Green Coffee Bean Extracts: An Alternative to Improve the Microbial and Oxidative Stability of Ground Beef
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction Yield
2.2. Metabolite Assays
2.3. Antimicrobial Assays
2.4. Antioxidant Assays
2.5. Beef Meat Preparation
2.6. Meat Quality Assays
2.6.1. Pour Plate Method
2.6.2. pH Determination
2.6.3. TBARS Method
2.6.4. CIELab Method
2.7. Statistical Analysis
3. Results and Discussion
3.1. Extracts Metabolite Content
3.2. Antimicrobial and Antioxidant Activity of Extracts
3.3. Microbial and Oxidative Stability of Meat Homogenates
3.4. Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GCBE | Green coffee bean extract |
TSPE | Textured soy protein extract |
W | Water |
E | Ethanol |
WE | Water–ethanol |
CE | (+)-catechin equivalent |
GAE | Gallic acid equivalent |
QE | Quercetin equivalent |
CAE | Chlorogenic acid equivalent |
GE | Glucose equivalent |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
ABTS | 2,2′-azino-di(3-ethyl-benzathiazoline-sulphonic acid-(6) |
ASC | Ascorbic acid |
FRAP | Ferric-reducing antioxidant power |
TBC | Total bacterial count |
TBARS | Thiobarbituric acid reactive substances |
L* | Lightness |
a* | Redness |
b* | Yellowness |
C* | Chroma |
h* | hue |
H | Heated |
UH | Unheated |
PCA | Principal component analysis |
References
- Abdulmumeen, H.A.; Risikat, A.N.; Sururah, A.R. Food: Its preservatives, additives and applications. Int. J. Chem. Biochem. Sci. 2012, 1, 36–47. [Google Scholar]
- Lalani, A.R.; Rastegar-Pouyani, N.; Askari, A.; Tavajohi, S.; Akbari, S.; Jafarzadeh, E. Food additives, benefits, and side effects: A review article. J. Chem. Health Risks 2024, 14, 1–10. [Google Scholar]
- Bosso, H.; Barbalho, S.M.; de Alvares Goulart, R.; Otoboni, A.M.M.B. Green coffee: Economic relevance and a systematic review of the effects on human health. Crit. Rev. Food Sci. Nutr. 2023, 63, 394–410. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, U.K.; Si-Hien, M.D.L.R.L.; Suzihaque, M.U.H.; Hashib, S.A.; Karim, S.F.A. Antimicrobial properties and sensory evaluation of bread enriched with green coffee beans (GCB). In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 736, p. 6. [Google Scholar]
- Dziki, D.; Gawlik-Dziki, U.; Pecio, Ł.; Różyło, R.; Świeca, M.; Krzykowski, A.; Rudy, S. Ground green coffee beans as a functional food supplement–Preliminary study. LWT 2015, 63, 691–699. [Google Scholar] [CrossRef]
- Mukkundur Vasudevaiah, A.; Chaturvedi, A.; Kulathooran, R.; Dasappa, I. Effect of green coffee extract on rheological, physico-sensory and antioxidant properties of bread. J. Food Sci. Technol. 2017, 54, 1827–1836. [Google Scholar] [CrossRef]
- Dilnawaz, H.M.; Kumar, S.; Bhat, Z.F. Effect of green coffee bean extract on the lipid oxidative stability and storage quality of restructured mutton blocks containing Colocasia esculenta, a novel binding agent. Agric. Res. 2017, 6, 443–454. [Google Scholar] [CrossRef]
- Bergamaschi, M.; Simoncini, N.; Spezzano, V.M.; Ferri, M.; Tassoni, A. Antioxidant and sensory properties of raw and cooked pork meat burgers formulated with extract from non-compliant green coffee beans. Foods 2023, 12, 1264. [Google Scholar] [CrossRef]
- Taiar, F.; Gharekhani, A.; Tukmechi, A. Investigation of changes in the qualitative, oxidative and microbial indices of minced and non-minced beef during the freezing storage. Food Hyg. 2021, 11, 111–123. [Google Scholar]
- Ramírez-Rojo, M.I.; Vargas-Sánchez, R.D.; Hernández-Martínez, J.; Martínez-Benavidez, E.; Sánchez-Escalante, J.J.; Torrescano-Urrutia, G.R.; Sánchez-Escalante, A. Actividad antioxidante de extractos de hoja de mezquite (Prosopis velutina). Biotecnia 2019, 21, 113–119. [Google Scholar] [CrossRef]
- Herrera-Cazares, L.A.; Hernández-Navarro, F.; Ramírez-Jiménez, A.K.; Campos-Vega, R.; de la Luz Reyes-Vega, M.; Loarca-Piña, G.; Morales-Sánchez, E.; Wall-Medrano, A.; Gaytán-Martínez, M. Mango-bagasse functional-confectionery: Vehicle for enhancing bioaccessibility and permeability of phenolic compounds. Food Funct. 2017, 8, 3906–3916. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Rosselló, C.; Ratti, C. Understanding air-drying behavior of potato peel waste. Dry. Technol. 2022, 40, 3520–3531. [Google Scholar] [CrossRef]
- Albalasmeh, A.A.; Berhe, A.A.; Ghezzehei, T.A. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr. Polym. 2013, 97, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Sánchez, R.D.; Torres-Martínez, B.D.M.; Huerta-Leidenz, N.; Ibarra-Arias, F.J.; Fernández-López, J.; Torrescano-Urrutia, G.R.; Perez-Alvarez, J.A.; Sánchez-Escalante, A. Antioxidant and antibacterial effect of Agaricus brasiliensis extract on raw and cooked pork patties during storage. Agriculture 2023, 13, 346. [Google Scholar] [CrossRef]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′ -diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
- Berker, K.I.; Güçlü, K.; Demirata, B.; Apak, R. A novel antioxidant assay of ferric reducing capacity measurement using ferrozine as the colour forming complexation reagent. Anal. Methods 2010, 2, 1770–1778. [Google Scholar] [CrossRef]
- AOAC. AOAC 943.02, pH of Flour, Potentiometric Method. Association of Official Analytical Chemists. Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=937 (accessed on 7 January 2025).
- Pfalzgraf, A.; Frigg, M.; Steinhart, H. Alpha-tocopherol contents and lipid oxidation in pork muscle and adipose tissue during storage. J. Agric. Food Chem. 1995, 43, 1339–1342. [Google Scholar] [CrossRef]
- Hernández, B.; Sáenz, C.; Alberdi, C.; Diñeiro, J.M. CIELAB Color Coordinates versus relative proportions of myoglobin redox forms in the description of fresh meat appearance. J. Food Sci. Technol. 2016, 53, 4159–4167. [Google Scholar] [CrossRef]
- NCSS, LLC. NCSS 2007 Statistical Software [Computer Software]. Version 07.1.21. Kaysville (UT). Available online: www.ncss.com (accessed on 1 May 2024).
- Kim, J.H.; Gu, Y.R.; Hong, J.H. Physicochemical characteristics and antioxidant activities of green coffee bean extracted with different solvents. Korean J. Food Preserv. 2018, 25, 786–796. [Google Scholar] [CrossRef]
- Naidu, M.M.; Sulochanamma, G.; Sampathu, S.R.; Srinivas, P. Studies on extraction and antioxidant potential of green coffee. Food Chem. 2008, 107, 377–384. [Google Scholar] [CrossRef]
- Haile, M.; Kang, W.H. Antioxidant activity, total polyphenol, flavonoid and tannin contents of fermented green coffee beans with selected yeasts. Fermentation 2019, 5, 29. [Google Scholar] [CrossRef]
- In-Chul, L.E.E.; Jae-Sook, L.E.E.; Jeong-Hyun, L.E.E.; Yeona, K.I.M.; Wi-Young, S.O. Anti-oxidative and anti-inflammatory activity of Kenya grade AA green coffee bean extracts. Iran. J. Public Health 2019, 48, 2025–2034. [Google Scholar]
- Winarsih, S.; Sukardi, S.; Wachid, M.; Ismayawati, A.D. Effect solvent and extraction method on the characteristics of green bean Robusta coffee. In BIO Web of Conferences: EDP Sciences; EDP Sciences: Paris, France, 2024; Volume 104, p. 43. [Google Scholar]
- Bolanho, B.C.; Beléia, A.D.P. Bioactive compounds and antioxidant potential of soy products. Braz. J. Food Res. Alim. Nutr. 2011, 22, 539–546. [Google Scholar]
- Pratt, D.E.; Birac, P.M. Source of antioxidant activity of soybeans and soy products. J. Food Sci. 1979, 44, 1720–1722. [Google Scholar] [CrossRef]
- García-Larez, F.L.; Murillo-Hernández, J.L.; Vargas-Sánchez, R.D.; Torrescano-Urrutia, G.R.; Torres-Martínez, B.D.M.; Sánchez-Escalante, A. Effect of extraction solvent on metabolites content, antioxidant, and antibacterial activity of coffee bagasse. Tip. Rev. Espec. Cienc. Quim-Biol. 2021, 24, 1–10. [Google Scholar]
- Tasew, T.; Mekonnen, Y.; Gelana, T.; Redi-Abshiro, M.; Chandravanshi, B.S.; Ele, E.; Mohammed, A.M.; Mamo, H. In vitro antibacterial and antioxidant activities of roasted and green coffee beans originating from different regions of Ethiopia. Int. J. Food Sci. 2020, 2020, 8490492. [Google Scholar] [CrossRef]
- Gligor, O.; Clichici, S.; Moldovan, R.; Muntean, D.; Vlase, A.M.; Nadăș, G.C.; Matei, I.A.; Filip, G.A.; Crișan, G. The effect of extraction methods on phytochemicals and biological activities of green coffee beans extracts. Plants 2023, 12, 712. [Google Scholar] [CrossRef]
- Laodheerasiri, S.; Horana Pathirage, N. Antimicrobial activity of raw soybean, soybean flour and roasted soybean extracted by ethanol-hexane method. Br. Food J. 2017, 119, 2277–2286. [Google Scholar] [CrossRef]
- Villalobos, M.D.C.; Serradilla, M.J.; Martín, A.; Ordiales, E.; Ruiz-Moyano, S.; Córdoba, M.D.G. Antioxidant and antimicrobial activity of natural phenolic extract from defatted soybean flour by-product for stone fruit postharvest application. J. Sci. Food Agric. 2016, 96, 2116–2124. [Google Scholar] [CrossRef]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 2019, 9, 109. [Google Scholar] [CrossRef]
- Masek, A.; Latos-Brozio, M.; Kałużna-Czaplińska, J.; Rosiak, A.; Chrzescijanska, E. Antioxidant properties of green coffee extract. Forests 2020, 11, 557. [Google Scholar] [CrossRef]
- USDA Livestock and Poultry: World Markets and Trade. Available online: https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf (accessed on 15 January 2025).
- Permínio-Oliveira, V.J.; Ryzia de Cassia, V.C.; Itaciara-Larroza, N.; Wanessa-Karine, D.L. Quality and safety of fresh beef in retail: A review. J. Food Prot. 2022, 85, 435–447. [Google Scholar]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent trends in the use of natural antioxidants for meat and meat products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef]
- El-Chaghaby, G.A.; Shehta, H.A.; Rashad, S.; Rawash, E.A.; Eid, H.R. Evaluation of the antioxidant and antimicrobial activities of the spent coffee extracts and their applications as natural food preservatives of chicken fillets. Nov. Res. Microbiol. J. 2024, 8, 2303–2319. [Google Scholar] [CrossRef]
- Murillo-Hernández, J.L.; Vargas-Sánchez, R.D.; Torres-Martínez, B.; Huerta-Leidenz, N.; Torrescano-Urrutia, G.R.; Sánchez-Escalante, A. Effect of spent coffee grounds aqueous extract as an antioxidant in raw pork patties during refrigerated storage. Rev. Mex. Cienc. Pecu. 2024, 15, 833–847. [Google Scholar]
- Parvathy, U.; Sivaraman, G.K.; Murthy, L.N.; Visnuvinayagam, S.; Jeyakumari, A.; Ravishankar, C.N. Green coffee extract as a natural antioxidant in chill stored Indian mackerel (Rastrelliger kanagurta) mince. Indian J. Fish 2018, 65, 86–95. [Google Scholar] [CrossRef]
- Mostafa, H.S.; El Azab, E.F. Efficacy of green coffee as an antioxidant in beef meatballs compared with ascorbic acid. Food Chem. X 2022, 14, 100336. [Google Scholar] [CrossRef]
- Fetsch, V.T.; Kalschne, D.L.; Canan, C.; Flores, É.L.D.M.; Viegas, M.C.; Peiter, G.C.; Zara, R.F.; Amaral, J.S.; Corso, M.P. Coffee extract as a natural antioxidant in fresh pork sausage—A model approach. Foods 2024, 13, 1409. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, B.D.; Kumar, S.; Sharma, R.B. Shelf life of low-fat ground pork patties formulated with texturized soy protein. Indian J. Anim. Res. 2005, 39, 14–19. [Google Scholar]
- Omwamba, M.; Mahungu, S.M.; Faraj, A.K. Effect of texturized soy protein on quality characteristics of beef samosas. Int. J. Food Stud. 2014, 3, 74–81. [Google Scholar] [CrossRef]
- Balzan, S.; Taticchi, A.; Cardazzo, B.; Urbani, S.; Servili, M.; Di Lecce, G.; Zabalza, I.B.; Rodriguez-Estrada, M.T.; Novelli, E.; Fasolato, L. Effect of phenols extracted from a by-product of the oil mill on the shelf-life of raw and cooked fresh pork sausages in the absence of chemical additives. LWT 2017, 85, 89–95. [Google Scholar] [CrossRef]
- Orădan, A.C.; Timar, A.V.; Memete, A.R.; Rosan, C.A.; Teusdea, A.C.; Vicaș, S.I. The effects of different concentrations of Prunus serotina extract on the quality characteristics of raw and cooked pork burger. Bull. UASVM-Food Sci. Technol. 2024, 81, 114–132. [Google Scholar] [CrossRef]
Treatments | Extraction Yield (%) | Tannin (g CE/100 g) | Phenol (g GAE/100 g) | Flavonoid (g QE/100 g) | Chlorogenic Acid (g CAE/100 g) | Carbohydrates (g GE/100 g) |
---|---|---|---|---|---|---|
GCBE-W | 21.67 ± 0.72 e | 15.27 ± 1.28 c | 10.10 ± 0.48 c | 1.19± 0.13 b | 8.21 ± 0.23 c | 1.39 ± 0.14 cd |
GCBE-E | 8.86 ± 0.72 b | 19.13 ± 1.28 d | 12.52 ± 0.57 d | 0.41 ± 0.06 a | 4.41 ± 0.25 b | 1.46 ± 0.08 d |
GCBE-WE | 15.02 ± 0.67 c | 4.96 ± 0.26 a | 12.16 ± 0.36 d | 0.37 ± 0.05 a | 11.20 ± 0.15 d | 3.30 ± 0.17 a |
TSPE-W | 18.82 ± 0.51 d | 4.39 ± 0.28 a | 2.29 ± 0.17 b | N. D. | 0.34 ± 0.05 a | 0.35 ± 0.06 a |
TSPE-E | 0.54 ± 0.04 a | 11.90 ± 0.86 b | 1.77 ± 0.09 a | N. D. | 0.34 ± 0.06 a | 1.16 ± 0.33 b |
TSPE-WE | 22.62 ± 0.47 e | N. D. | 2.39 ± 0.17 b | N. D. | 0.29 ± 0.02 a | 2.69 ± 0.22 e |
Item | Heating Process | Control | ASC | GCBE-W | GCBE-E | GCBE-WE | TSPE-W | TSPE-E | TSPE-WE |
---|---|---|---|---|---|---|---|---|---|
TBC | Unheated | 4.66 ± 0.34 e | 4.71 ± 0.34 e | 4.56 ± 0.31 e | 4.70 ± 0.34 e | 4.62 ± 0.29 e | 4.51 ± 0.38 e | 4.57 ± 0.39 e | 4.52 ± 0.38 e |
Heated | 3.31 ± 0.02 d | 3.44 ± 0.31 d | 2.72 ± 0.09 b | 3.03 ± 0.08 c | 2.10 ± 0.16 a | 2.73 ± 0.08 b | 2.93 ± 0.05 c | 2.72 ± 0.08 b | |
Δ Heat | ↓1.35 | ↓1.27 | ↓1.84 | ↓1.67 | ↓2.52 | ↓1.78 | ↓1.64 | ↓1.80 | |
Δ CN-TratDiff. CN-Trat | ↑0.13 | ↓0.59 | ↓0.28 | ↓1.21 | ↓0.58 | ↓0.38 | ↓0.59 | ||
pH | Unheated | 5.79 ± 0.02 b | 5.78 ± 0.01 b | 5.83 ± 0.02 c | 5.79 ± 0.01 b | 5.71 ± 0.01 a | 5.88 ± 0.01 d | 5.90 ± 0.02 d | 5.88 ±0.01 d |
Heated | 5.88 ± 0.03 cd | 5.73 ± 0.03 a | 5.84 ± 0.02 c | 5.75 ± 0.04 ab | 5.85 ± 0.01 c | 5.88 ± 0.01 d | 5.92 ± 0.01 d | 5.89 ± 0.02 d | |
Δ Heat | ↑0.09 | ↓0.05 | Ø | Ø | ↑0.14 | Ø | Ø | Ø | |
Δ CN-Trat | ↓0.15 | Ø | ↓0.13 | Ø | Ø | Ø | Ø | ||
TBARS | Unheated | 0.23 ± 0.01 c | 0.18 ± 0.01 b | 0.14 ± 0.01 a | 0.12 ± 0.01 a | 0.12 ± 0.01 a | 0.13 ± 0.01 a | 0.13 ± 0.01 a | 0.13 ± 0.01 a |
Heated | 0.35 ± 0.02 e | 0.30 ± 0.01 d | 0.25 ± 0.01 c | 0.21 ± 0.02 b | 0.19 ± 0.01 b | 0.18 ± 0.05 b | 0.18 ± 0.05 b | 0.18 ± 0.05 b | |
Δ Heat | ↑0.12 | ↑0.12 | ↑0.11 | ↑0.09 | ↑0.08 | ↑0.05 | ↑0.05 | ↑0.05 | |
Δ CN-Trat | ↓0.05 | ↓0.10 | ↓0.14 | ↓0.16 | ↓0.17 | ↓0.17 | ↓0.17 | ||
L* | Unheated | 41.95 ± 2.37 b | 38.86 ± 1.65 ab | 38.15 ± 0.76 a | 38.99 ± 0.85 a | 37.02 ± 0.91 a | 37.65 ± 1.06 a | 38.65 ± 1.06 a | 38.22 ± 1.07 a |
Heated | 38.75 ± 0.50 a | 38.54 ± 0.60 a | 38.68 ± 0.24 a | 39.12 ± 0.13 a | 39.09 ± 0.18 a | 39.97 ± 0.13 a | 39.97 ± 0.83 a | 39.93 ± 0.47 a | |
Δ Heat | ↓3.20 | Ø | Ø | Ø | Ø | Ø | Ø | Ø | |
Δ CN-Trat | Ø | Ø | Ø | Ø | Ø | Ø | Ø | ||
a* | Unheated | 7.52 ± 0.86 e | 6.20 ± 0.82 de | 6.55 ± 0.13 d | 5.88 ± 0.25 d | 5.95 ± 0.89 d | 6.24 ± 0.34 d | 6.59 ± 0.18 d | 6.25 ± 0.40 d |
Heated | 1.46 ± 0.09 c | 1.02 ± 0.29 b | 1.31 ± 0.10 b | 1.43 ± 0.05 bc | 1.23 ± 0.04 b | 0.85 ± 0.04 a | 0.84 ± 0.04 a | 0.89 ± 0.15 a | |
Δ Heat | ↓6.06 | ↓5.18 | ↓5.24 | ↓4.45 | ↓4.72 | ↓5.39 | ↓5.75 | ↓5.36 | |
Δ CN-Trat | ↓0.44 | ↓0.15 | Ø | ↓0.23 | ↓0.61 | ↓0.62 | ↓0.57 | ||
b* | Unheated | 15.83 ± 1.92 d | 12.66 ± 1.57 cd | 12.64 ± 0.39 c | 12.61 ± 0.67 c | 11.23 ± 0.88 c | 12.04 ± 0.63 c | 12.41 ± 0.19 c | 12.21 ± 0.79 c |
Heated | 6.14 ± 0.27 b | 6.10 ± 0.24 ab | 5.39 ± 0.41 a | 5.45 ± 0.22 a | 5.25 ± 0.17 a | 5.49 ± 0.05 a | 5.47 ± 0.05 a | 5.73 ± 0.56 a | |
Δ Heat | ↓9.69 | ↓6.56 | ↓7.25 | ↓7.16 | ↓5.98 | ↓6.55 | ↓6.94 | ↓6.48 | |
Δ CN-Trat | Ø | ↓0.75 | ↓0.69 | ↓0.59 | ↓0.65 | ↓0.67 | ↓0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atondo-Echeagaray, W.A.; Torres-Martínez, B.d.M.; Vargas-Sánchez, R.D.; Torrescano-Urrutia, G.R.; Huerta-Leidenz, N.; Sánchez-Escalante, A. Green Coffee Bean Extracts: An Alternative to Improve the Microbial and Oxidative Stability of Ground Beef. Resources 2025, 14, 95. https://doi.org/10.3390/resources14060095
Atondo-Echeagaray WA, Torres-Martínez BdM, Vargas-Sánchez RD, Torrescano-Urrutia GR, Huerta-Leidenz N, Sánchez-Escalante A. Green Coffee Bean Extracts: An Alternative to Improve the Microbial and Oxidative Stability of Ground Beef. Resources. 2025; 14(6):95. https://doi.org/10.3390/resources14060095
Chicago/Turabian StyleAtondo-Echeagaray, Wendy Alejandra, Brisa del Mar Torres-Martínez, Rey David Vargas-Sánchez, Gastón Ramón Torrescano-Urrutia, Nelson Huerta-Leidenz, and Armida Sánchez-Escalante. 2025. "Green Coffee Bean Extracts: An Alternative to Improve the Microbial and Oxidative Stability of Ground Beef" Resources 14, no. 6: 95. https://doi.org/10.3390/resources14060095
APA StyleAtondo-Echeagaray, W. A., Torres-Martínez, B. d. M., Vargas-Sánchez, R. D., Torrescano-Urrutia, G. R., Huerta-Leidenz, N., & Sánchez-Escalante, A. (2025). Green Coffee Bean Extracts: An Alternative to Improve the Microbial and Oxidative Stability of Ground Beef. Resources, 14(6), 95. https://doi.org/10.3390/resources14060095