedy rice strains, whether these variations are possibly related to their adaptation to the local environment, and whether the change in OPA content could affect seed germination. A total of 202 weedy rice accessions from 69 populations across China were collected. Their OPA content, Rc/Rd genotypes, and seed germination percentage on the second, third, and seventh day were detected, respectively. Using bivariate Pearson’s two-tailed correlation analysis and generalized linear mixed models, our results showed that the content of OPAs varied widely among the different strains of weedy rice and were significantly correlated with local environment (latitude) and Rc/Rd genotypes but not with seed germination percentage on the second, third, and seventh day. Thus, the content of OPAs in Chinese weedy rice seeds is closely related to its ecological adaptability. These findings provide insights into the effect of OPA content on the ecological adaptability of weedy rice, which is beneficial to the control and germplasm resource utilization of weedy rice. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

21 pages, 8396 KiB  
Article
The Effect of Ionic Soil Stabilizer on Cement and Cement-Stabilized Iron Tailings Soil: Hydration Difference and Mechanical Properties
by Hongtu Li, Jian Jia, Xiaolei Lu, Xin Cheng, Jiang Zhu, Lina Zhang, Peipei Guo and Gongning Zhai
Materials 2025, 18(7), 1444; https://doi.org/10.3390/ma18071444 - 25 Mar 2025
Cited by 1 | Viewed by 430
Abstract
The ionic soil stabilizer (ISS) can synergistically enhance the mechanical properties and improve the engineering characteristics of iron tailings soil in conjunction with cementitious materials such as cement. In this paper, the influence of ISS on the cement hydration process and the charge [...] Read more.
The ionic soil stabilizer (ISS) can synergistically enhance the mechanical properties and improve the engineering characteristics of iron tailings soil in conjunction with cementitious materials such as cement. In this paper, the influence of ISS on the cement hydration process and the charge repulsion between iron tailings soil particles was studied. By means of Isothermal calorimetry, X-ray diffraction (XRD), Scanning electron microscope (SEM), and Low-field nuclear magnetic resonance microscopic analysis methods such as (LF-NMR), X-ray photoelectron spectroscopy (XPS), Non-evaporable water content and Zeta potential were used to clarify the mechanism of ISS-enhanced cement stabilization of the mechanical properties of iron tailings soil. The results show that in the cement system, ISS weakens the mechanical properties of cement mortar. When ISS content is 1.67%, the 7 d compressive strength of cement mortar decreases by 59.8% compared with the reference group. This retardation arises due to carboxyl in ISS forming complexes with Ca2+, creating a barrier on cement particle surfaces, hindering the hydration reaction of the cement. In the cement-stabilized iron tailings soil system, ISS has a positive modification effect. At 0.33% ISS, compared with the reference group, the maximum dry density of the samples increased by 6.5%, the 7 d unconfined compressive strength increased by 35.3%, and the porosity decreased from 13.58% to 11.85%. This is because ISS reduces the double electric layer structure on the surface of iron tailings soil particles, reduces the electrostatic repulsion between particles, and increases the compactness of cement-stabilized iron tailings soil. In addition, the contact area between cement particles increases, the reaction energy barrier height decreases, the formation of Ca(COOH)2 reduces, and the retarding effect on hydration weakens. Consequently, ISS exerts a beneficial effect on augmenting the mechanical performance of cement-stabilized iron tailings soil. Full article
Show Figures

Figure 1

18 pages, 1020 KiB  
Article
The Impact of Gust Load Design Criteria on Vehicle Structural Weight for a Persistent Surveillance Platform
by Jerry Wall, Zack Krawczyk and Ryan Paul
Aerospace 2025, 12(3), 209; https://doi.org/10.3390/aerospace12030209 - 5 Mar 2025
Viewed by 737
Abstract
This paper introduces a methodology for structural mass optimization of High-Altitude Long Endurance (HALE) aircraft across a complete mission profile, tailored for use in preliminary design. A conceptual HALE vehicle and its mission profile are assumed for this study, which also evaluates the [...] Read more.
This paper introduces a methodology for structural mass optimization of High-Altitude Long Endurance (HALE) aircraft across a complete mission profile, tailored for use in preliminary design. A conceptual HALE vehicle and its mission profile are assumed for this study, which also evaluates the impact of risk-based design decisions on optimized mass. The research incorporates a coupled aeroelastic solver and a mass optimization algorithm based on classical laminate theory to construct a geometrically accurate spar model. A novel approach is proposed to minimize the spar mass of the aircraft throughout the mission profile. This algorithm is applied to a representative T-Tail HALE model to compare optimized mass between two mission profiles differing in turbulence exceedance levels during the ascent and descent mission stages, while maintaining the same design robustness for on-station operation. Sample numerical results reveal a 10.9% reduction in structural mass for the mission profile with lower turbulence robustness design criteria applied for ascent and descent mission phases. The significant mass savings revealed in the optimization framework allow for a trade-off analysis between robustness to turbulence impacts and critical HALE platform parameters such as empty weight. The reduced empty vehicle weight, while beneficial to vehicle performance metrics, may be realized but comes with the added safety of flight risk unless turbulent conditions can be avoided during ascent and descent through risk mitigation strategies employed by operators. The optimization framework developed can be incorporated into system engineering tools that evaluate mission effectiveness, vehicle performance, vehicle risk of loss, and system availability over a desired operating area subject to environmental conditions. Full article
(This article belongs to the Special Issue Advanced Aircraft Structural Design and Applications)
Show Figures

Figure 1

18 pages, 3833 KiB  
Article
Microbial Indicators Show the Rehabilitation Flow of Soil Microbiota After the Brumadinho Dam Collapse
by Paulo Wilson Goulart, Amanda Tristão Santini, Lutecia Rigueira Medina, Alan Emanuel Silva Cerqueira, Alex Castro Gazolla, Wiane Meloni Silva, Igor Rodrigues de Assis, Diego Aniceto, Sergio Oliveira de Paula and Cynthia Canêdo da Silva
Mining 2025, 5(1), 16; https://doi.org/10.3390/mining5010016 - 26 Feb 2025
Cited by 1 | Viewed by 607
Abstract
Iron ore extraction can lead to significant environmental degradation, particularly due to the generation of tailings during the beneficiation process. This issue was highlighted by the B1 dam collapse in Brumadinho, Brazil, in 2019. Therefore, the study and monitoring of affected areas is [...] Read more.
Iron ore extraction can lead to significant environmental degradation, particularly due to the generation of tailings during the beneficiation process. This issue was highlighted by the B1 dam collapse in Brumadinho, Brazil, in 2019. Therefore, the study and monitoring of affected areas is essential to assess soil quality throughout the rehabilitation process, whether through natural recovery or active rehabilitation practices. Microbial indicators can serve as valuable tools to track the recovery of these areas, given their high sensitivity and rapid response to environmental changes. The aim of this study was to evaluate soil microbial indicators, such as enzyme activity, microbial biomass carbon, microbial basal respiration and microbial diversity, and to select microbial approaches for monitoring the area affected by mining tailings in Brumadinho. The results indicated that the reference area initially outperformed the affected area on all evaluated bioindicators, highlighting environmental stress in the affected zone. Over the course of the study, the two areas began to show greater similarity, suggesting a natural recovery of the soil together with the return of natural vegetation. Indicators such as microbial carbon biomass went from values close to 50 mg of C Kg of soil−1 in the affected area, to around 200, statistically equal to the reference. qCO2 also varied in the affected area to values statistically equal to those of the reference over time, variated in the first collection to 0.25 mg of C-CO2 mg of C−1 h−1 in the affected area against 0.1 in the reference area; in the last collection, both areas presented values close to 0.2. Enzymatic activity had superior values in the reference area about the affected area, being urease, and arylsulfatase more sensitive to show differences between areas over time. The metataxonomic data again revealed indicator species for each environment, including genera such as Bacillus, Mycobacterium, Acidibacter, and Burkholderia representative of the reference, and the genera Ramlibacter, Sinomonas, Psedarthrobacter, and Knoellia indicators of the affected area. By the end of this study, the applicability of microbial indicators for monitoring soil microbiota and its ecosystem services was successfully demonstrated. In addition, specific microbial indicators were proposed for monitoring areas affected by iron mining tailings. Full article
(This article belongs to the Special Issue Envisioning the Future of Mining, 2nd Edition)
Show Figures

Figure 1

23 pages, 8037 KiB  
Article
Alteration of Gastrointestinal Function and the Ameliorative Effects of Hericium erinaceus Polysaccharides in Tail Suspension Rats
by Peng Zang, Pu Chen, Junli Chen, Jingchao Sun, Haiyun Lan, Haisheng Dong, Wei Liu, Nan Xu, Weiran Wang, Lingwei Hou, Bowen Sun, Lujia Zhang, Jiaqiang Huang, Pengjie Wang, Fazheng Ren and Siyuan Liu
Nutrients 2025, 17(4), 724; https://doi.org/10.3390/nu17040724 - 18 Feb 2025
Cited by 1 | Viewed by 1823
Abstract
Background/Objectives: Long-term spaceflight in a microgravity environment frequently results in gastrointestinal dysfunction, presenting substantial challenges to astronauts’ health. Hericium erinaceus, a plant recognized for its dual use as food and medicine, contains a key functional component called Hericium erinaceus polysaccharide (HEP), [...] Read more.
Background/Objectives: Long-term spaceflight in a microgravity environment frequently results in gastrointestinal dysfunction, presenting substantial challenges to astronauts’ health. Hericium erinaceus, a plant recognized for its dual use as food and medicine, contains a key functional component called Hericium erinaceus polysaccharide (HEP), which is purported to promote gastrointestinal health. This study aims to investigate the protective effects of HEP against gastrointestinal disturbances induced by simulated weightlessness and to elucidate its regulatory mechanisms. Methods: Sprague Dawley rats subjected to a tail suspension model were administered either a standard diet or a diet supplemented with 0.125% HEP over a period of 4 weeks (the intake of HEP is approximately 157.5 mg/kg bw/d, n = 8), metagenomics and targeted metabolomics to investigate the effects of HEP on gastrointestinal hormone secretion disorders, gut microbiota dysbiosis, and intestinal barrier damage induced by simulated weightlessness. Results: Dietary supplementation with HEP was observed to significantly alleviate weightlessness-induced gastrointestinal hormone disruptions, enhancing motility and intestinal barrier function while reducing inflammation. In addition, HEP improved gut microbiota by boosting beneficial bacteria as Oscillibacter sp.1-3, Firmicutes bacterium ASF500, and Lactobacillus reuteri, while reducing harmful bacteria like Escherichia coli and Mucispirillum schaedleri at the species level. Furthermore, HEP altered the serum metabolic profile of the rats, reducing inflammation by upregulating the tryptophan metabolism pathway and enhancing the production of short-chain fatty acids. Conclusions: HEP effectively protects against gastrointestinal dysfunction induced by simulated weightlessness by regulating hormone secretion and maintaining intestinal homeostasis. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

20 pages, 10615 KiB  
Article
Dietary Capsaicin Exacerbates Gut Microbiota Dysbiosis and Mental Disorders in Type 1 Diabetes Mice
by Xiaohui Zhang, Houjia Hu, Yue Zhang, Shuting Hu, Jiaqin Lu, Weijie Peng and Dan Luo
Nutrients 2025, 17(3), 593; https://doi.org/10.3390/nu17030593 - 6 Feb 2025
Viewed by 2404
Abstract
Background/Objectives: Diabetes mellitus is often accompanied by mental health complications, including anxiety, depression, and cognitive decline. Recent research suggested that capsaicin, the active component of chili peppers, may influence mental health. This study aimed to determine the effect of dietary capsaicin on [...] Read more.
Background/Objectives: Diabetes mellitus is often accompanied by mental health complications, including anxiety, depression, and cognitive decline. Recent research suggested that capsaicin, the active component of chili peppers, may influence mental health. This study aimed to determine the effect of dietary capsaicin on mental disorders in a type 1 diabetes (T1D) mouse model, while also exploring the potential involvement of the microbiota-gut-brain axis. Methods: We induced T1D in mice using streptozotocin (STZ) and administered a diet supplemented with 0.005% capsaicin for five weeks. Behavioral assessments, including the open field test (OFT), tail suspension test (TST), forced swimming test (FST), elevated plus maze (EPM) test, and Morris water maze (MWM) test, were conducted to evaluate depressive and anxiety-like behaviors as well as cognitive function. Targeted and untargeted metabolomics analyses were performed to assess neurotransmitter levels in the hippocampus and serum metabolites, while 16S rRNA sequencing was utilized to analyze gut microbiota composition. Intestinal barriers were determined using western blot detection of the tight junction proteins ZO-1 and occludin. Results: Dietary capsaicin exacerbated anxiety and depressive-like behaviors along with cognitive declines in T1D mice. Capsaicin reduced gut microbiota diversity and levels of beneficial bacteria, while broad-spectrum antibiotic treatment further intensified anxiety and depression behaviors. Metabolomic analysis indicated that capsaicin disrupted metabolic pathways related to tryptophan and phenylalanine, leading to decreased neuroprotective metabolites, such as kynurenic acid, hippurate, and butyric acid. Additionally, capsaicin diminished the expression of ZO-1 and occludin, indicating increased intestinal permeability. Conclusions: Dietary capsaicin aggravates gut microbiota and metabolic disturbances in diabetic mice, thereby worsening anxiety, depression, and cognitive decline. Full article
(This article belongs to the Special Issue Diet, Gut Microbiota and Neuropsychiatric Diseases)
Show Figures

Figure 1

16 pages, 2274 KiB  
Article
A New Trick of Old Dogs: Can Kappa Opioid Receptor Antagonist Properties of Antidepressants Assist in Treating Treatment-Resistant Depression (TRD)?
by Shaul Schreiber, Lee Keidan and Chaim G. Pick
Pharmaceuticals 2025, 18(2), 208; https://doi.org/10.3390/ph18020208 - 3 Feb 2025
Viewed by 1848
Abstract
Background/Objectives: Approximately one in five individuals will experience major depressive disorder (MDD), and 30% exhibit resistance to standard antidepressant treatments, resulting in a diagnosis of treatment-resistant depression (TRD). Historically, opium was used effectively to treat depression; however, when other medications were introduced, its [...] Read more.
Background/Objectives: Approximately one in five individuals will experience major depressive disorder (MDD), and 30% exhibit resistance to standard antidepressant treatments, resulting in a diagnosis of treatment-resistant depression (TRD). Historically, opium was used effectively to treat depression; however, when other medications were introduced, its use was discontinued due to addiction and other hazards. Recently, kappa opioid receptor (KOR) antagonism has been proposed as a potential mechanism for treating TRD. The main research question is whether commonly used psychotropic medications possess KOR antagonist properties and whether this characteristic could contribute to their efficacy in TRD. Methods: We investigated the antinociceptive effects of many psychotropic medications and their interactions with the opioid system. Mice were tested with a hotplate or tail-flick after being injected with different doses of these agents. Results: The antidepressants mianserin and mirtazapine (separately) induced dose-dependent antinociception, each yielding a biphasic dose–response curve. Similarly, the antidepressant venlafaxine produced a potent effect and reboxetine produced a weak effect. The antipsychotics risperidone and amisulpride exhibited a dose-dependent antinociceptive effect. The sedative–hypnotic zolpidem induced a weak bi-phasic dose-dependent antinociceptive effect. All seven psychotropic medications elicited antinociception, which was reversed by the non-selective opiate antagonist naloxone and, separately, by the kappa-selective antagonist Nor-BNI. Conclusions: Clinical studies are mandatory to establish the potential efficacy of augmentation of the treatment with antidepressants with these drugs in persons with treatment-resistant depression and the optimal dosage of medications prescribed. We suggest a possible beneficial effect of antidepressants with kappa antagonistic properties. Full article
Show Figures

Figure 1

21 pages, 5349 KiB  
Article
RST-DeepLabv3+: Multi-Scale Attention for Tailings Pond Identification with DeepLab
by Xiangrui Feng, Caiyong Wei, Xiaojing Xue, Qian Zhang and Xiangnan Liu
Remote Sens. 2025, 17(3), 411; https://doi.org/10.3390/rs17030411 - 25 Jan 2025
Cited by 1 | Viewed by 1011
Abstract
Tailing ponds are used to store tailings or industrial waste discharged after beneficiation. Identifying these ponds in advance can help prevent pollution incidents and reduce their harmful impacts on ecosystems. Tailing ponds are traditionally identified via manual inspection, which is time-consuming and labor-intensive. [...] Read more.
Tailing ponds are used to store tailings or industrial waste discharged after beneficiation. Identifying these ponds in advance can help prevent pollution incidents and reduce their harmful impacts on ecosystems. Tailing ponds are traditionally identified via manual inspection, which is time-consuming and labor-intensive. Therefore, tailing pond identification based on computer vision is of practical significance for environmental protection and safety. In the context of identifying tailings ponds in remote sensing, a significant challenge arises due to high-resolution images, which capture extensive feature details—such as shape, location, and texture—complicated by the mixing of tailings with other waste materials. This results in substantial intra-class variance and limited inter-class variance, making accurate recognition more difficult. Therefore, to monitor tailing ponds, this study utilized an improved version of DeepLabv3+, which is a widely recognized deep learning model for semantic segmentation. We introduced the multi-scale attention modules, ResNeSt and SENet, into the DeepLabv3+ encoder. The split-attention module in ResNeSt captures multi-scale information when processing multiple sets of feature maps, while the SENet module focuses on channel attention, improving the model’s ability to distinguish tailings ponds from other materials in images. Additionally, the tailing pond semantic segmentation dataset NX-TPSet was established based on the Gauge-Fractional-6 image. The ablation experiments show that the recognition accuracy (intersection and integration ratio, IOU) of the RST-DeepLabV3+ model was improved by 1.19% to 93.48% over DeepLabV3+.The multi-attention module enables the model to integrate multi-scale features more effectively, which not only improves segmentation accuracy but also directly contributes to more reliable and efficient monitoring of tailings ponds. The proposed approach achieves top performance on two benchmark datasets, NX-TPSet and TPSet, demonstrating its effectiveness as a practical and superior method for real-world tailing pond identification. Full article
Show Figures

Figure 1

Back to TopTop