Characterization of Coffee Waste-Based Biopolymer Composite Blends for Packaging Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coffee Parchment Conditioning
2.2. Coffee Parchment Characterization
2.2.1. Moisture Content
2.2.2. Ash Content
2.2.3. Cellulose Content
2.2.4. Lignin Content
2.2.5. Protein Content
2.2.6. Fat Content
2.3. Green Coffee Bean Oil Extraction
2.4. CP Functionalization
2.5. Polymer Blend Preparation
2.6. Sample Characterization
2.6.1. SEM
2.6.2. FTIR
2.6.3. TGA
2.6.4. DSC
2.6.5. Mechanical Properties
2.7. Statistical Analysis
3. Results and Discussion
3.1. Coffee Parchment Proximal Analysis
3.2. Coffee Parchment and Polymer Ribbon Characterization
3.2.1. Scanning Electron Microscopy (SEM)
3.2.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.2.3. Thermogravimetric Analysis (TGA)
3.2.4. Differential Scanning Calorimetry (DSC)
3.2.5. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CP | Coffee parchment |
CO | Coffee oil |
ChNp | Chitosan nanoparticles |
PLA | Polylactic acid |
PBAT | Poly(butylene adipate-co-terephthalate) |
CPf | Coffee parchment with the functionalization process |
SEM | Scanning electron microscopy |
TGA | Thermogravimetric analysis |
DSC | Differential scanning calorimetry |
FTIR-ATR | Confocal micro-Raman spectroscopy equipment coupled with Fourier transform infrared-attenuated total reflection |
Iw | Initial sample weight |
Fw | Final sample weight |
AOAC | Asociation of Analytical Communities |
AACC | American Association of Cereal Chemists |
SW | Sample weight |
CWS | Crucible weight with sample |
ECW | Empty crucible weight |
AW | Ash weight |
CWS | Crucible weight with sample |
DWR | Dry weight of the residue |
WCM | Weight of cellulosic material |
LW | Lignin weight |
DSW | Dry sample weight |
F | Protein factor |
N | Titration normality |
mN | Milliequivalents of nitrogen |
DMTA | Dynamic mechanical thermal analysis |
FW | Fat weight |
WCF | Weight of container with fat |
ECW | Empty container weight |
References
- FAOSTAT. Statistics Division of the Food and Agriculture Organization of the United Nation. 2022. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 14 November 2024).
- Fernández-Cortés, Y.; Sotto-Rodríguez, K.D.; Vargas-Marín, L.A. Impactos ambientales de la producción del café, y el aprovechamiento sustentable de los residuos generados. Prod. + Limpia 2020, 15, 93–110. [Google Scholar] [CrossRef]
- Rotta, N.M.; Curry, S.; Han, J.; Reconco, R.; Spang, E.; Ristenpart, W.; Donis-González, I.R. A comprehensive analysis of operations and mass flows in postharvest processing of washed coffee. Resour. Conserv. Recycl. 2021, 170, 105554. [Google Scholar] [CrossRef]
- Padoan, E.; Montoneri, E.; Bordiglia, G.; Boero, V.; Ginepro, M.; Evon, P.; Vaca-Garcia, C.; Fascella, G.; Negre, M. Waste Biopolymers for Eco-Friendly Agriculture and Safe Food Production. Coatings 2020, 12, 239. [Google Scholar] [CrossRef]
- Garcia, C.V.; Kim, Y.T. Spent coffee grounds and coffee silverskin as potential materials for packaging: A review. J. Polym. Environ. 2021, 29, 2372–2384. [Google Scholar] [CrossRef]
- Sisti, L.; Celli, A.; Totaro, G.; Cinelli, P.; Signori, F.; Lazzeri, A.; Bikaki, M.; Corvini, P.; Ferri, M.; Tassoni, A.; et al. Monomers, materials and energy from coffee by-products: A review. Sustainability 2021, 13, 6921. [Google Scholar] [CrossRef]
- Rives-Castillo, S.C.H.; Bautista-Baños, S.; Correa-Pacheco, Z.N.; Ventura-Aguilar, R.I. Situación actual de los envases utilizados para la conservación postcosecha de productos hortofrutícolas. Rev. Iberoam. Tecnol. Postcosecha 2020, 21, 17–34. [Google Scholar]
- Taib, N.A.A.B.; Rahman, M.R.; Huda, D.; Kuok, K.K.; Hamdan, S.; Bakri, M.K.B.; Julaihi, M.R.M.B.; Khan, A. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym. Bull. 2023, 80, 1179–1213. [Google Scholar] [CrossRef]
- Sin, L.T.; Tueen, B.S. (Eds.) Chemical Properties of Poly(Lactic Acid), 2nd ed.; William Andrew: Malaysia, 2019; pp. 135–166. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Cividanes, L.S.; Gouveia, R.F.; Lona, L.M. An overview on properties and applications of poly (butylene adipate-co-terephthalate)–PBAT based composites. Polym. Eng. Sci. 2017, 59, E7–E15. [Google Scholar] [CrossRef]
- Jian, J.; Xiangbin, Z.; Xianbo, H. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar] [CrossRef]
- Shanks, R.A. Concepts and Classification of Compatibilization Processes, 1st ed.; Ajitha, A.R., Sabu, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 31–56. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, W.; Zhao, X.; Liu, Y.; Gao, W. Study on the morphology, crystalline structure and thermal properties of yellow ginger starch acetates with different degrees of substitution. Thermochim. Acta 2009, 495, 57–62. [Google Scholar] [CrossRef]
- Chiloeches, A.; Fernández-García, R.; Fernández-García, M.; Mariano, A.; Bigioni, I.; Scotto d’Abusco, A.; Echeverría, C.; Muñoz-Bonilla, A. PLA and PBAT-Based Electrospun Fibers Functionalized with Antibacterial Bio-Based Polymers. Macromol. Biosci. 2023, 23, 2200401. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, J.; Zhang, M.; Zheng, H.; Li, L. Preservation of soy protein-based meat analogues by using PLA/PBAT antimicrobial packaging film. Food Chem. 2022, 380, 132022. [Google Scholar] [CrossRef] [PubMed]
- Pregi, E.; Romsics, I.; Várdai, R.; Pukánszky, B. Interactions, Structure and Properties of PLA/lignin/PBAT Hybrid Blends. Polymers 2023, 15, 3237. [Google Scholar] [CrossRef] [PubMed]
- Bodaghi, A. An overview on the recent developments in reactive plasticizers in polymers. Polym. Adv. Technol. 2020, 31, 355–367. [Google Scholar] [CrossRef]
- Muobom, S.S.; Umar, A.M.S.; Soongseok, Y.; Brolin, A.P. A review on plasticizers and eco-friendly bioplasticizers: Biomass sources and market. Int. J. Eng. Res. Technol. 2020, 9, 1138–1144. [Google Scholar] [CrossRef]
- Gaidukova, G.; Platnieks, O.; Aunins, A.; Barkane, A.; Ingrao, C.; Gaidukovs, S. Spent coffee waste as a renewable source for the production of sustainable poly (butylene succinate) biocomposites from a circular economy perspective. RSC Adv. 2021, 11, 18580–18589. [Google Scholar] [CrossRef]
- Reis, K.C.; Pereira, L.; Melo, I.C.N.A.; Marconcini, J.M.; Trugilho, P.F.; Tonoli, G.H.D. Particles of coffee wastes as reinforcement in polyhydroxybutyrate (PHB) based composites. Mater. Res. 2015, 18, 546–552. [Google Scholar] [CrossRef]
- Gama, N.; Ferreira, A.; Evtuguin, D.V. New poly (lactic acid) composites produced from coffee beverage wastes. J. Appl. Polym. Sci. 2022, 139, 51434. [Google Scholar] [CrossRef]
- Lule, Z.C.; Kim, J. Properties of economical and eco-friendly polybutylene adipate terephthalate composites loaded with surface treated coffee husk. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106154. [Google Scholar] [CrossRef]
- Ardean, C.; Davidescu, C.M.; Nemeş, N.S.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Duna-Seiman, D.; Musta, V. Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. Int. J. Mol. Sci. 2021, 22, 7449. [Google Scholar] [CrossRef]
- Hosseini, H.; Jafari, S.M. Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products. Adv. Colloid Interface Sci. 2020, 282, 102210. [Google Scholar] [CrossRef] [PubMed]
- Mejia, D.M.G. Nanotecnología en la Industria Alimentaria. Rev. Sennova Rev. Del Sist. Cienc. Tecnol. E Innovación 2019, 4, 34–43. [Google Scholar] [CrossRef]
- Frank, L.A.; Onzi, G.R.; Morawski, A.S.; Pohlmann, A.R.; Guterres, S.S.; Contri, R.V. Chitosan as a coating material for nanoparticles intended for biomedical applications. React. Funct. Polym. 2020, 147, 104459. [Google Scholar] [CrossRef]
- Hernández-López, M.; Correa-Pacheco, Z.N.; Bautista-Baños, S.; Zavaleta-Avejar, L.; Benítez-Jiménez, J.J.; Sabino-Gutiérrez, M.; Ortega-Gudiño, P. Bio-based composite fibers from pine essential oil and PLA/PBAT polymer blend. Morphological, physicochemical, thermal and mechanical characterization. Mater. Chem. Phys. 2019, 234, 345–353. [Google Scholar] [CrossRef]
- Andrea, M.J.; Mariana, P.G.; Monica, H.L.; Nacary, C.P.Z.; Silvia, B.B.; Laura, B.N. Nanostructured Chitosan Coating with a Coffee Residue Extract for the preservation of Tomato and Controlling Pre- and Postharvest Disease Caused by Rhizopus stolonifer. Processes 2025, 13, 220. [Google Scholar] [CrossRef]
- Divyashri, G.; Swathi, R.; Murthy, T.P.K.; Anagha, M.; Sindhu, O.; Sharada, B. Assessment of antimicrobial edible coatings derived from coffee husk pectin and clove oil for extending grapes shelf life. Discover Food 2024, 4, 181. [Google Scholar] [CrossRef]
- Vallejos-Jiménez, A.; Cadena-Chamorro, E.M.; Santa, J.F.; Buitrago-Sierra, R.; Dugmore, T.I.; Bose, S.; Matharu, A.S. Development of Novel Pectin-Based Films from Coffee Waste: Mucilage and Pulp. Waste Biomass Valorization 2025, 1–16. [Google Scholar] [CrossRef]
- AOAC. International Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AACC. Approved Methos of Analysis, 10th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- ASTM D638; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2003.
- Chala, B.; Oechsner, H.; Latif, S.; Müller, J. Biogas potential of coffee processing waste in Ethiopia. Sustainability 2018, 10, 2678. [Google Scholar] [CrossRef]
- Esquivel, P.; Jiménez, V.M. Functional properties of coffee and coffee by-products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- Wondemagegnehu, E.B.; Gupta, N.K.; Habtu, E. Coffee parchment as potential biofuel for cement industries of Ethiopia. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 44, 5004–5015. [Google Scholar] [CrossRef]
- Mendoza Martinez, C.L.; Alves Rocha, E.P.; Oliveira Carneiro, A.D.C.; Borges Gomes, F.J.; Ribas Batalha, L.A.; Vakkilainen, E.; Cardoso, M. Characterization of residual biomasses from the coffee production chain and assessment the potential for energy purposes. Biomass Bioenergy 2019, 120, 68–76. [Google Scholar] [CrossRef]
- Mendoza Martinez, C.L.; Saari, J.; Melo, Y.; Cardoso, M.; de Almeida, G.M.; Vakkilainen, E. Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: A Brazilian case. Renew. Sustain. Energy Rev. 2021, 137, 110585. [Google Scholar] [CrossRef]
- Scatolino, M.V.; Costa, A.D.O.; Guimarães, J.B.; Protásio, T.D.P.; Mendes, R.F.; Mendes, L.M. Eucalyptus wood and coffee parchment for particleboard production: Physical and mechanical properties. Ciência E Agrotecnologia 2017, 41, 139–146. [Google Scholar] [CrossRef]
- Reis, R.S.; Tienne, L.G.P.; de HS Souza, D.; Marques, M.D.F.V.; Monteiro, S.N. Characterization of coffee parchment and innovative steam explosion treatment to obtain microfibrillated cellulose as potential composite reinforcement. J. Mater. Res. Technol. 2020, 9, 9412–9421. [Google Scholar] [CrossRef]
- Bekalo, S.A.; Reinhardt, H.W. Fibers of coffee husk and hulls for the production of particleboard. Mater. Struct. 2010, 43, 1049–1060. [Google Scholar] [CrossRef]
- Arya, S.S.; Venkatram, R.; More, P.R.; Vijayan, P. The wastes of coffee bean processing for utilization in food: A review. J. Food Sci. Technol. 2022, 59, 429–444. [Google Scholar] [CrossRef]
- Murthy, P.S.; Madhava Naidu, M.; Srinivas, P. Production of α-amylase under solid-state fermentation utilizing coffee waste. J. Chem. Technol. Biotechnol. 2009, 84, 1246–1249. [Google Scholar] [CrossRef]
- Iriondo-DeHond, A.; Aparicio García, N.; Fernandez-Gomez, B.; Guisantes-Batan, E.; Velázquez Escobar, F.; Blanch, G.P.; San Andres, M.; Sanchez-Fortun, S.; del Castillo, M.D. Validation of coffee by-products as novel food ingredients. Innov. Food Sci. Emerg. Technol. 2019, 51, 194–204. [Google Scholar] [CrossRef]
- Rodrigues da Silva, M.; Sanchez Bragagnolo, F.; Lajarim Carneiro, R.; de Oliveira Carvalho Pereira, I.; Aquino Ribeiro, J.A.; Martins Rodrigues, C.; Jelley, R.; Fedrizzi, B.; Soleo Funari, C. Metabolite characterization of fifteen by-products of the coffee production chain: From farm to factory. Food Chem. 2022, 369, 130753. [Google Scholar] [CrossRef]
- Mehari, B.; Redi-Abshiro, M.; Chandravanshi, B.S.; Combrinck, S.; McCrindle, R. Characterization of the cultivation region of Ethiopian coffee by elemental analysis. Anal. Lett. 2016, 49, 2474–2489. [Google Scholar] [CrossRef]
- Kim, D.Y.; Lee, J.B.; Lee, D.Y.; Seo, K.H. Plasticization Effect of Poly(Lactic Acid) in the Poly(Butylene Adipate–co–Terephthalate) Blown Film for Tear Resistance Improvement. Polymers 2020, 12, 1904. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Lu, B.; Wang, P.; Wang, G.; Ji, J. PLA-PBAT-PLA tri-block copolymers: Effective compatibilizers for promotion of the mechanical and rheological properties of PLA/PBAT blends. Polym. Degrad. Stab. 2018, 147, 41–48. [Google Scholar] [CrossRef]
- Su, S.; Duhme, M.; Kopitzky, R. Uncompatibilized PBAT/PLA Blends: Manufacturability, Miscibility and Properties. Materials 2020, 13, 4897. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Huang, H.; Hu, Y.; Lu, X.; Qin, Y. Novel bio-based composite phase change materials with reduced graphene oxide-functionalized spent coffee grounds for efficient solar-to-thermal energy storage. Sol. Energy Mater. Sol. Cells 2021, 219, 110790. [Google Scholar] [CrossRef]
- Marbach, L.; Mörbitz, P. Electron Beam-Induced Compatibilization of PLA/PBAT Blends in Presence of Epoxidized Soybean Oil. Polymers 2023, 15, 3265. [Google Scholar] [CrossRef] [PubMed]
- Livanov, K.; Nissenbaum, A.; Wagner, H.D. Nanocomposite thin film coatings for brittle materials. Nanocomposites 2016, 2, 162–168. [Google Scholar] [CrossRef]
- Raba, D.N.; Poiana, M.A.; Borozan, A.B.; Stef, M.; Radu, F.; Popa, M.V. Investigation on crude and high-temperature heated coffee oil by ATR-FTIR spectroscopy along with antioxidant and antimicrobial properties. PLoS ONE 2015, 10, e0138080. [Google Scholar] [CrossRef]
- Dong, W.; Chen, Q.; Wei, C.; Hu, R.; Long, Y.; Zong, Y.; Chu, Z. Comparison of the effect of extraction methods on the quality of green coffee oil from Arabica coffee beans: Lipid yield, fatty acid composition, bioactive components, and antioxidant activity. Ultrason. Sonochem. 2021, 74, 105578. [Google Scholar] [CrossRef]
- Correa-Pacheco, Z.N.; Black-Solís, J.D.; Ortega-Gudiño, P.; Sabino-Gutiérrez, M.A.; Benítez-Jiménez, J.J.; Barajas-Cervantes, A.; Bautista-Baños, S.; Hurtado-Colmenares, L.B. Preparation and Characterization of Bio-Based PLA/PBAT and Cinnamon Essential Oil Polymer Fibers and Life-Cycle Assessment from Hydrolytic Degradation. Polymers 2020, 12, 38. [Google Scholar] [CrossRef]
- Tavares, L.B.; Ito, N.M.; Salvadori, M.C.; Dos Santos, D.J.; Rosa, D.S. PBAT/kraft lignin blend in flexible laminated food packaging: Peeling resistance and thermal degradability. Polym. Test. 2018, 67, 169–176. [Google Scholar] [CrossRef]
- Kanwal, A.; Zhang, M.; Sharaf, F.; Li, C. Enzymatic degradation of poly (butylene adipate co-terephthalate) (PBAT) copolymer using lipase B from Candida antarctica (CALB) and effect of PBAT on plant growth. Polym. Bull. 2022, 79, 9059–9073. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 2012, 97, 1898–1914. [Google Scholar] [CrossRef]
- Raba, D.N.; Chambre, D.R.; Copolovici, D.M.; Moldovan, C.; Copolovici, L.O. The influence of high-temperature heating on composition and thermo-oxidative stability of the oil extracted from Arabica coffee beans. PLoS ONE 2018, 13, e0200314. [Google Scholar] [CrossRef]
- Wang, X.; Peng, S.; Chen, H.; Yu, X.; Zhao, X. Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Compos. Part B Eng. 2019, 173, 107028. [Google Scholar] [CrossRef]
- Bok, J.P.; Choi, H.S.; Choi, Y.S.; Park, H.C.; Kim, S.J. Fast pyrolysis of coffee grounds: Characteristics of product yields and biocrude oil quality. Energy 2012, 47, 17–24. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, C.; Luo, C.; Chen, Y.; Zhou, Y.; Yao, B.; Dong, L.; Du, X.; Ji, J. Effect of talc and diatomite on compatible, morphological, and mechanical behavior of PLA/PBAT blends. e-Polymers 2021, 21, 234–243. [Google Scholar] [CrossRef]
- Jaffur, B.N.; Kumar, G.; Khadoo, P. Production and functionalization strategies for superior polyhydroxybutyrate blend performance. Int. J. Biol. Macromol. 2024, 278, 134907. [Google Scholar] [CrossRef]
- Carbonell-Verdu, A.; Ferri, J.M.; Dominici, F.; Boronat, T.; Sanchez-Nacher, L.; Balart, R.; Torre, L. Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polym. Lett. 2018, 12, 808–823. [Google Scholar] [CrossRef]
- Tarani, E.; Pušnik Črešnar, K.; Zemljič, L.F.; Chrissafis, K.; Papageorgiou, G.Z.; Lambropoulou, D.; Zamboulis, A.; Bikiaris, D.N.; Terzopoulou, Z. Cold Crystallization Kinetics and Thermal Degradation of PLA Composites with Metal Oxide Nanofillers. Appl. Sci. 2021, 11, 3004. [Google Scholar] [CrossRef]
- Mysiukiewicz, O.; Barczewski, M. Crystallization of polylactide-based green composites filled with oil-rich waste fillers. J. Polym. Res. 2020, 27, 374. [Google Scholar] [CrossRef]
- Ghosh, R.; Zhao, X.; Vodovotz, Y. Addition of Coffee Waste-Derived Plasticizer Improves Processability and Barrier Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-Natural Rubber Bioplastic. Polymers 2024, 16, 2164. [Google Scholar] [CrossRef] [PubMed]
- Vogt, C.; Endres, H.J.; Bühring, J.; Menzel, H. Reduction of the elongation at break of thermoplastic polyolefins through melt blending with polylactide and the influence of the amount of compatibilizers and the viscosity ratios of the blend components on phase morphology and mechanics. Polym. Eng. Sci. 2016, 56, 905–913. [Google Scholar] [CrossRef]
- Correa-Pacheco, Z.N.; Bautista-Baños, S.; Benítez-Jiménez, J.J.; Ortega-Gudiño, P.; Cisneros-López, E.O.; Hernández-López, M. Biodegradability Assessment of Prickly Pear Waste–Polymer Fibers under Soil Composting. Polymers 2023, 15, 4164. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Liu, Z.; Lei, Y.; Jiang, S.; Zhang, K.; Yan, W.; Qin, J.; He, M.; Qin, S.; et al. Enhanced mechanical and biodegradable properties of PBAT/lignin composites via silane grafting and reactive extrusion. Compos. Part B Eng. 2021, 220, 108980. [Google Scholar] [CrossRef]
- Jaouadi, N.; Al-Itry, R.; Maazouz, A.; Lamnawar, K. Biaxial orientation of PLA/PBAT/thermoplastic cereal flour sheets: Structure–processing–property relationships. Polymers 2023, 15, 2068. [Google Scholar] [CrossRef] [PubMed]
- Mati-Baouche, N.; Elchinger, P.H.; De Baynast, H.; Pierre, G.; Delattre, C.; Michaud, P. Chitosan as an adhesive. Eur. Polym. J. 2014, 60, 198–212. [Google Scholar] [CrossRef]
- Oliaei, E.; Olsén, P.; Lindström, T.; Berglund, L.A. Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers. Nat. Commun. 2022, 13, 5666. [Google Scholar] [CrossRef]
- Sanaka, R.; Sahu, S.K. Experimental investigation into mechanical, thermal, and shape memory behavior of thermoresponsive PU/MXene shape memory polymer nanocomposite. Heliyon 2024, 10, e24014. [Google Scholar] [CrossRef]
- Sharma, A.; Babar, M.; Kakkar, P.; Gahlout, P.; Verma, G. Correlating mechanical properties of polyurethane-organoclay nanocomposite coatings with processing. Prog. Org. Coat. 2022, 169, 106895. [Google Scholar] [CrossRef]
Nomenclature | Sample |
---|---|
PLA | Polylactic acid |
PLA-ChNp | Polylactic acid with chitosan nanoparticle coating |
PBAT | Poly (butylene adipate-co-terephthalate) |
PBAT-ChNp | Poly (butylene adipate-co-terephthalate) with chitosan nanoparticle coating |
PLA PBAT | Polylactic acid and poly (butylene adipate-co-terephthalate) blend |
PLA PBAT-ChNp | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with chitosan nanoparticle coating |
PLA PBAT CO | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil |
PLA PBAT CO-ChNp | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil and chitosan nanoparticle coating |
PLA PBAT CO 5% CP | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil and 5% coffee parchment |
PLA PBAT CO 5% CP-ChNp | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil, 5% coffee parchment, and chitosan nanoparticle coating |
PLA PBAT CO 7.5% CP | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil and 7.5% coffee parchment |
PLA PBAT CO 7.5% CP-ChNp | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil, 7.5% coffee parchment, and chitosan nanoparticle coating |
PLA PBAT CO 10% CP | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil and 10% coffee parchment |
PLA PBAT CO 10% CP-ChNp | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil, 10% coffee parchment, and chitosan nanoparticle coating |
PLA PBAT CO 5% CPf | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil and 5% functionalized coffee parchment |
PLA PBAT CO 5% CPf-ChNp | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil, 5% functionalized coffee parchment, and chitosan nanoparticle coating |
PLA PBAT CO 7.5% CPf | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil and 7.5% functionalized coffee parchment |
PLA PBAT CO 7.5% CPf-ChNp | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil, 7.5% functionalized coffee parchment, and chitosan nanoparticle coating |
PLA PBAT CO 10% CPf | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil and 10% functionalized coffee parchment |
PLA PBAT CO 10% CPf-ChNp | Polylactic acid and poly (butylene adipate-co-terephthalate) blend with coffee oil, 10% functionalized coffee parchment, and chitosan nanoparticle coating |
Type of Analysis | Value (%) |
---|---|
Moisture | 3.25 ± 0.17 |
Ash | 0.71 ± 0.03 |
Cellulose | 53.09 ± 3.42 |
Lignin | 23.60 ± 1.74 |
Available nitrogen | 2.51 ± 0.08 |
Protein | 2.51 ± 0.08 |
Fat | 1.17 ± 0.12 |
Sample | Young’s Modulus (MPa) | Tensile Strength (Mpa) | Elongation at Break (%) |
---|---|---|---|
PLA | 1446.96 ± 93.78 h | 43.66 ± 3.49 h | 5.05 ± 0.54 a |
PLA-ChNp | 1388.11 ± 116.53 h | 50.71 ± 1.51 i | 17.41 ± 7.48 b |
PBAT | 79.46 ± 2.69 a | 7.59 ± 0.40 b | 50.84 ± 9.59 c |
PBAT-ChNp | 77.02 ± 0.46 a | 7.62 ± 0.33 b | 62.78 ± 16.39 d |
PLA PBAT | 636.22 ± 74.31 ef | 15.78 ± 1.79 f | 4.08 ± 0.63 a |
PLA PBAT-ChNp | 662.96 ± 44.75 f | 18.33 ± 3.58 g | 3.89 ± 0.56 a |
PLA PBAT CO | 766.40 ± 161.49 g | 15.74 ± 2.49 f | 3.01 ± 0.41 a |
PLA PBAT CO-ChNp | 608.86 ± 89.89 def | 13.88 ± 0.85 de | 6.02 ± 3.94 a |
PLA PBAT CO 5% CP | 670.74 ± 47.72 f | 15.55 ± 0.57 f | 3.53 ± 0.26 a |
PLA PBAT CO 5% CP-ChNp | 678.97 ± 23.57 f | 19.11 ± 1.21 g | 4.38 ± 0.23 a |
PLA PBAT CO 7.5% CP | 590.72 ± 37.04 de | 10.48 ± 0.73 c | 2.69 ± 0.12 a |
PLA PBAT CO 7.5% CP-ChNp | 794.49 ± 40.03 g | 18.45 ± 0.93 g | 3.71 ± 0.41 a |
PLA PBAT CO 10% CP | 477.28 ± 43.61 c | 7.37 ± 0.55 b | 2.19 ± 0.15 a |
PLA PBAT CO 10% CP-ChNp | 681.15 ± 27.48 f | 19.63 ± 0.94 g | 4.16 ± 0.28 a |
PLA PBAT CO 5% CPf | 775.98 ± 34.07 g | 15.17 ± 0.74 ef | 3.19 ± 0.18 a |
PLA PBAT CO 5% CPf-ChNp | 615.43 ± 49.79 def | 12.99 ± 1.26 d | 3.53 ± 0.20 a |
PLA PBAT CO 7.5% CPf | 397.48 ± 66.09 b | 4.80 ± 0.75 a | 2.06 ± 0.31 a |
PLA PBAT CO 7.5% CPf-ChNp | 563.97 ± 26.04 d | 12.88 ± 0.54 d | 3.42 ± 0.18 a |
PLA PBAT CO 10% CPf | 497.83 ± 31.67 c | 7.53 ± 0.28 b | 2.44 ± 0.17 a |
PLA PBAT CO 10% CPf-ChNp | 464.41 ± 66.11 c | 6.20 ± 1.22 ab | 2.06 ± 0.14 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-López, G.; Barrera-Necha, L.L.; Bautista-Baños, S.; Hernández-López, M.; Pérez-Camacho, O.; Benítez-Jiménez, J.J.; Acosta-Rodríguez, J.L.; Correa-Pacheco, Z.N. Characterization of Coffee Waste-Based Biopolymer Composite Blends for Packaging Development. Foods 2025, 14, 1991. https://doi.org/10.3390/foods14111991
Hernández-López G, Barrera-Necha LL, Bautista-Baños S, Hernández-López M, Pérez-Camacho O, Benítez-Jiménez JJ, Acosta-Rodríguez JL, Correa-Pacheco ZN. Characterization of Coffee Waste-Based Biopolymer Composite Blends for Packaging Development. Foods. 2025; 14(11):1991. https://doi.org/10.3390/foods14111991
Chicago/Turabian StyleHernández-López, Gonzalo, Laura Leticia Barrera-Necha, Silvia Bautista-Baños, Mónica Hernández-López, Odilia Pérez-Camacho, José Jesús Benítez-Jiménez, José Luis Acosta-Rodríguez, and Zormy Nacary Correa-Pacheco. 2025. "Characterization of Coffee Waste-Based Biopolymer Composite Blends for Packaging Development" Foods 14, no. 11: 1991. https://doi.org/10.3390/foods14111991
APA StyleHernández-López, G., Barrera-Necha, L. L., Bautista-Baños, S., Hernández-López, M., Pérez-Camacho, O., Benítez-Jiménez, J. J., Acosta-Rodríguez, J. L., & Correa-Pacheco, Z. N. (2025). Characterization of Coffee Waste-Based Biopolymer Composite Blends for Packaging Development. Foods, 14(11), 1991. https://doi.org/10.3390/foods14111991