Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (497)

Search Parameters:
Keywords = bean extracts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 855 KiB  
Article
A Water Solution from the Seeds, Seedlings and Young Plants of the Corn Cockle (Agrostemma githago) Showed Plant-Growth Regulator Efficiency
by Jana Ambrožič-Dolinšek, Vid Golič, Víctor Rouco Saco, Petra Peranić, Veno Jaša Grujić and Terezija Ciringer
Plants 2025, 14(15), 2349; https://doi.org/10.3390/plants14152349 - 30 Jul 2025
Viewed by 73
Abstract
Corn cockle (Agrostemma githago L. (Lychnis githago (L.) Scop.)) is the main ingredient in some plant preparations for biostimulation in agriculture, and it elicits many positive responses. In our study, we attempted to determine if the fresh and dry plant material [...] Read more.
Corn cockle (Agrostemma githago L. (Lychnis githago (L.) Scop.)) is the main ingredient in some plant preparations for biostimulation in agriculture, and it elicits many positive responses. In our study, we attempted to determine if the fresh and dry plant material of A. githago contained auxin-like and cytokinin-like growth regulators (PGRs). Cucumis and mung bean bioassays were used to determine the presence of auxin-like PGRs and Cucumis and Triticum bioassays were used to determine the presence of cytokinin-like PGRs. A water solution derived from the crushed, homogenized and extracted seeds, fresh and dry seedlings, and fresh and dry young plants showed auxin-like activity in both bioassays. The activity in the Cucumis bioassay corresponded to 0.5 to 2 mg L−1 of Indole-3-butyric acid (IBA), and in the mung bean bioassay, the activity corresponded to 0.5 to 4 mg L−1 of IBA. While the same water solutions showed weak or no cytokinin-like activity in the Cucumis cotyledon expansion bioassay, and they showed an activity of approximately 0.5 to 1 mg L−1 of 6-Benzylaminopurine (BAP) in the Triticum bioassay. An LC-MS analysis confirmed the presence of free auxins, low levels of or no auxin analogues, a small amount of free cytokinins and a higher level of their cytokinin analogues in the samples, seeds, dry seedlings and young plants of A. githago, which was likely related to the fine-tuning between the free and analogue forms of the PGRs in the water solutions used in the experiments. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

22 pages, 2943 KiB  
Review
Cacao in the Circular Economy: A Review on Innovations from Its By-Products
by Liliana Esther Sotelo-Coronado, William Oviedo-Argumedo and Armando Alvis-Bermúdez
Processes 2025, 13(7), 2098; https://doi.org/10.3390/pr13072098 - 2 Jul 2025
Viewed by 622
Abstract
Cacao is a food of global interest. Currently, the industry primarily utilizes the seed, which represents between 21% and 23% of the total fruit weight. In 2023, global production reached 5.6 million tons of fermented dry cacao beans, while approximately 25.45 million tons [...] Read more.
Cacao is a food of global interest. Currently, the industry primarily utilizes the seed, which represents between 21% and 23% of the total fruit weight. In 2023, global production reached 5.6 million tons of fermented dry cacao beans, while approximately 25.45 million tons corresponded to cacao residues. The objective of this review was to compile and analyze alternatives for the utilization of cacao by-products. The methodology involved technological surveillance conducted in specialized databases between 2015 and 2025. Metadata were analyzed using VOSviewer software version 1.6.20. Priority was given to the most recent publications in high-impact indexed journals. Additionally, 284 patent documents were identified, from which 15 were selected for in-depth analysis. The reviewed articles and patents revealed a wide range of industrial applications for cacao by-products. Technologies including ultrasonic and microwave-assisted extraction, phenolic microencapsulation, cellulose nanocrystal isolation and targeted microbial fermentations maximize the recovery of polyphenols and antioxidants, optimize the production of high-value bioproducts such as citric acid and ethanol, and yield biodegradable precursors for packaging and bioplastics. The valorization of lignocellulosic by-products reduces pollutant discharge and waste management costs, enhances economic viability across the cacao value chain, and broadens functional applications in the food industry. Moreover, these integrated processes underpin circular economy frameworks by converting residues into feedstocks, thereby promoting sustainable development in producer communities and mitigating environmental impact. Collectively, they constitute a robust platform for the comprehensive utilization of cacao residues, fully aligned with bioeconomy objectives and responsible resource stewardship. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

24 pages, 52994 KiB  
Article
The Naturally Bioactive Vicine Extracted from Faba Beans Is Responsible for the Transformation of Grass Carp (Ctenopharyngodon idella) into Crisp Grass Carp
by Xinyu Zheng, Minyi Luo, Bing Fu, Gen Kaneko, Jingjing Tian, Jun Xie, Jilun Hou and Ermeng Yu
Antioxidants 2025, 14(7), 813; https://doi.org/10.3390/antiox14070813 - 1 Jul 2025
Viewed by 431
Abstract
While faba bean feeding improves grass carp muscle texture via reactive oxygen species (ROS), the main bioactive compound was unclear. In this study, vicine—a pro-oxidant glycoside—was isolated from faba beans using cation-exchange column chromatography and supplemented into the feed of grass carp at [...] Read more.
While faba bean feeding improves grass carp muscle texture via reactive oxygen species (ROS), the main bioactive compound was unclear. In this study, vicine—a pro-oxidant glycoside—was isolated from faba beans using cation-exchange column chromatography and supplemented into the feed of grass carp at 0.6%. To assess the impact of vicine on muscle texture, the grass carp were fed for 150 days with three treatments: control group, faba bean group, and vicine group. The results showed that vicine improved muscle texture similarly to faba beans but caused fewer adverse effects on muscle, liver, and intestinal health. Vicine improved grass carp muscle texture in the following ways: (1) induced ROS overproduction, activating the Caspase apoptosis pathway and downregulating Pax-7 to promote satellite cell-mediated myofiber regeneration; (2) vicine-mediated intestinal microbiota alterations increased lipopolysaccharide (LPS) levels, indirectly elevating muscle ROS via the gut–muscle axis to further affect muscle structure. This study demonstrated that vicine improved muscle texture by activating ROS-dependent myofiber regeneration but also induced oxidative stress and gut microbiota perturbation. While vicine mitigated the severe toxicity of faba beans, its application requires careful evaluation of its toxicological properties to balance benefits and risks. This study offers new insights for enhancing the quality of aquatic animals. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Aquaculture)
Show Figures

Figure 1

9 pages, 672 KiB  
Communication
A Cascara-Infused Caffeine Drink as a Social Beverage
by Magdalena Słowik-Borowiec, Bernadetta Oklejewicz and Maciej Wnuk
Molecules 2025, 30(13), 2749; https://doi.org/10.3390/molecules30132749 - 26 Jun 2025
Viewed by 427
Abstract
Specialty coffee commercialization has experienced a consistent upward trend over the past several years. The prevalence of specialty coffee consumption has increased considerably, particularly among younger demographics and people who engage in physical activities. Sellers are actively involved in the development of innovative [...] Read more.
Specialty coffee commercialization has experienced a consistent upward trend over the past several years. The prevalence of specialty coffee consumption has increased considerably, particularly among younger demographics and people who engage in physical activities. Sellers are actively involved in the development of innovative formulas and modifications to maintain the competitiveness of their product in the market. Here, we propose a naturally infused caffeine drink with cascara extract as an alternative social beverage. This beverage was formulated using extracts derived from Arabica Ethiopia coffee beans and coffee cherry shells. The final cascara-infused caffeine drink comprises a 50% Ethiopian Arabica coffee infusion and a 50% coffee cherry shell infusion. This beverage is characterized by an average caffeine content of 0.28 mg/mL, a caffeic acid content of 0.24 mg/mL, and a chlorogenic acid content of 0.13 mg/mL. Furthermore, 100 mL of the cascara-infused coffee drink is enriched with polyphenol compounds at an amount of 80.6 mg of Gallic Acid Equivalents per liter (mg GAE/L), including 67.6 mg of catechin equivalent per liter (mg CAE/L) flavonoids. The formulation of the infused caffeine drink contains natural sugars such as glucose, sucrose, and fructose, in amounts of 0.17 mg/mL, 0.97 mg/mL, and 1.66 mg/mL, respectively. The developed procedure has the potential to enhance the coffee-sale market. Full article
Show Figures

Figure 1

17 pages, 3551 KiB  
Article
Exploring the Bacterial Microbiome of High-Moisture Plant-Based Meat Substituted Soybean Flour with Mung Bean Protein and Duckweed Powder
by Jutamat Klinsoda, Theera Thurakit, Kullanart Tongkhao, Khemmapas Treesuwan, Kanokwan Yodin and Hataichanok Kantrong
Biology 2025, 14(6), 735; https://doi.org/10.3390/biology14060735 - 19 Jun 2025
Viewed by 753
Abstract
(1) Background: This study aimed to investigate the bacterial microbiomes in the ingredients and final PBM products during a storage period of 28 days at 2–4 °C for food safety and quality. (2) Methods: DNA from raw ingredients (i.e., defatted soy flour, potato [...] Read more.
(1) Background: This study aimed to investigate the bacterial microbiomes in the ingredients and final PBM products during a storage period of 28 days at 2–4 °C for food safety and quality. (2) Methods: DNA from raw ingredients (i.e., defatted soy flour, potato starch, wheat gluten, mung bean protein, and duckweed) and three PBM formulations were extracted and sequenced using 16S rRNA gene sequencing. (3) Results: Alpha diversity (Simpson and Shannon) was high in the raw ingredients (p ≤ 0.05). Beta diversity showed dissimilarities between the samples. Firmicutes and Proteobacteria were the core microflora in these ingredients. The heat-stable microbes in PBM (e.g., Nostocaceae in SF and Cyanobacteriale in MB and DW) survived after extrusion. After the ingredients were stored at room temperature, the bacterial communities shifted, with Paucibacter being the majority population in raw ingredients and PBM in the 2nd batch. The predictions of Potential_Pathogens related to the abundance of Aeromonadaceae and Enterobacteriaceae need to be monitored during storage. (4) Conclusions: Our results showed that the bacterial community in PBM containing 30% MB and 3% DW did not drastically change during 28 days of storage at cold temperatures. Uncovering bacterial microbiomes in the ingredients should be emphasized for quality and safety, as ingredients influence the microbiome in the final products. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

18 pages, 2998 KiB  
Article
Evaluation of Phaseolus vulgaris Extract in a Rat Model of Cafeteria-Diet-Induced Obesity: Metabolic and Biochemical Effects
by Atcha Uawongwattana, Kakanang Posridee, Kittipong Promyo, Atcharaporn Thaeomor and Ratchadaporn Oonsivilai
Foods 2025, 14(12), 2038; https://doi.org/10.3390/foods14122038 - 9 Jun 2025
Viewed by 475
Abstract
Obesity is a global health concern that elevates the risk of noncommunicable diseases (NCDs) such as type 2 diabetes, cardiovascular disease, and certain cancers. Phaseolus vulgaris (white bean) contains α-amylase inhibitors (αAIs) that can reduce carbohydrate digestion and absorption, potentially mitigating obesity and [...] Read more.
Obesity is a global health concern that elevates the risk of noncommunicable diseases (NCDs) such as type 2 diabetes, cardiovascular disease, and certain cancers. Phaseolus vulgaris (white bean) contains α-amylase inhibitors (αAIs) that can reduce carbohydrate digestion and absorption, potentially mitigating obesity and metabolic syndrome. This study investigated the impact of P. vulgaris extract (PVE) on obese rats. Male Wistar rats were fed either a standard diet (SD) or a cafeteria diet (CAF) for 17 weeks to induce obesity. Subsequently, rats in each dietary group were randomly assigned to receive a vehicle, low-dose PVE (200 mg/kg), high-dose PVE (300 mg/kg), or metformin (200 mg/kg) via an oral gavage for 6 weeks. The CAF group exhibited significantly greater weight gain compared to the SD group. In the CAF group, a low dose of PVE lowered postprandial glycemia during an oral glucose tolerance test (OGTT) at 60 and 120 min and decreased food and energy intake during weeks 17–20 and 18–19, respectively. In the SD group, a high dose of PVE reduced glycemia at 90 min in the OGTT, as well as body weight gain, food intake, and energy intake during week 17. However, the overall areas under the glucose curves in the OGTT were not significantly different across treatment groups (p > 0.05), and while individual time points showed changes, the overall glucose exposure (AUC) was not significantly altered. In conclusion, the αAIs present in P. vulgaris demonstrate the potential to reduce body weight, weight gain, glycemia, total cholesterol, and triglycerides in vivo, but in the CAF group, neither PVE dose significantly altered the TC or TG. This study provides strong support for further exploring Phaseolus vulgaris extract as a valuable functional ingredient in the food industry, particularly for developing products that aid in weight management and glycemic control. Full article
(This article belongs to the Special Issue Bioactive Compounds in Food: From Molecule to Biological Function)
Show Figures

Figure 1

18 pages, 2794 KiB  
Article
A Recognition Method for Adzuki Bean Rust Disease Based on Spectral Processing and Deep Learning Model
by Longwei Li, Jiao Yang and Haiou Guan
Agriculture 2025, 15(12), 1246; https://doi.org/10.3390/agriculture15121246 - 7 Jun 2025
Viewed by 465
Abstract
Adzuki bean rust disease is an important factor restricting the yield of the adzuki bean. Late prevention and control at the early stage of the disease will lead to crop failure. Traditional diagnosis methods of adzuki bean rust disease mainly rely on field [...] Read more.
Adzuki bean rust disease is an important factor restricting the yield of the adzuki bean. Late prevention and control at the early stage of the disease will lead to crop failure. Traditional diagnosis methods of adzuki bean rust disease mainly rely on field observations and laboratory tests, which are inefficient, time-consuming, highly dependent on professional knowledge, and cannot meet the requirements of modern agriculture for rapid and accurate diagnosis. To address this issue, a diagnosis method of adzuki bean rust disease was proposed using spectroscopy and deep learning methods. First, visible/near-infrared (UV/VNIR) spectroscopy was used to extract the spectral information of leaves, and discrete wavelet transform (DWT) was applied to preprocess and smooth the original canopy spectral data to effectively reduce the impact of noise interference. Second, the competitive adaptive reweighted sampling (CARS) algorithm was implemented in the range of 425–825 nm to determine the optimal characteristic wavenumbers, thereby reducing data redundancy. Finally, 51 characteristic wavenumbers were selected and imported into the LeNet-5 deep learning model for simulation and evaluation. The results showed that the accuracy, precision, recall, and F1 score on the test set were 99.65%, 98.04%, 99.01%, and 98.52%, respectively. The proposed DWT-CARS-LeNet-5 model can diagnose adzuki bean rust quickly, accurately, and non-destructively. This method can provide a cutting-edge solution for improving the accuracy of prevention and control of adzuki bean rust disease in agricultural practice. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 2030 KiB  
Article
Characterization of Coffee Waste-Based Biopolymer Composite Blends for Packaging Development
by Gonzalo Hernández-López, Laura Leticia Barrera-Necha, Silvia Bautista-Baños, Mónica Hernández-López, Odilia Pérez-Camacho, José Jesús Benítez-Jiménez, José Luis Acosta-Rodríguez and Zormy Nacary Correa-Pacheco
Foods 2025, 14(11), 1991; https://doi.org/10.3390/foods14111991 - 5 Jun 2025
Viewed by 1177
Abstract
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. [...] Read more.
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. Extracted green coffee bean oil (CO) was used as a plasticizer, and CP was used as a filler with and without functionalization. A solution of chitosan nanoparticles (ChNp) as a coating was applied to the ribbons. For the raw material, proximal analysis of the CP showed cellulose and lignin contents of 53.09 ± 3.42% and 23.60 ± 1.74%, respectively. The morphology of the blends was observed via scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) showed an increase in the ribbons’ thermal stability with the functionalization. The results of differential scanning calorimetry (DSC) revealed better miscibility for the functionalized samples. The mechanical properties showed that with CP incorporation into the blends and with the ChNp coating, the Young’s modulus and the tensile strength decreased with no significant changes in the elongation at break. This work highlights the potential of reusing different by-products from the coffee industry, such as coffee oil from green beans and coffee parchment as a filler, and incorporating them into PLA PBAT biodegradable polymer blend ribbons with a nanostructured antimicrobial coating based on chitosan for future applications in food packaging. Full article
Show Figures

Figure 1

14 pages, 1584 KiB  
Article
Green Coffee Bean Extracts: An Alternative to Improve the Microbial and Oxidative Stability of Ground Beef
by Wendy Alejandra Atondo-Echeagaray, Brisa del Mar Torres-Martínez, Rey David Vargas-Sánchez, Gastón Ramón Torrescano-Urrutia, Nelson Huerta-Leidenz and Armida Sánchez-Escalante
Resources 2025, 14(6), 95; https://doi.org/10.3390/resources14060095 - 4 Jun 2025
Viewed by 879
Abstract
Green coffee bean extracts (GCBEs) represent a promising alternative to improve ground beef’s microbial and oxidative stability. This study evaluated the content of bioactive metabolites, the antimicrobial and antioxidant activity of extracts obtained from GCBE with different solvents (W, water; E, ethanol; WE, [...] Read more.
Green coffee bean extracts (GCBEs) represent a promising alternative to improve ground beef’s microbial and oxidative stability. This study evaluated the content of bioactive metabolites, the antimicrobial and antioxidant activity of extracts obtained from GCBE with different solvents (W, water; E, ethanol; WE, water–ethanol), in comparison to textured soy protein extract (TSPE), and their effect on the microbial and antioxidant stability of meat homogenates. The results showed that the extraction solvent significantly affected the yield and metabolite content (p < 0.05), with GCBE-W and TSPE-WE as the highest performers (>20% by both). GCBE-E presented the highest (p < 0.05) tannin value (19.13 mg/100 g), while GCBE-W and GCBE-WE showed the highest (p < 0.05) flavonoids and chlorogenic acid content (1.19 and 11.20 mg/100 g, respectively). Regarding antimicrobial activity, GCBE-WE showed the highest (p < 0.05) inhibition against Staphylococcus aureus and Escherichia coli (31.11% and 41.94% of inhibition, respectively). In comparison, GCBE-E and GCBE-WE were significantly effective (p < 0.05) against Listeria monocytogenes and Salmonella typhimurium (44.79% and 31.25% of inhibition by both, respectively). Regarding antioxidant activity, GCBE-E and GCBE-WE presented the highest (p < 0.05) DPPH inhibition (92.79% by both), as well as the highest reducing power values (1.40 abs and 173.28 mg Fe2+/g by both). GCBE-WE significantly reduced (p < 0.05) the microbial load after heating in meat (1.21 log10 CFU/g), while GCBE-E and ASC showed the lowest (p < 0.05) pH values (5.74 by both). Furthermore, incorporating the extracts GCBE-E, GCBE-WE, and TSPE significantly reduced (p < 0.05) lipid oxidation (40, 45.71, and 48.57%), and affected (p < 0.05) color parameters. These findings suggest the potential of GCBEs as natural additives in the meat industry. Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
Show Figures

Figure 1

15 pages, 1529 KiB  
Article
Numerical Investigation of Conventional and Ultrasound-Assisted Aqueous Extraction of Caffeine from Whole Green Robusta Coffee Beans: Extraction Enhancement via Changing of Extraction Water
by Kuson Bawornruttanaboonya, Nathamol Chindapan and Sakamon Devahastin
Foods 2025, 14(11), 1956; https://doi.org/10.3390/foods14111956 - 30 May 2025
Viewed by 402
Abstract
To enhance the low-efficiency but potentially health and environmentally friendly aqueous decaffeination process, ultrasound-assisted aqueous extraction (UAAE) has recently been proposed. A novel concept of intermittent extraction water change to further enhance UAAE has also been mentioned, but not yet studied in detail. [...] Read more.
To enhance the low-efficiency but potentially health and environmentally friendly aqueous decaffeination process, ultrasound-assisted aqueous extraction (UAAE) has recently been proposed. A novel concept of intermittent extraction water change to further enhance UAAE has also been mentioned, but not yet studied in detail. For this reason, a mathematical model that can be used to predict the concentration evolutions of caffeine during UAAE and conventional aqueous extraction (CAE) of whole green robusta coffee beans is herein proposed. The model consists of terms representing transient intra-bean caffeine and water diffusion as well as molar fluxes of caffeine and water on the bean surface. After validation, the model was used to investigate the effects of extraction temperature, bean-to-water mass ratio and frequency of extraction water change on caffeine concentration evolutions. Simulation results show that UAAE exhibits around 10% higher caffeine removal rates than CAE at all investigated conditions. Extraction temperature of 70 °C, bean-to-water ratio of 1:3, and extraction water change at every 1 h interval are noted as the most appropriate conditions for UAAE. The required extraction durations of UAAE under these conditions are 13 h and 24 h to meet the US and European Union standards, respectively. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

19 pages, 3236 KiB  
Article
Revisiting the Conventional Extraction of Protein Isolates from Faba Beans: Recovering Lost Protein from Sustainable Side Streams
by Abraham Badjona, Robert Bradshaw, Caroline Millman, Martin Howarth and Bipro Dubey
Foods 2025, 14(11), 1906; https://doi.org/10.3390/foods14111906 - 28 May 2025
Viewed by 612
Abstract
As the global demand for sustainable protein sources grows, valorizing side streams in plant protein processing has become crucial. This study revisits the conventional alkaline–isoelectric extraction of faba bean protein isolates, introducing an enhanced mass balance-driven approach to recover underutilized protein fractions from [...] Read more.
As the global demand for sustainable protein sources grows, valorizing side streams in plant protein processing has become crucial. This study revisits the conventional alkaline–isoelectric extraction of faba bean protein isolates, introducing an enhanced mass balance-driven approach to recover underutilized protein fractions from typically discarded side streams. Through strategic pH manipulation and centrifugation, four distinct protein fractions were recovered with purities ranging from 34.6% to 89.6%, collectively recapturing a significant portion of the 16% protein loss in standard processing. SDS-PAGE and FTIR analyses confirmed the structural diversity among the recovered fractions, with albumin-rich and globulin-rich profiles exhibiting unique spectral and electrophoretic signatures. Functionally, fractions B and D exhibited superior water- and oil-holding capacities, indicating their potential utility in food formulations requiring enhanced moisture and lipid retention. In contrast, fraction C, characterized by low water-holding capacity and high solubility, may be better suited to applications prioritizing emulsification performance, such as in dairy or meat analogs. This study not only highlights the feasibility of reclaiming high-quality protein from industrial byproducts but also underscores the potential of these recovered proteins in diverse food and non-food sectors, including pharmaceuticals and cosmetics. These findings contribute to circular economy strategies by transforming waste into value-added ingredients with functional and commercial significance. Full article
Show Figures

Figure 1

20 pages, 924 KiB  
Article
Towards Cytotoxic Derivatives of Cafestol
by Niels V. Heise, Marie Kozubek, Sophie Hoenke, Senta Ludwig, Hans-Peter Deigner, Ahmed Al-Harrasi and René Csuk
Molecules 2025, 30(11), 2291; https://doi.org/10.3390/molecules30112291 - 23 May 2025
Cited by 1 | Viewed by 426
Abstract
This study focuses on the extraction, characterization, and biological evaluation of diterpenes from green coffee beans, specifically, cafestol and kahweol. These compounds, known for their potential health benefits, were isolated via optimized extraction and saponification processes. Separation was achieved using silver nitrate-impregnated silica [...] Read more.
This study focuses on the extraction, characterization, and biological evaluation of diterpenes from green coffee beans, specifically, cafestol and kahweol. These compounds, known for their potential health benefits, were isolated via optimized extraction and saponification processes. Separation was achieved using silver nitrate-impregnated silica gel, and structural elucidation was performed through advanced 1D and 2D NMR techniques, including HSQC, HMBC, and (IN)ADEQUATE. Due to kahweol’s instability, the research prioritized cafestol for the synthesis of rhodamine B conjugates. Initial ester-linked conjugates proved unstable, prompting the development of more robust derivatives through amide linkage strategies and further functionalization via acetylation and oxidation reactions. Some oxidation methods led to furan ring cleavage, impacting structural integrity. Selected compounds were tested for cytotoxicity using SRB assays on human tumor cell lines (MCF7, A2780) and non-malignant fibroblasts (NIH 3T3). While the parent diterpenes and many derivatives showed minimal activity, several cafestol–rhodamine B conjugates demonstrated notable cytotoxic effects. Compound 6, in particular, exhibited selective activity against cancer cells with reduced toxicity toward non-malignant cells. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Graphical abstract

20 pages, 1174 KiB  
Article
From Waste to Resource: Nutritional and Functional Potential of Borlotto Bean Pods (Phaseolus vulgaris L.)
by Antonella Smeriglio, Martina Imbesi, Mariarosaria Ingegneri, Rossana Rando, Manuela Mandrone, Ilaria Chiocchio, Ferruccio Poli and Domenico Trombetta
Antioxidants 2025, 14(6), 625; https://doi.org/10.3390/antiox14060625 - 23 May 2025
Viewed by 477
Abstract
Borlotto bean pods, a by-product of Phaseolus vulgaris processing, represent a promising yet underexplored source of bioactive compounds. This study aimed to characterize the nutritional composition, phytochemical profile, and biological properties of a food-grade extract obtained from borlotto bean pods (BPE). Nutritional parameters [...] Read more.
Borlotto bean pods, a by-product of Phaseolus vulgaris processing, represent a promising yet underexplored source of bioactive compounds. This study aimed to characterize the nutritional composition, phytochemical profile, and biological properties of a food-grade extract obtained from borlotto bean pods (BPE). Nutritional parameters were assessed using standard AOAC methods, while primary and secondary metabolites were identified and semi-quantified via 1H-NMR and LC-DAD-ESI-MS/MS. Antioxidant activity was evaluated through six complementary assays: DPPH, TEAC, FRAP, ORAC, ferrous ion-chelating activity, and β-carotene bleaching inhibition. Anti-inflammatory potential was assessed in vitro by evaluating the inhibition of bovine serum albumin (BSA) denaturation and protease activity. BPE showed significant antioxidant capacity across all assays, indicating both hydrogen atom transfer and electron transfer mechanisms, along with metal chelation and lipid peroxidation inhibition. Additionally, BPE inhibited protein denaturation and protease activity in a concentration-dependent manner. These results highlight the potential of borlotto bean pods as a sustainable source of nutritionally and functionally relevant compounds. Future studies should focus on the bioavailability of active constituents, formulation into delivery systems, and in vivo validation to support potential nutraceutical applications. Full article
(This article belongs to the Special Issue Antioxidants from Sustainable Food Sources)
Show Figures

Graphical abstract

17 pages, 1904 KiB  
Article
NMR-Based Metabolomic Approach to Study Growth of Phaseolus vulgaris L. Seedlings Through Leaf Application of Nanofertilizers and Biofertilizers
by Elsy Rubisela López-Vargas, Diego Hidalgo-Martínez, Elvia Becerra-Martínez, L. Gerardo Zepeda-Vallejo, Claudia J. Hernández-Guerrero, Alma Delia Hernández-Fuentes, Gregorio Cadenas-Pliego and Marissa Pérez-Álvarez
Int. J. Mol. Sci. 2025, 26(10), 4844; https://doi.org/10.3390/ijms26104844 - 19 May 2025
Viewed by 463
Abstract
This study investigated the effects of two nanofertilizers (NFs): copper nanoparticles (NPs) synthesised using cotton (CuC) and chitosan (CuCh) as well as two biofertilizers (BFs), nopal extract (NE) and commercial Biojal® worm humus (WH), on the growth of black bean seedlings. The [...] Read more.
This study investigated the effects of two nanofertilizers (NFs): copper nanoparticles (NPs) synthesised using cotton (CuC) and chitosan (CuCh) as well as two biofertilizers (BFs), nopal extract (NE) and commercial Biojal® worm humus (WH), on the growth of black bean seedlings. The treatments consisted of applying 50 mg L−1 of CuC, 50 mg L−1 of CuCh, 50 mg L−1 of NE, 100 mg L−1 of WH, their respective combinations, and an absolute control that consisted of distilled water. The CuC, CuCh, WH, and WH + CuC leaf applications resulted in an increase in plant height by 34.4%, 19.5%, 25.7%, and 20.3%, respectively. Furthermore, the CuC and WH applications led to an increase in the number of leaves by 53.2% and 36.9%, respectively. However, the addition of NE + CuC resulted in a 37.4% decrease in dry weight. A total of 44 metabolites were identified, including 7 sugars, 17 amino acids, 12 organic acids, 4 nucleosides, 1 alcohol, and 3 miscellaneous metabolites. The NE + CuC and WH treatments resulted in a notably higher concentration of various metabolites, including amino acids, organic acids, and sugars. Conversely, the CuCh treatment led to an increased concentration of nucleosides, amino acids, trigonelline, and nicotinamide adenine dinucleotide (NAD+). Full article
(This article belongs to the Special Issue Molecular Advances in Omics in Agriculture)
Show Figures

Figure 1

15 pages, 1289 KiB  
Article
The Particle Size to Modulate the Techno-Functional Properties of Fava Bean Pod Powder
by Abel I. Barrial-Lujan, María del Mar Camacho, Eva García-Martínez, Alberto Yuste and Nuria Martínez-Navarrete
Powders 2025, 4(2), 14; https://doi.org/10.3390/powders4020014 - 15 May 2025
Viewed by 424
Abstract
Plant by-products are undervalued as they are an important source of nutrients and bioactive compounds with potential health benefits, which also contribute to aroma and color. Therefore, their use in human food is a challenging field of study that deserves to be explored. [...] Read more.
Plant by-products are undervalued as they are an important source of nutrients and bioactive compounds with potential health benefits, which also contribute to aroma and color. Therefore, their use in human food is a challenging field of study that deserves to be explored. This study proposes the conversion of fava bean pods into a powdered product as a high-quality, stable, and easy-to-handle food ingredient, thus contributing to the sustainability of the food industry within the framework of the circular economy. The powdered product was obtained by freeze-drying and grinding. As the particle size of powders is a determinant of their quality and functionality, some properties of two bean pod powder samples with mean particle sizes of 102.9 and 45.3 μm, obtained by sieving at 200 and 45 μm, respectively, are compared. The results obtained indicate good flowability of both powders. However, the sample with the largest size showed, in addition to a greener tone, lower interparticle porosity related to a better packing capacity, lower hygroscopicity, and much better wettability, along with its higher swelling capacity and water and oil retention capacity. Nevertheless, in this case, the extraction of proteins and phenols decreased by 18% and 25%, respectively, without compromising the total fiber content. Considering the use of fava bean pod powder as a versatile food ingredient, the largest size of those studied, 102.9 μm, is recommended. Only if the objective is to obtain a healthy food supplement would it be more desirable to grind it to a smaller particle size. Full article
Show Figures

Figure 1

Back to TopTop