Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (285)

Search Parameters:
Keywords = beam-to-column joint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5545 KiB  
Article
Finite Element Analysis of the Mechanical Performance of an Innovative Beam-Column Joint Incorporating V-Shaped Steel as a Replaceable Energy-Dissipating Component
by Lin Zhang, Yiru Hou and Yi Wang
Buildings 2025, 15(14), 2513; https://doi.org/10.3390/buildings15142513 - 17 Jul 2025
Abstract
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent [...] Read more.
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent years. The study presented in this paper introduces an innovative beam-column connection that incorporates V-shaped steel as the replaceable energy-dissipating component. It delineates the structural configuration and design principles of this joint. Furthermore, the paper conducts a detailed analysis of the joint’s failure mode, stress distribution, and strain patterns using ABAQUS 2022 finite element software, thereby elucidating the failure mechanisms, load transfer pathways, and energy dissipation characteristics of the joint. In addition, the study investigates the impact of critical design parameters, including the strength, thickness, and weakening dimensions of the dog-bone energy-dissipating section, as well as the strength and thickness of the V-shaped plate, on the seismic behavior of the beam-column joint. The outcomes demonstrate that the incorporation of V-shaped steel with a configurable replaceable energy-dissipating component into the traditional dog-bone replaceable joint significantly improves the out-of-plane stability. Concurrently, the V-shaped steel undergoes a process of gradual flattening under load, which allows for a larger degree of deformation. In conclusion, the innovative joint design exhibits superior ductility and load-bearing capacity when contrasted with the conventional replaceable dog-bone energy-dissipating section joint. The joint’s equivalent viscous damping coefficient, ranging between 0.252 and 0.331, demonstrates its robust energy dissipation properties. The parametric analysis results indicate that the LY160 and Q235 steel grades are recommended for the dog-bone connector and V-shaped steel connector, respectively. The optimal thickness ranges are 6–10 mm for the dog-bone connector and 2–4 mm for the V-shaped steel connector, while the weakened dimension should preferably be selected within 15–20 mm. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 16393 KiB  
Article
Near-Surface-Mounted CFRP Ropes as External Shear Reinforcement for the Rehabilitation of Substandard RC Joints
by George Kalogeropoulos, Georgia Nikolopoulou, Evangelia-Tsampika Gianniki, Avraam Konstantinidis and Chris Karayannis
Buildings 2025, 15(14), 2409; https://doi.org/10.3390/buildings15142409 - 9 Jul 2025
Viewed by 239
Abstract
The effectiveness of an innovative retrofit scheme using near-surface-mounted (NSM) X-shaped CFRP ropes for the strengthening of substandard RC beam–column joints was investigated experimentally. Three large-scale beam–column joint subassemblages were constructed with poor reinforcement details. One specimen was subjected to cyclic lateral loading, [...] Read more.
The effectiveness of an innovative retrofit scheme using near-surface-mounted (NSM) X-shaped CFRP ropes for the strengthening of substandard RC beam–column joints was investigated experimentally. Three large-scale beam–column joint subassemblages were constructed with poor reinforcement details. One specimen was subjected to cyclic lateral loading, exhibited shear failure of the joint region and was used as the control specimen. The other specimens were retrofitted and subsequently subjected to the same history of incremental lateral displacement amplitudes with the control subassemblage. The retrofitting was characterized by low labor demands and included wrapping of NSM CFPR-ropes in the two diagonal directions on both lateral sides of the joint as shear reinforcement. Single or double wrapping of the joint was performed, while weights were suspended to prevent the loose placement of the ropes in the grooves. A significant improvement in the seismic performance of the retrofitted specimens was observed with respect to the control specimen, regarding strength and ductility. The proposed innovative scheme effectively prevented shear failure of the joint by shifting the damage in the beam, and the retrofitted specimens showed a more dissipating hysteresis behavior without significant loss of lateral strength and axial load-bearing capacity. The cumulative energy dissipation capacity of the strengthened specimens increased by 105.38% and 122.23% with respect to the control specimen. Full article
Show Figures

Figure 1

8 pages, 900 KiB  
Proceeding Paper
Repercussions on the Shear Force of an Internal Beam–Column Connection from Two Symmetrical Uniformly Distributed Loads at Different Positions on the Beam
by Albena Doicheva
Eng. Proc. 2025, 87(1), 85; https://doi.org/10.3390/engproc2025087085 - 26 Jun 2025
Viewed by 1067
Abstract
The beam–column connection is an important element in frame construction. Despite numerous studies, there is still no uniform procedure for shear force design across countries. We continue to witness serious problems and even collapse of buildings under seismic activity caused by failures in [...] Read more.
The beam–column connection is an important element in frame construction. Despite numerous studies, there is still no uniform procedure for shear force design across countries. We continue to witness serious problems and even collapse of buildings under seismic activity caused by failures in the beam–column connection of the frame. During the last 60 decades, a large number of experimental studies have been carried out on frame assemblies, where various parameters and their compatibility under cyclic activities have been investigated. What remains misunderstood is the magnitude and distribution of the forces passing through the joint and their involvement in the magnitude of the shear force. Here, the creation of a new mathematical model for the beam and column contributes significantly to our understanding of the flow of forces in the frame connection. For this purpose, the full dimensions of the beam and its material properties are taken into account. All investigations were carried out before crack initiation and after crack propagation along the face of the column, where it separates from the beam. In the present work, the beam is subjected to two symmetrical, transverse, uniformly distributed loads. Expressions are derived to determine the magnitudes of the support reactions from the beam, as a function of the height of its lateral edge. The load positions corresponding to the extreme values of the support reactions are determined. Numerical results are presented for the effect over the magnitudes of the support reactions from different strengths of concrete and steel on the beam. The results are compared with those given in the Eurocode for shear force calculation. It is found that the shear force determined by the proposed new model exceeds the force calculated by Eurocode by 4–62.5%, depending on the crack development stage and the beam materials. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

25 pages, 8853 KiB  
Article
Experimental and Finite Element Study on Wooden Joints Strengthened by Detachable Steel Sleeves
by Jiajun Gao, Jianhua Shao, Yong Wang, Anxiang Feng, Zhanguang Wang, Hongxuan Xu, Yangfa Zhu and Boshi Ma
Buildings 2025, 15(12), 2139; https://doi.org/10.3390/buildings15122139 - 19 Jun 2025
Viewed by 266
Abstract
We designed detachable steel sleeves to reinforce wooden joints and improve their integrity under earthquake action and investigated their mechanical properties. Monotonic bending tests were performed on a half-tenon pure wooden joint and a joint strengthened by a detachable steel sleeve. More obvious [...] Read more.
We designed detachable steel sleeves to reinforce wooden joints and improve their integrity under earthquake action and investigated their mechanical properties. Monotonic bending tests were performed on a half-tenon pure wooden joint and a joint strengthened by a detachable steel sleeve. More obvious tenon pulling-out failure was observed in the pure wood joint; in comparison, only slight extrusion fracture of wooden beams and extrusion deformation of steel sleeves occurred in the wood joint reinforced by a detachable steel sleeve. Our test results showed that the initial rotational stiffness of the strengthened joint, JG1, was increased by 495.4% compared with that of the unstrengthened joint, JG0. The yield bending moment increased by 425.9%, and the ultimate bending moment increased by 627.5%, which indicated that the mechanical performance was significantly improved when the joint was reinforced by a detachable steel sleeve. Numerical simulations of different components were performed with finite element analysis software to analyze the mechanical performance of the reinforced joint. It was found that the stiffness and ultimate flexural performance of the joint could be increased by setting stiffeners on the steel sleeve and connecting the wooden column with self-tapping screws. The results of the tests were compared with those obtained through finite element analysis, and a high degree of accuracy was achieved, which could provide a theoretical basis for the reinforcement of timber structural buildings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 17587 KiB  
Article
Research on the Seismic Performance of Precast RCS Composite Joints Considering the Floor Slab Effect
by Yingchu Zhao, Jie Jia and Ziteng Li
Appl. Sci. 2025, 15(12), 6669; https://doi.org/10.3390/app15126669 - 13 Jun 2025
Viewed by 294
Abstract
Under the impetus of achieving global sustainable development goals, the civil construction industry is accelerating its transition towards high-quality, green, and low-carbon practices. Prefabricated, modular building technology has become a key tool due to its advantages in energy conservation, emission reduction, and shortened [...] Read more.
Under the impetus of achieving global sustainable development goals, the civil construction industry is accelerating its transition towards high-quality, green, and low-carbon practices. Prefabricated, modular building technology has become a key tool due to its advantages in energy conservation, emission reduction, and shortened construction periods. However, existing research on the seismic performance of prefabricated, modular, reinforced concrete column–beam (RCS) composite structures often focuses on the construction form of beam–column joints, paying less attention to the impact of floor slabs on the seismic performance of joints during earthquakes. This may make joints a weak link in structural systems’ seismic performance. To address this issue, this paper designs a prefabricated, modular RCS composite joint considering the effect of floor slabs and uses the finite element software ABAQUS 2023 to perform a quasi-static analysis of the joint. The reliability of the method is verified through comparisons with the experimental data. This study examines various aspects, including the joint design and the material’s constitutive relationship settings, focusing on the influence of parameters, such as the axial compression ratio and floor slab concrete strength, on the joint seismic performance. It concludes that the seismic performance of the prefabricated, modular RCS composite joints considering the effect of floor slabs is significantly improved. Considering the composite effect of the slabs, the yield loads in the positive and negative directions for node FJD-0 increased by 78.9% and 70.0%, respectively, compared to that of the slab-free node RCSJ3. The ultimate bearing capacities improved by 13.2% and 9.98%, respectively, and the energy dissipation capacity increased by 23%. Additionally, the variation in the axial load ratio has multiple effects on the seismic performance of the joints. Increasing the slab thickness significantly enhances the seismic performance of the joints under positive loading. The bolt pre-tensioning force has a crucial impact on improving the bearing capacity and overall stiffness of the joints. The reinforcement ratio of the slabs has a notable effect on the seismic performance of the joints under negative loading, while the concrete strength of the slabs has a relatively minor impact on the seismic performance of the joints. Therefore, the reasonable design of these parameters can optimize the seismic performance of joints, providing a theoretical basis and recommendations for engineering application and optimization. Full article
Show Figures

Figure 1

27 pages, 9265 KiB  
Article
Seismic Behavior and Resilience of an Endplate Rigid Connection for Circular Concrete-Filled Steel Tube Columns
by Yu Gao, Peilin Zhu, Junping Liu and Feng Lou
Buildings 2025, 15(12), 2035; https://doi.org/10.3390/buildings15122035 - 13 Jun 2025
Viewed by 413
Abstract
A novel endplate bolted rigid joint is proposed in this study for connecting circular concrete-filled steel tube (CCFT) columns to wide-flange (WF) steel beams. The seismic performance and potential failure mechanisms of the proposed joint were investigated through quasi-static cyclic tests and finite [...] Read more.
A novel endplate bolted rigid joint is proposed in this study for connecting circular concrete-filled steel tube (CCFT) columns to wide-flange (WF) steel beams. The seismic performance and potential failure mechanisms of the proposed joint were investigated through quasi-static cyclic tests and finite element (FE) simulations. This study aims to address several engineering challenges commonly observed in existing joint configurations, including an irrational force-resisting mechanism, complicated detailing and installation, on-site construction difficulties, constraints on beam size, and limited repairability. By optimizing the force transfer path, the new joint effectively reduces the number of critical tension welds, thereby enhancing the ductility and reliability. The experimental results indicate that the joint exhibits adequate flexural strength, stiffness, and ductility, with stable moment–rotation hysteresis loops under cyclic loading. Moreover, full restoration of the joint can be achieved by replacing only the steel beam and endplate, facilitating post-earthquake repair. FE analysis reveals that, under the ultimate bending moment at the beam end, multiple through cracks develop in the high-strength grout—which serves as a key load-transferring component—and significant debonding occurs between the grout and the surrounding steel members. However, due to confinement from adjacent components, these internal cracks do not compromise the overall strength and stiffness of the joint. This research provides an efficient and practical connection solution, along with valuable experimental insights, for the application of CCFT columns in moment-resisting frames located in high seismic zones. Full article
Show Figures

Figure 1

19 pages, 6291 KiB  
Article
Quantitative Assessment of Bolt Looseness in Beam–Column Joints Using SH-Typed Guided Waves and Deep Neural Network
by Ru Zhang, Xiaodong Sui, Yuanfeng Duan, Yaozhi Luo, Yi Fang and Rui Miao
Appl. Sci. 2025, 15(12), 6425; https://doi.org/10.3390/app15126425 - 7 Jun 2025
Viewed by 388
Abstract
Bolt connections are the primary component of beam–column joints, which frequently become loose during their service life due to environmental factors. Assessing the tightness of bolts is essential for maintaining structural integrity and safety. Although the guided wave method has been proven effective [...] Read more.
Bolt connections are the primary component of beam–column joints, which frequently become loose during their service life due to environmental factors. Assessing the tightness of bolts is essential for maintaining structural integrity and safety. Although the guided wave method has been proven effective for detecting bolt looseness, the severe dispersion properties and complex structure of beam–column joints pose difficulties for the quantitative evaluation of bolt looseness. Therefore, a deep neural network model integrating a convolutional neural network (CNN), long short-term memory (LSTM), and multi-head self-attention mechanism (MHSA) is introduced to identify the degree of looseness in multiple bolts using SH-typed guided waves. The dispersion properties of the I-shaped steel beam were analyzed using the semi-analytical finite element method, and a mode weight coefficient was presented to clarify the mode distribution under different types of external loads. Two pairs of transducers arranged on the same side of the bolt-connected region were utilized to obtain the directly incoming and end-reflected wave packets from four wave propagation paths. The received signals were converted into time–frequency spectra, and the effective components were extracted to form the input pattern for the neural network. Numerical simulations were performed on a beam–column joint with eight bolts, and the number of training samples was increased using data augmentation techniques. The results indicate that the CNN-LSTM-MHSA model can accurately estimate the bolt looseness conditions better than other methods. Noise injection testing was also conducted to investigate the effect of measurement noise. Full article
Show Figures

Figure 1

22 pages, 5015 KiB  
Article
Study on Dynamic Response and Progressive Collapse Resistance of Space Steel Frame Under Impact Load
by Junling Jiang, Zhishuang Zhang and Changren Ke
Buildings 2025, 15(11), 1888; https://doi.org/10.3390/buildings15111888 - 29 May 2025
Viewed by 424
Abstract
The dynamic response of multi-story steel frames under impact loading exhibits a complex nonlinear behavior. This study develops a three-story, multi-scale spatial steel frame finite element model using ABAQUS 2023 software, and the contact algorithm and material parameters were validated through published drop-weight [...] Read more.
The dynamic response of multi-story steel frames under impact loading exhibits a complex nonlinear behavior. This study develops a three-story, multi-scale spatial steel frame finite element model using ABAQUS 2023 software, and the contact algorithm and material parameters were validated through published drop-weight impact beam tests. A total of 48 impact parameter combinations were defined, covering rational mass–velocity ranges while accounting for column position variations at the first story. Systematic comparisons were conducted on the influence of varying impact parameters on structural dynamic responses. This study investigates deformation damage and progressive collapse mechanisms in spatial steel frames under impact loading. Structural dynamic responses show significant enhancement with increasing impact mass and velocity. As impact kinetic energy increases, the steel frame transitions from localized denting at impact zones to global bending deformation, inducing structural tilting. The steel frame exhibits potential collapse risk under severe impact conditions. Under identical impact energy, corner column impact displacements differ by <1% from edge-middle column displacements, with vertical displacement variations ranging 0–17.6%. The displacement of the first-floor joints of the structure with three spans in the impact direction was reduced by about 50% compared to that with two spans. When designing the structure, it is necessary to increase the number of frame spans in the impact direction to improve the overall stability of the structure. Based on the development of the rotation angle of the beam members during the impact process, the steel frame collapse process was divided into three stages, the elastic stage, the plastic and catenary stage, and the column member failure stage; the steel frame finally collapsed due to an excessive beam rotation angle and column failure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

36 pages, 4413 KiB  
Article
Enhancing Seismic Repairability of Precast RC Frames Through an Innovative Replaceable Plastic Hinge Technology
by Resat Oyguc and Ali Berk Bozan
Appl. Sci. 2025, 15(10), 5629; https://doi.org/10.3390/app15105629 - 18 May 2025
Viewed by 497
Abstract
The introduction of a novel replaceable plastic hinge technology aims to enhance the performance of precast reinforced concrete (PRC) frames, particularly in seismically vulnerable areas where substandard structural systems are prevalent. This artificially controllable plastic hinge (ACPH) mechanism effectively localizes inelastic deformations to [...] Read more.
The introduction of a novel replaceable plastic hinge technology aims to enhance the performance of precast reinforced concrete (PRC) frames, particularly in seismically vulnerable areas where substandard structural systems are prevalent. This artificially controllable plastic hinge (ACPH) mechanism effectively localizes inelastic deformations to a detachable steel subassembly, thereby maintaining the integrity of the primary structural components. A numerical analysis was carried out on four distinct PRC frame configurations that utilized concrete and steel of inferior quality relative to contemporary standards. The frames underwent testing under a segment of the Mw 7.7 Kahramanmaraş ground motion, revealing that connections utilizing the ACPH not only reduce peak base shear but also mitigate cracking at beam–column interfaces, directing plastic strains towards replaceable fuse elements. The implementation of the ACPH also facilitates extended structural periods and localized plastic hinging, which serves to limit damage to essential members while expediting post-earthquake repairs. Comparative validation through prior subassembly tests confirms that this hinge exhibits a strong hysteretic response and ductile performance, surpassing traditional wet-joint connections in the context of substandard PRC frames. Overall, these results underscore the potential of standardized hinge modules in enhancing seismic resilience and supporting swift, economical rehabilitation of critical infrastructure. Thus, this proposed technology effectively tackles persistent issues related to low-strength materials in precast structures, presenting a practical approach to improving earthquake resilience and minimizing repair time and costs. Full article
(This article belongs to the Special Issue Structural Analysis and Seismic Resilience in Civil Engineering)
Show Figures

Figure 1

21 pages, 12021 KiB  
Article
Seismic Performance of Beam–Column Joints in Seawater Sand Concrete Reinforced with Steel-FRP Composite Bars
by Ruiqing Liang, Botao Zhang, Zhensheng Liang, Xiemi Li and Shuhua Xiao
Materials 2025, 18(10), 2282; https://doi.org/10.3390/ma18102282 - 14 May 2025
Viewed by 370
Abstract
Steel fiber-reinforced polymer (FRP) composite bars (SFCBs) combine the ductility of steel reinforcement with the corrosion resistance and high strength of FRP, providing stable secondary stiffness that enhances the seismic resistance and safety of seawater sea–sand concrete structures. However, the seismic performance of [...] Read more.
Steel fiber-reinforced polymer (FRP) composite bars (SFCBs) combine the ductility of steel reinforcement with the corrosion resistance and high strength of FRP, providing stable secondary stiffness that enhances the seismic resistance and safety of seawater sea–sand concrete structures. However, the seismic performance of SFCB-reinforced seawater sea–sand concrete beam–column joints remains underexplored. This study presents pseudo-static tests on SFCB-reinforced beam–column joints with varying column SFCB longitudinal reinforcement fiber volume ratios (64%, 75%, and 84%), beam reinforcement fiber volume ratios (60.9%, 75%, and 86%), and axial compression ratios (0.1 and 0.2). The results indicate that increasing the axial compression ratio enhances nodal shear capacity and bond strength, limits slip, and reduces crack propagation, but also accelerates bearing capacity degradation. Higher column reinforcement fiber volumes improve crack distribution and ductility, while beam reinforcement volume significantly affects energy dissipation and crack distribution, with moderate volumes (e.g., 75%) yielding optimal seismic performance. These findings provide insights for the seismic design of SFCB-composite-reinforced concrete structures in marine environments. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete)
Show Figures

Figure 1

22 pages, 15055 KiB  
Article
Tension Strength of Multi-Fastener, Single-Lap Joints in Flax and Jute Composite Plates Using Bolts or Rivets
by Mike R. Bambach
Materials 2025, 18(10), 2180; https://doi.org/10.3390/ma18102180 - 8 May 2025
Viewed by 369
Abstract
The behavior of joints and fasteners in fiber-epoxy composites has been researched for several decades, and many studies have demonstrated their performance in tension testing. These studies have focused nearly exclusively on synthetic fibers, such as carbon and glass. Meanwhile, natural fiber–epoxy composites [...] Read more.
The behavior of joints and fasteners in fiber-epoxy composites has been researched for several decades, and many studies have demonstrated their performance in tension testing. These studies have focused nearly exclusively on synthetic fibers, such as carbon and glass. Meanwhile, natural fiber–epoxy composites have recently received considerable attention as load-bearing members, including as columns and beams. In order for individual members to be used to create structural systems, the behavior of mechanically fastened joints in natural fiber–epoxy composites needs to be thoroughly investigated. This paper presents an experimental program of 120 single-lap joints in flax–epoxy and jute–epoxy composites. Between one and three mechanical fasteners were used in the joints, and both bolts and rivets were investigated. A variety of geometric variables were investigated, relevant to joints between load-bearing members. The results are used to demonstrate the optimum strength of multi-fastener joints in natural fiber composite structural systems. It is shown that maximum joint efficiency is achieved with larger fastener-diameter-to-width ratios, three fasteners (located along the line of action of the force), and edge-distance-to-fastener-diameter ratios greater than 2.5. Full article
Show Figures

Figure 1

26 pages, 18959 KiB  
Review
A Review on the Progressive Collapse of Reinforced Concrete Flat Slab–Column Structures
by Xiao Li, Tengfang Dong, Chengquan Wang, Weiwei Zhang, Rongyang Liu and Jingjing Wang
Materials 2025, 18(9), 2056; https://doi.org/10.3390/ma18092056 - 30 Apr 2025
Viewed by 560
Abstract
Reinforced concrete flat slab–column structures, lacking the redundancy provided by a beam–column system, are susceptible to punching shear failure under extreme loading conditions, which may lead to progressive collapse with catastrophic consequences. A systematic review of recent advancements in the progressive collapse resistance [...] Read more.
Reinforced concrete flat slab–column structures, lacking the redundancy provided by a beam–column system, are susceptible to punching shear failure under extreme loading conditions, which may lead to progressive collapse with catastrophic consequences. A systematic review of recent advancements in the progressive collapse resistance of flat slab–column systems has been provided, categorizing the methodologies into experimental investigation, theoretical analysis, and numerical simulation. Experimental studies primarily utilize the Alternative Load Path methodology, incorporating both quasi-static and dynamic loading protocols to assess structural performance. Different column removal scenarios (e.g., corner, edge, and interior column failures) clarify the load redistribution patterns and the evolution of resistance mechanisms. Theoretical frameworks focus on tensile and compressive membrane actions, punching shear mechanism, and post-punching shear mechanism. Analytical models, incorporating strain-hardening effects and deformation compatibility constraints, show improved correlation with experimental results. Numerical simulations use multi-scale modeling strategies, integrating micro-level joint models with macro-level structural assemblies. Advanced finite element analysis techniques effectively replicate collapse behaviors under various column failure scenarios, validated by full-scale test data. This synthesis identifies key research priorities and technical challenges in collapse-resistant design, establishing theoretical foundations for future investigations of flat slab systems under multi-hazard coupling effects. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

35 pages, 18222 KiB  
Article
Impact of Inter-Modular Connections on Progressive Compressive Behavior of Prefabricated Column-Supported Volumetric Modular Steel Frames
by Kejia Yang, Kashan Khan, Yukun Yang, Lu Jiang and Zhihua Chen
Crystals 2025, 15(5), 413; https://doi.org/10.3390/cryst15050413 - 28 Apr 2025
Viewed by 486
Abstract
This study investigates the progressive compressive behavior of modular interior frames with rotary-type module-to-module inter-modular (M2M) connections under sequential column failure. A novel two-stage testing protocol was applied, compressing the left upper column to failure, followed by the right, to simulate realistic loading [...] Read more.
This study investigates the progressive compressive behavior of modular interior frames with rotary-type module-to-module inter-modular (M2M) connections under sequential column failure. A novel two-stage testing protocol was applied, compressing the left upper column to failure, followed by the right, to simulate realistic loading progression in prefabricated column-supported volumetric modular steel structures. Detailed refined finite-element models (FEMs) were developed and validated against experimental results, accurately capturing local and global responses with an average prediction error of 2–10% for strength and stiffness. An extensive parametric study involving varying frame configurations evaluated the influence of frame member geometric properties, connection details, and column/beam gap interaction on progressive collapse behavior. The results demonstrated that upper columns govern failure through elastic–plastic buckling near M2M joints while other members/connections remain elastic/unyielded. Increasing column cross section and thickness significantly enhanced strength and stiffness, while longer columns and prior damage reduced capacity, particularly during right-column loading. Conventional steel design codes overestimated column strength, with mean Pu,FEM/Pu,code ratios below unity and high scatter (Coefficient of variation ~0.25–0.27), highlighting the inadequacy of isolated member-based design equations for modular assemblies. The findings emphasize the need for frame-based stability approaches that account for M2M joint semi-rigidity, sway sensitivity, and sequential failure effects to ensure the reliable design of modular steel frames under progressive compressive loads. Full article
Show Figures

Figure 1

20 pages, 3645 KiB  
Article
Experimental Research and Numerical Simulation on the Hysteresis Performance of Strengthened Beam–Column Joints
by Xiuying Yang, Yanling Li, Shixin Duan, Guodong Zhao, Jie Song and Denghu Jing
Buildings 2025, 15(9), 1421; https://doi.org/10.3390/buildings15091421 - 23 Apr 2025
Viewed by 315
Abstract
Beam–column joints in reinforced concrete frames are subjected to complex forces and are prone to damage under seismic actions. This paper proposes a method to strengthen beam–column joints using angle steel and split bolts. The hysteretic performance of the strengthened components is investigated [...] Read more.
Beam–column joints in reinforced concrete frames are subjected to complex forces and are prone to damage under seismic actions. This paper proposes a method to strengthen beam–column joints using angle steel and split bolts. The hysteretic performance of the strengthened components is investigated through test and finite element numerical simulation. The influencing parameters, including concrete strength grade, axial compression ratio, stirrup characteristic value, angle steel leg length, and angle steel leg thickness, are analyzed. The results show that angle steel can simultaneously enhance the strength and stiffness of the strengthened joints. With an increase in concrete strength grade, the load-carrying capacity of the strengthened components continuously increases. However, when the axial compression ratio exceeds 0.6, the load-carrying capacity of the strengthened components significantly decreases. The size of the stirrup characteristic value has little influence on the shear resistance of the strengthened joints. The leg length and leg thickness of the angle steel have certain effects on the strengthening effectiveness. The method of outward movement of plastic hinges can effectively improve the seismic performance of bi-directionally loaded spatial joints. Full article
(This article belongs to the Special Issue Advanced Studies on Steel Structures)
Show Figures

Figure 1

26 pages, 12184 KiB  
Article
A Study on the Seismic Performance of Steel H-Column and T-Beam-Bolted Joints
by Hongtao Ju, Wen Jiang, Xuegang Hu, Kai Zhang, Yan Guo, Junfen Yang and Kaili Hao
Appl. Sci. 2025, 15(9), 4643; https://doi.org/10.3390/app15094643 - 23 Apr 2025
Viewed by 402
Abstract
The finite-element model was developed using ABAQUS to investigate the hysteretic properties of space joints. This study examined the effects of axial compression ratio, T-plate stiffness, column wall thickness, and bolt-preload on the joint’s hysteretic behavior. The model was verified by comparing the [...] Read more.
The finite-element model was developed using ABAQUS to investigate the hysteretic properties of space joints. This study examined the effects of axial compression ratio, T-plate stiffness, column wall thickness, and bolt-preload on the joint’s hysteretic behavior. The model was verified by comparing the failure modes, hysteresis curves, and skeleton curves of the specimens with the test results of the relevant literature, ensuring the reliability of the research. The results reveal three primary failure modes: beam flange buckling, T-plate buckling, and column-wall buckling; increasing the thickness of the T-plate web or column wall significantly enhances joint stiffness and mitigates brittle failure. Specifically, the stiffness of T-plate 1 has a substantial impact on joint performance, and it is recommended that its web thickness be no less than 18 mm. In contrast, variations in the thickness of T-plate 2 have negligible effects on seismic performance. Increasing the column wall thickness improves the bearing capacity and stiffness of the joint, with a recommended minimum thickness of 12 mm, which should not be less than the flange thickness of the steel beam. While an increase in the axial compression ratio reduces the bearing capacity and stiffness, it enhances the energy dissipation capacity and ductility of the joint. Notably, variations in bolt-preload were found to have minimal influence on joint performance. These findings provide valuable insights for optimizing the design of unilateral bolted joints in steel structures to improve seismic resilience. Full article
Show Figures

Figure 1

Back to TopTop