A New Higher-Order Convergence Laplace–Fourier Method for Linear Neutral Delay Differential Equations
Abstract
:1. Introduction
2. Definitions for NDDEs and Laplace Transform
2.1. Applying of the Laplace Transform
2.2. Complex Poles
2.3. Laplace–Fourier Solution
2.4. Fourier Series Results
2.5. Further Insight into the Laplace–Fourier Method
3. New Higher-Order Convergence Laplace–Fourier Method
4. Convergence Rate of the New Higher-Order Convergence Laplace–Fourier Solution
5. Illustrative Results of the New Higher-Order Convergence Laplace–Fourier Method
5.1. Example 1
5.2. Example 2
5.3. Example 3
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erneux, T. Applied Delay Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 3. [Google Scholar]
- Halanay, A.; Safta, C.A. A critical case for stability of equilibria of delay differential equations and the study of a model for an electrohydraulic servomechanism. Syst. Control Lett. 2020, 142, 104722. [Google Scholar] [CrossRef]
- Nelson, P.W.; Murray, J.D.; Perelson, A.S. A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 2000, 163, 201–215. [Google Scholar] [PubMed]
- Goubault, E.; Putot, S.; Sahlmann, L. Inner and outer approximating flowpipes for delay differential equations. In Proceedings of the International Conference on Computer Aided Verification, Oxford, UK, 14–17 July 2018; pp. 523–541. [Google Scholar]
- Rihan, F.A. Delay Differential Equations and Applications to Biology; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Shampine, L.; Gahinet, P. Delay-differential-algebraic equations in control theory. Appl. Numer. Math. 2006, 56, 574–588. [Google Scholar] [CrossRef]
- Smith, H.L. An Introduction to Delay Differential Equations with Applications to the Life Sciences; Springer: New York, NY, USA, 2011; Volume 57. [Google Scholar]
- Hethcote, H. Mathematics of infectious diseases. SIAM Rev. 2005, 42, 599–653. [Google Scholar]
- Xu, R. Global dynamics of an {SEIS} epidemiological model with time delay describing a latent period. Math. Comput. Simul. 2012, 85, 90–102. [Google Scholar]
- Hethcote, H.; Driessche, P. An SIS epidemic model with variable population size and a delay. J. Math. Biol. 1995, 34, 177–194. [Google Scholar] [CrossRef]
- Yan, P.; Liu, S. SEIR epidemic model with delay. ANZIAM J. 2006, 48, 119–134. [Google Scholar]
- Guo, B.Z.; Cai, L.M. A note for the global stability of a delay differential equation of hepatitis B virus infection. Math. Biosci. Eng. 2011, 8, 689–694. [Google Scholar]
- Samanta, G. Dynamic behaviour for a nonautonomous heroin epidemic model with time delay. J. Appl. Math. Comput. 2011, 35, 161–178. [Google Scholar] [CrossRef]
- Li, J.; Sun, G.Q.; Jin, Z. Pattern formation of an epidemic model with time delay. Phys. A Stat. Mech. Its Appl. 2014, 403, 100–109. [Google Scholar]
- González-Parra, G.; Sultana, S.; Arenas, A.J. Mathematical modeling of toxoplasmosis considering a time delay in the infectivity of oocysts. Mathematics 2022, 10, 354. [Google Scholar] [CrossRef]
- Aljahdaly, N.H.; El-Tantawy, S. On the multistage differential transformation method for analyzing damping Duffing oscillator and its applications to plasma physics. Mathematics 2021, 9, 432. [Google Scholar] [CrossRef]
- Arino, J.; Van Den Driessche, P. Time delays in epidemic models. In Delay Differential Equations and Applications; Springer: Berlin/Heidelberg, Germany, 2006; pp. 539–578. [Google Scholar]
- Bellen, A.; Guglielmi, N.; Ruehli, A.E. Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1999, 46, 212–215. [Google Scholar] [CrossRef]
- Keane, A.; Krauskopf, B.; Postlethwaite, C.M. Climate models with delay differential equations. Chaos Interdiscip. J. Nonlinear Sci. 2017, 27, 114309. [Google Scholar] [CrossRef]
- Ruehli, A.; Antonini, G.; Ekman, J. Neutral delay differential equations from the PEEC circuit solution of Maxwell’s equation. IFAC Proc. Vol. 2006, 39, 217–222. [Google Scholar] [CrossRef]
- Inoue, T.; Katsui, T.; Rheem, C.K.; Yoshida, Z.; Matsuo, M.Y. Preliminary Study on Stick-Slip in Drillstring With Analytical Model Expressed With Neutral Delay Differential Equation. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, San Francisco, CA, USA, 8–13 June 2014; Volume 45462, p. V06AT04A026. [Google Scholar]
- Boucekkine, R.; Pintus, P.A. History’s a curse: Leapfrogging, growth breaks and growth reversals under international borrowing without commitment. J. Econ. Growth 2012, 17, 27–47. [Google Scholar] [CrossRef]
- Bachar, M. On periodic solutions of delay differential equations with impulses. Symmetry 2019, 11, 523. [Google Scholar] [CrossRef]
- Biçer, E. On the periodic solutions of third-order neutral differential equation. Math. Methods Appl. Sci. 2021, 44, 2013–2020. [Google Scholar] [CrossRef]
- Bicer, E. On the asymptotic behavior of solutions of neutral mixed type differential equations. Results Math. 2018, 73, 144. [Google Scholar] [CrossRef]
- Breda, D.; Maset, S.; Vermiglio, R. Stability of Linear Delay Differential Equations: A Numerical Approach with MATLAB; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Faria, T.; Oliveira, J.J. Existence of positive periodic solutions for scalar delay differential equations with and without impulses. J. Dyn. Differ. Equ. 2019, 31, 1223–1245. [Google Scholar] [CrossRef]
- He, J.H. Periodic solutions and bifurcations of delay-differential equations. Phys. Lett. A 2005, 347, 228–230. [Google Scholar]
- Castro, M.Á.; García, M.A.; Martín, J.A.; Rodríguez, F. Exact and nonstandard finite difference schemes for coupled linear delay differential systems. Mathematics 2019, 7, 1038. [Google Scholar] [CrossRef]
- García, M.; Castro, M.; Martín, J.A.; Rodríguez, F. Exact and nonstandard numerical schemes for linear delay differential models. Appl. Math. Comput. 2018, 338, 337–345. [Google Scholar]
- Gumgum, S.; Savasaneril, N.B.; Kurkcu, O.; Sezer, M. Lucas polynomial solution for neutral differential equations with proportional delays. TWMS J. Appl. Eng. Math. 2020, 10, 259–269. [Google Scholar]
- Jamilla, C.U.; Mendoza, R.G.; Mendoza, V.M.P. Explicit solution of a Lotka-Sharpe-McKendrick system involving neutral delay differential equations using the r-Lambert W function. Math. Biosci. Eng. 2020, 17, 5686–5708. [Google Scholar] [PubMed]
- Jamilla, C.; Mendoza, R.; Mezo, I. Solutions of neutral delay differential equations using a generalized Lambert W function. Appl. Math. Comput. 2020, 382, 125334. [Google Scholar] [CrossRef]
- Kumar, M. An Efficient Numerical Scheme for Solving a Fractional-Order System of Delay Differential Equations. Int. J. Appl. Comput. Math. 2022, 8, 262. [Google Scholar] [CrossRef]
- Luo, X.; Habib, M.; Karim, S.; Wahash, H.A. Semianalytical approach for the approximate solution of delay differential equations. Complexity 2022, 2022. [Google Scholar]
- Senu, N.; Ahmad, N.A.; Othman, M.; Ibrahim, Z.B. Numerical study for periodical delay differential equations using Runge–Kutta with trigonometric interpolation. Comput. Appl. Math. 2022, 41, 25. [Google Scholar]
- Bauer, R.J.; Mo, G.; Krzyzanski, W. Solving delay differential equations in S-ADAPT by method of steps. Comput. Methods Programs Biomed. 2013, 111, 715–734. [Google Scholar] [CrossRef]
- Kalmár-Nagy, T. Stability analysis of delay-differential equations by the method of steps and inverse Laplace transform. Differ. Equ. Dyn. Syst. 2009, 17, 185–200. [Google Scholar]
- Kaslik, E.; Sivasundaram, S. Analytical and numerical methods for the stability analysis of linear fractional delay differential equations. J. Comput. Appl. Math. 2012, 236, 4027–4041. [Google Scholar]
- Heffernan, J.M.; Corless, R.M. Solving some delay differential equations with computer algebra. Math. Sci. 2006, 31, 21–34. [Google Scholar]
- Kerr, G.; González-Parra, G. Accuracy of the Laplace transform method for linear neutral delay differential equations. In Mathematics and Computers in Simulation; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Bazighifan, O.; Alotaibi, H.; Mousa, A.A.A. Neutral delay differential equations: Oscillation conditions for the solutions. Symmetry 2021, 13, 101. [Google Scholar] [CrossRef]
- Fabiano, R.H.; Payne, C. Spline approximation for systems of linear neutral delay-differential equations. Appl. Math. Comput. 2018, 338, 789–808. [Google Scholar]
- Fabiano, R.H. A semidiscrete approximation scheme for neutral delay-differential equations. Int. J. Numer. Anal. Model. 2013, 10. [Google Scholar]
- Faheem, M.; Raza, A.; Khan, A. Collocation methods based on Gegenbauer and Bernoulli wavelets for solving neutral delay differential equations. Math. Comput. Simul. 2021, 180, 72–92. [Google Scholar]
- Liu, M.; Dassios, I.; Milano, F. On the stability analysis of systems of neutral delay differential equations. Circuits Syst. Signal Process. 2019, 38, 1639–1653. [Google Scholar]
- Qin, H.; Zhang, Q.; Wan, S. The continuous Galerkin finite element methods for linear neutral delay differential equations. Appl. Math. Comput. 2019, 346, 76–85. [Google Scholar]
- Philos, C.G.; Purnaras, I. Periodic first order linear neutral delay differential equations. Appl. Math. Comput. 2001, 117, 203–222. [Google Scholar]
- Raza, A.; Khan, A. Haar wavelet series solution for solving neutral delay differential equations. J. King Saud Univ.-Sci. 2019, 31, 1070–1076. [Google Scholar] [CrossRef]
- Santra, S.S.; Nofal, T.A.; Alotaibi, H.; Bazighifan, O. Oscillation of Emden–Fowler-Type Neutral Delay Differential Equations. Axioms 2020, 9, 136. [Google Scholar] [CrossRef]
- Gu, K.; Niculescu, S.I. Survey on recent results in the stability and control of time-delay systems. J. Dyn. Sys. Meas. Control 2003, 125, 158–165. [Google Scholar] [CrossRef]
- Kim, B.; Kwon, J.; Choi, S.; Yang, J. Feedback stabilization of first order neutral delay systems using the Lambert W function. Appl. Sci. 2019, 9, 3539. [Google Scholar] [CrossRef]
- Kuang, Y. Delay Differential Equations; University of California Press: Berkeley, CA, USA, 2012. [Google Scholar]
- Xu, Q.; Stepan, G.; Wang, Z. Balancing a wheeled inverted pendulum with a single accelerometer in the presence of time delay. J. Vib. Control 2017, 23, 604–614. [Google Scholar] [CrossRef]
- Enright, W.; Hayashi, H. Convergence analysis of the solution of retarded and neutral delay differential equations by continuous numerical methods. SIAM J. Numer. Anal. 1998, 35, 572–585. [Google Scholar] [CrossRef]
- Xu, X.; Huang, Q.; Chen, H. Local superconvergence of continuous Galerkin solutions for delay differential equations of pantograph type. J. Comput. Math 2016, 34, 186–199. [Google Scholar]
- Kerr, G.; González-Parra, G.; Sherman, M. A new method based on the Laplace transform and Fourier series for solving linear neutral delay differential equations. Appl. Math. Comput. 2022, 420, 126914. [Google Scholar] [CrossRef]
- Shampine, L.F.; Thompson, S. Solving ddes in matlab. Appl. Numer. Math. 2001, 37, 441–458. [Google Scholar] [CrossRef]
- Shampine, L.F.; Thompson, S. Numerical solution of delay differential equations. In Delay Differential Equations; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–27. [Google Scholar]
- Sherman, M.; Kerr, G.; González-Parra, G. Comparison of Symbolic Computations for Solving Linear Delay Differential Equations Using the Laplace Transform Method. Math. Comput. Appl. 2022, 27, 81. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Tejado, I.; Sevli, H.; Valdés, J.E.N. On initial value problems of fractal delay equations. Appl. Math. Comput. 2023, 449, 127980. [Google Scholar]
- Kerr, G.; Lopez, N.; González-Parra, G. Analytical Solutions of Systems of Linear Delay Differential Equations by the Laplace Transform: Featuring Limit Cycles. Math. Comput. Appl. 2024, 29, 11. [Google Scholar] [CrossRef]
- Hale, J.K.; Lunel, S.M.V. Introduction to Functional Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 99. [Google Scholar]
- Kuang, Y. Delay Differential Equations: With Applications in Population Dynamics; Academic Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Diekmann, O.; Van Gils, S.A.; Lunel, S.M.; Walther, H.O. Delay Equations: Functional-, Complex-, and Nonlinear Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 110. [Google Scholar]
- Sherman, M.; Kerr, G.; González-Parra, G. Analytical solutions of linear delay-differential equations with Dirac delta function inputs using the Laplace transform. Comput. Appl. Math. 2023, 42, 268. [Google Scholar] [CrossRef]
- Brown, J.W.; Churchill, R.V. Fourier Series and Boundary Value Problems; McGraw-Hill Book Company: New York, NY, USA, 2009. [Google Scholar]
- Oberhettinger, F. Fourier Expansions: A Collection of Formulas; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
Error | ||||
---|---|---|---|---|
N | Pure Laplace | Convergence | New Laplace–Fourier | Convergence |
50 | ||||
250 | ||||
500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerr, G.; González-Parra, G. A New Higher-Order Convergence Laplace–Fourier Method for Linear Neutral Delay Differential Equations. Math. Comput. Appl. 2025, 30, 37. https://doi.org/10.3390/mca30020037
Kerr G, González-Parra G. A New Higher-Order Convergence Laplace–Fourier Method for Linear Neutral Delay Differential Equations. Mathematical and Computational Applications. 2025; 30(2):37. https://doi.org/10.3390/mca30020037
Chicago/Turabian StyleKerr, Gilbert, and Gilberto González-Parra. 2025. "A New Higher-Order Convergence Laplace–Fourier Method for Linear Neutral Delay Differential Equations" Mathematical and Computational Applications 30, no. 2: 37. https://doi.org/10.3390/mca30020037
APA StyleKerr, G., & González-Parra, G. (2025). A New Higher-Order Convergence Laplace–Fourier Method for Linear Neutral Delay Differential Equations. Mathematical and Computational Applications, 30(2), 37. https://doi.org/10.3390/mca30020037