Variation in Oxidized Proanthocyanidins in Chinese Weedy Rice Seeds and Their Impact on Ecological Adaptation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Weedy Rice Strains Collected Across China
2.2. Determination of Rc/Rd Genotypes
2.3. Determination of OPA Content
2.4. Seed Germination
2.5. Data Analysis
3. Results
3.1. Analysis of Rc/Rd Alleles
3.2. Statistical Analysis of OPA Content
3.3. The Influence of OPAs on Rc/Rd Genotypes, Latitude, and Seed Germination
4. Discussion
4.1. Significant Differences in OPA Content Among Weedy Rice Strains Across China
4.2. The Variation in OPA Content Was Significantly Affected by the Latitude of the Sampling Site
4.3. The Change in OPA Content Had No Significant Effect on Seed Germination
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Zuo, Z.; Yang, Z. Toward breeding pigmented rice balancing nutrition and yield. Trends Plant Sci. 2024, 29, 504–506. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wu, D.; Fang, Y.; Ye, C.; Zhu, Q.-H.; Wei, X.; Fan, L. Population genomic analysis unravels the evolutionary roadmap of pericarp color in rice. Plant Commun. 2024, 5, 100778. [Google Scholar] [CrossRef] [PubMed]
- Oki, T.; Masuda, M.; Kobayashi, M.; Nishiba, Y.; Furuta, S.; Suda, I.; Sato, T. Polymeric procyanidins as radical-scavenging components in red-hulled rice. J. Agric. Food Chem. 2002, 50, 7524–7529. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Tang, F.; Huang, Y.; Xu, F.; Chen, Y.; Tong, C.; Chen, H.; Bao, J. Analysis of Genotype × Environment Interactions for Polyphenols and Antioxidant Capacity of Rice by Association Mapping. J. Agric. Food Chem. 2014, 62, 5361–5368. [Google Scholar] [CrossRef]
- Sweeney, M.T.; Thomson, M.J.; Pfeil, B.E.; Mccouch, S. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 2006, 18, 283–294. [Google Scholar] [CrossRef]
- Xia, D.; Zhou, H.; Wang, Y.; Li, P.; Fu, P.; Wu, B.; He, Y. How rice organs are colored: The genetic basis of anthocyanin biosynthesis in rice. Crop J. 2021, 9, 598–608. [Google Scholar] [CrossRef]
- Delouche, J.C.; Burgos, N.R.; Gealy, D.R.; de San Martín, G.Z.; Labrada, R.; Larinde, M.; Rosell, C. Weedy Rices—Origin, Biology, Ecology and Control; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 2007. [Google Scholar]
- Dai, L.; Dai, W.M.; Song, X.L.; Lu, B.R.; Qiang, S. A comparative study of competitiveness between different genotypes of weedy rice (Oryza sativa) and cultivated rice. Pest Manag. Sci. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Gressel, J.; Valverde, B.E. A strategy to provide long-term control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds. Pest Manag. Sci. 2009, 65, 723–731. [Google Scholar] [CrossRef]
- Kanapeckas, K.L.; Tseng, T.; Vigueira, C.C.; Ortiz, A.; Bridges, W.C.; Burgos, N.R.; Fischer, A.J.; Lawton-Rauh, A. Contrasting patterns of variation in weedy traits and unique crop features in divergent populations of US weedy rice (Oryza sativa sp.) in Arkansas and California. Pest Manag. Sci. 2018, 74, 1404–1415. [Google Scholar] [CrossRef]
- Burgos, N.R.; Norman, R.J.; Gealy, D.R.; Black, H. Competitive N uptake between rice and weedy rice. Field Crops Res. 2006, 99, 96–105. [Google Scholar] [CrossRef]
- Nakabayashi, K.; Leubner-Metzger, G. Seed dormancy and weed emergence: From simulating environmental change to understanding trait plasticity, adaptive evolution, and population fitness. J. Exp. Bot. 2021, 72, 4181–4185. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.Y.; Zhang, S.J.; Ford-Lloyd, B.V.; Jin, X.; Wu, Y.; Yan, H.X.; Liu, P.; Yang, X.; Lu, B.R. Latitudinal distribution and differentiation of rice germplasm: Its implications in breeding. Crop Sci. 2011, 51, 1050–1058. [Google Scholar] [CrossRef]
- Wang, Y.; Mo, S.D.; Kong, M.Y.; Chao, J.; Chen, X.F.; Yang, J.L.; Shi, Z.; Qiang, S.; Song, X.; Dai, W.-M. Better performance of germination in hyperosmotic solutions in conspecific weedy rice than cultivated rice. J. Syst. Evol. 2019, 57, 519–529. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, W.; Wu, C.; Song, X.; Qiang, S. Genetic diversity and origin of Japonica- and Indica-like rice biotypes of weedy rice in the Guangdong and Liaoning provinces of China. Genet. Resour. Crop Evol. 2012, 59, 399–410. [Google Scholar] [CrossRef]
- Furukawa, T.; Maekawa, M.; Oki, T.; Suda, I.; Iida, S.; Shimada, H.; Takamure, I.; Kadowaki, K. Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J. 2007, 49, 91–102. [Google Scholar] [CrossRef]
- Nakai, K.; Inagaki, Y.; Nagata, H.; Miykzaki, C.; Iida, S. Molecular characterization of the gene for dihydroflavonol 4-reductase of Japonica rice varieties. Plant Biotechnol. 1998, 15, 221–225. [Google Scholar] [CrossRef]
- Abrahams, S.; Lee, E.; Walker, A.R.; Tanner, G.J.; Larkin, P.J.; Ashton, A.R. The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J. 2003, 35, 624–636. [Google Scholar] [CrossRef]
- Zhao, J.; Pang, Y.; Dixon, R.A. The mysteries of proanthocyanidin transport and polymerization. Plant Physiol. 2010, 153, 437–443. [Google Scholar] [CrossRef]
- Debeaujon, I.; Léon-Kloosterziel, K.M.; Koornneef, M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 2000, 122, 403–414. [Google Scholar] [CrossRef]
- Jia, L.G.; Wu, Q.Y.; Ye, N.H.; Liu, R.; Shi, L.; Xu, W.F.; Zhi, H.; Bin Rahman, A.N.M.R.; Xia, Y.; Zhang, J. Proanthocyanidins inhibit seed germination by maintaining a high level of abscisic acid in Arabidopsis thaliana F. J. Integr. Plant Biol. 2012, 54, 663–673. [Google Scholar] [CrossRef]
- Wang, H.; Dai, W.; Zhang, Z.; Meng-Shuo, L.; Meng, L.; Zhang, Z.; Lu, H.; Song, X.-L.; Qiang, S. Occurrence pattern and morphological polymorphism of Chinese weedy rice. J. Integr. Agric. 2023, 22, 149–169. [Google Scholar] [CrossRef]
- Gu, X.; Zongxiang, C.; Foley, M.E. Inheritance of Seed Dormancy in Weedy Rice. Crop Sci. 2003, 43, 835–843. [Google Scholar] [CrossRef]
- Dai, W.M.; Zhang, K.Q.; Wu, J.R.; Wang, L.; Duan, B.W.; Zheng, K.L.; Cai, R.; Zhuang, J.-Y. Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice. Euphytica 2008, 160, 317–324. [Google Scholar] [CrossRef]
- Lu, Y.J.; Zheng, K.L. A simple method for isolation of rice DNA. Chin. J. Rice Sci. 1992, 6, 47–48. [Google Scholar]
- Li, X.Y.; Qiang, S.; Song, X.L.; Cai, K.; Sun, Y.N.; Shi, Z.H.; Dai, W.-M. Allele types of Rc gene of weedy rice from Jiangsu Province, China. Rice Sci. 2014, 21, 252–261. [Google Scholar] [CrossRef]
- Neff, M.M.; Neff, J.D.; Chory, J.; Pepper, A.E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: Experimental applications in Arabidopsis thaliana genetics. Plant J. 1998, 14, 387–392. [Google Scholar] [CrossRef]
- Lim, S.; Ha, S. Marker development for the identification of rice seed color. Plant Biotechnol. Rep. 2013, 7, 391–398. [Google Scholar] [CrossRef]
- Sun, B.S.; Ricardo-Da-Silva, J.M.; Spranger, I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Baskin, J.M.; Baskin, C.C. Seeds; Academic Press: New York, NY, USA, 1998. [Google Scholar]
- Li, L.F.; Li, Y.L.; Jia, Y.; Caicedo, A.L.; Olsen, K.M. Signatures of adaptation in the weedy rice genome. Nat. Genet. 2017, 49, 811–814. [Google Scholar] [CrossRef]
- Qiu, J.; Zhou, Y.; Mao, L.; Ye, C.; Wang, W.; Zhang, J.; Yu, Y.; Fu, F.; Wang, Y.; Qian, F.; et al. Genomic variation associated with local adaptation of weedy rice during de-domestication. Nat. Commun. 2017, 8, 15323. [Google Scholar] [CrossRef]
- Gu, X.Y.; Foley, M.E.; Horvath, D.P.; Anderson, J.V.; Feng, J.H.; Zhang, L.H.; Mowry, C.R.; Ye, H.; Suttle, J.C.; Kadowaki, K.I.; et al. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics 2011, 189, 1515–1524. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.M.; Zhang, K.Q.; Duan, B.W.; Zheng, K.L.; Zhuang, J.Y.; Cai, R. Genetic dissection of silicon content in different organs of rice. Crop Sci. 2005, 45, 1345–1352. [Google Scholar] [CrossRef]
- Kruger, M.J.; Davies, N.; Myburgh, K.H.; Lecour, S. Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res. Int. 2014, 59, 41–52. [Google Scholar] [CrossRef]
- Ou, K.Q.; Gu, L.W. Absorption and metabolism of proanthocyanidins. J. Funct. Foods 2014, 7, 43–53. [Google Scholar] [CrossRef]
- Pintha, K.; Yodkeeree, S.; Limtrakul, P. Proanthocyanidin in red rice inhibits MDA-MB-231 breast cancer cell invasion via the expression control of invasive proteins. Biol. Pharm. Bull. 2015, 38, 571–581. [Google Scholar] [CrossRef]
- Qi, Q.Q.; Chu, M.J.; Yu, X.T.; Xie, Y.N.; Li, Y.L.; Du, Y.M.; Liu, X.; Zhang, Z.; Shi, J.; Yan, N. Anthocyanins and proanthocyanidins: Chemical Structures, food Sources, bioactivities, and product development. Food Rev. Int. 2023, 39, 4581–4609. [Google Scholar] [CrossRef]
- Bhupenchandra, I.; Chongtham, S.K.; Gangarani Devi, A.; Dutta, P.; Lamalakshmi, E.; Mohanty, S.; Choudhary, A.K.; Das, A.; Sarika, K.; Kumar, S.; et al. Harnessing weedy rice as functional food and source of novel traits for crop improvement. Plant Cell Environ. 2024, 48, 2498–2521. [Google Scholar] [CrossRef]
- Shirley, B.W. Flavonoids in seeds and grains: Physiological function, agronomic importance and the genetics of biosynthesis. Seed Sci. Res. 1998, 8, 415–422. [Google Scholar] [CrossRef]
- Gunaratne, A.; Wu, K.; Li, D.Q.; Bentota, A.; Corke, H.; Cai, Y.Z. Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chem. 2013, 138, 1153–1161. [Google Scholar] [CrossRef]
- Kong, M.Y.; He, X.T.; Yin, Z.D.; Chen, X.S.; Zhang, Y.J.; Shi, Z.H.; Song, X.; Qiang, S.; Dai, W. Removing harmful pericarp character of weedy rice as the first step of domestication towards direct-seeding rice using CRISPR/Cas9-Targeted mutagenesis. Agronomy 2023, 13, 1130. [Google Scholar] [CrossRef]
- Tang, L.; Ma, D.R.; Xu, Z.J.; Deng, H.F.; Chen, W.F.; Yuan, L.P. Utilization of weedy rice for development of japonica hybrid rice (Oryza sativa L.). Plant Sci. 2011, 180, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.G.; Pang, L.H.; Jiang, X.Q.; Lu, B.R. Impact of soil burial depths on survival of weedy rice seeds: Implications for weed management. Agronomy 2024, 14, 1281. [Google Scholar] [CrossRef]
- Vargas, A.A.M.; Agostinetto, D.; Carlos, F.S.; Cereza, T.V.; Ulguim, A.D.R. Survival and distribution of weedy rice seedbank after twenty-two years of different rice cropping systems. Ciência Rural 2023, 53, e20210787. [Google Scholar] [CrossRef]
- Ghotbzadeh, S.; Gianinetti, A. A response of the imbibed dormant red rice caryopsis to biotic challenges involves extracellular pH increase to elicit superoxide production. Seed Sci. Res. 2018, 28, 261–271. [Google Scholar] [CrossRef]
- Long, R.L.; Gorecki, M.J.; Renton, M.; Scott, J.K.; Colville, L.; Goggin, D.E.; Commander, L.E.; Westcott, D.A.; Cherry, H.; Finch-Savage, W.E. The ecophysiology of seed persistence: A mechanistic view of the journey to germination or demise. Biol. Rev. Camb. Philos. Soc. 2015, 90, 31–59. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, H.; Chen, T.; Ding, L.; Zhang, L.; Ding, X.; Zhang, J.; Qian, Q.; Xiang, Y. Sdr4 dominates pre-harvest sprouting and facilitates adaptation to local climatic condition in Asian cultivated rice. J. Integr. Plant Biol. 2022, 64, 1246–1263. [Google Scholar] [CrossRef]
- Gu, X.Y.; Kianian, S.F.; Foley, M.E. Isolation of three dormancy QTLs as Mendelian factors in rice. Heredity 2006, 96, 93–99. [Google Scholar] [CrossRef]
- Sugimoto, K.; Takeuchi, Y.; Ebana, K.; Miyao, A.; Hirochika, H.; Hara, N.; Ishiyama, K.; Kobayashi, M.; Ban, Y.; Hattori, T.; et al. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc. Natl. Acad. Sci. USA 2010, 107, 5792–5797. [Google Scholar] [CrossRef]
- Chen, W.; Wang, W.; Lyu, Y.; Wu, Y.; Huang, P.; Hu, S.; Wei, X.; Jiao, G.; Sheng, Z.; Tang, S.; et al. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway. Crop J. 2021, 9, 68–78. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.J.; Sun, X.X.; He, X.T.; Yang, J.L.; Chen, X.F.; Shi, Z.; Xiao-Ling, S.; Qiang, S.; Dai, W. Weedy rice de-domesticated from cultivated rice has evolved strong resistance to seed ageing. Weed Res. 2021, 61, 396–405. [Google Scholar] [CrossRef]
- Xia, H.B.; Xia, H.; Ellstrand, N.C.; Yang, C.; Lu, B.R. Rapid evolutionary divergence and ecotypic diversification of germination behavior in weedy rice populations. N. Phytol. 2011, 191, 1119–1127. [Google Scholar] [CrossRef]
Source | F | df1 | df2 | p-Value |
---|---|---|---|---|
Corrected model | 13.604 | 9 | 194 | 0.000 ** |
Latitude | 5.469 | 1 | 194 | 0.021 * |
Rc/Rd genotypes | 15.153 | 5 | 194 | 0.000 ** |
Seed germination percentageon the 2nd day | 0.296 | 1 | 194 | 0.588 |
Seed germination percentageon the 3rd day | 0.703 | 1 | 194 | 0.404 |
Seed germination percentageon the 7th day | 1.982 | 1 | 194 | 0.162 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Chao, J.; Ruan, B.; Yuan, X.; Qin, Q.; Shi, Z.; Qiang, S.; Song, X.; Dai, W. Variation in Oxidized Proanthocyanidins in Chinese Weedy Rice Seeds and Their Impact on Ecological Adaptation. Agronomy 2025, 15, 835. https://doi.org/10.3390/agronomy15040835
Yan Y, Chao J, Ruan B, Yuan X, Qin Q, Shi Z, Qiang S, Song X, Dai W. Variation in Oxidized Proanthocyanidins in Chinese Weedy Rice Seeds and Their Impact on Ecological Adaptation. Agronomy. 2025; 15(4):835. https://doi.org/10.3390/agronomy15040835
Chicago/Turabian StyleYan, Yujiang, Jing Chao, Bingjie Ruan, Xiaoyan Yuan, Qiyuan Qin, Zhihua Shi, Sheng Qiang, Xiaoling Song, and Weimin Dai. 2025. "Variation in Oxidized Proanthocyanidins in Chinese Weedy Rice Seeds and Their Impact on Ecological Adaptation" Agronomy 15, no. 4: 835. https://doi.org/10.3390/agronomy15040835
APA StyleYan, Y., Chao, J., Ruan, B., Yuan, X., Qin, Q., Shi, Z., Qiang, S., Song, X., & Dai, W. (2025). Variation in Oxidized Proanthocyanidins in Chinese Weedy Rice Seeds and Their Impact on Ecological Adaptation. Agronomy, 15(4), 835. https://doi.org/10.3390/agronomy15040835