Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (905)

Search Parameters:
Keywords = beam deflection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3564 KiB  
Article
Three-Dimensional Deformation Calculation of Wind Tunnel Flexible Wall Using Orthogonal Beam Function
by Xiuxuan Yang, Yueyin Ma, Guishan Wang, Can Yang and Chengguo Yu
Materials 2025, 18(15), 3593; https://doi.org/10.3390/ma18153593 (registering DOI) - 31 Jul 2025
Abstract
Transonic/supersonic wind tunnels are indispensable equipment for advanced aircraft to operate across subsonic, transonic, and supersonic regimes. The deformation of the flexible nozzle is the key to accurately controlling the Mach number of transonic wind tunnels. However, solving the deformation of flexible wall [...] Read more.
Transonic/supersonic wind tunnels are indispensable equipment for advanced aircraft to operate across subsonic, transonic, and supersonic regimes. The deformation of the flexible nozzle is the key to accurately controlling the Mach number of transonic wind tunnels. However, solving the deformation of flexible wall plates remains challenging due to the highly nonlinear relationship between wall loading and deformation, as well as the lack of simple yet effective mathematical models under complex boundary conditions. To accurately describe the deformation of flexible wall plates and improve computational efficiency, this study systematically investigates the deformation characteristics of flexible walls in two orthogonal directions and proposes an orthogonal beam function (OBF) model for characterizing small-deflection deformations. For large-deflection deformations in a flexible wall, an elliptic integral (EI) solution is introduced, and the OBF model is correspondingly modified. Experimental validation confirms that the OBF model effectively describes large-deflection deformations in a flexible wall. This research contributes to solving large-deflection deformation in flexible wall plates, enhancing both computational efficiency and accuracy. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

22 pages, 5896 KiB  
Article
Point Cloud Generation Method Based on Dual-Prism Scanning with Multi-Parameter Optimization
by Yuanfeng Zhao, Zhen Zheng and Hong Chen
Photonics 2025, 12(8), 764; https://doi.org/10.3390/photonics12080764 - 29 Jul 2025
Viewed by 136
Abstract
This study addresses two critical challenges in biprism-based laser scanning systems: the lack of a comprehensive mathematical framework linking prism parameters to scanning performance, and unresolved theoretical gaps regarding parameter effects on point cloud quality. We propose a multi-parameter optimization method for point [...] Read more.
This study addresses two critical challenges in biprism-based laser scanning systems: the lack of a comprehensive mathematical framework linking prism parameters to scanning performance, and unresolved theoretical gaps regarding parameter effects on point cloud quality. We propose a multi-parameter optimization method for point cloud generation using dual-prism scanning. By establishing a beam pointing mathematical model, we systematically analyze how prism wedge angles, refractive indices, rotation speed ratios, and placement configurations influence scanning performance, revealing their coupled effects on deflection angles, azimuth control, and coverage. The non-paraxial ray tracing method combined with the Möller–Trumbore algorithm enables efficient point cloud simulation. Experimental results demonstrate that our optimized parameters significantly enhance point cloud density, uniformity, and target feature integrity while overcoming limitations of traditional database construction methods. This work provides both theoretical foundations and practical solutions for high-precision 3D reconstruction in high-speed rendezvous scenarios such as missile-borne laser fuzes, offering advantages in cost-effectiveness and operational reliability. Full article
Show Figures

Figure 1

21 pages, 3633 KiB  
Article
Shear Mechanism of Precast Segmental Concrete Beam Prestressed with Unbonded Tendons
by Wu-Tong Yan, Lei Yuan, Yong-Hua Su and Zi-Wei Song
Buildings 2025, 15(15), 2668; https://doi.org/10.3390/buildings15152668 - 28 Jul 2025
Viewed by 168
Abstract
The shear tests are conducted on six precast segmental concrete beams (PSCBs) in this paper. A new specimen design scheme is presented to compare the effects of segmental joints on the shear performance of PSCBs. The failure modes, shear strength, structural deflection, stirrup [...] Read more.
The shear tests are conducted on six precast segmental concrete beams (PSCBs) in this paper. A new specimen design scheme is presented to compare the effects of segmental joints on the shear performance of PSCBs. The failure modes, shear strength, structural deflection, stirrup strain, and tendon stress are recorded. The factors of shear span ratio, the position of segmental joints, and hybrid tendon ratio are focused on, and their effects on the shear behaviors are compared. Based on the measured responses, the shear contribution proportions of concrete segments, prestressed tendons, and stirrups are decomposed and quantified. With the observed failure modes, the truss–arch model is employed to clarify the shear mechanism of PSCBs, and simplified equations are further developed for predicting the shear strength. Using the collected test results of 30 specimens, the validity of the proposed equations is verified with a mean ratio of calculated-to-test values of 0.96 and a standard deviation of 0.11. Furthermore, the influence mechanism of shear span ratio, segmental joints, prestressing force, and hybrid tendon ratio on the shear strength is clarified. The increasing shear span ratio decreases the inclined angle of the arch ribs, thereby reducing the shear resistance contribution of the arch action. The open joints reduce the number of stirrups passing through the diagonal cracks, lowering the shear contribution of the truss action. The prestressing force can reduce the inclination of diagonal cracks, improving the contribution of truss action. The external unbonded tendon will decrease the height of the arch rib due to the second-order effects, causing lower shear strength than PSCBs with internal tendons. Full article
(This article belongs to the Special Issue Advances in Steel-Concrete Composite Structure—2nd Edition)
Show Figures

Figure 1

23 pages, 5436 KiB  
Article
Flexural Testing of Steel-, GFRP-, BFRP-, and Hybrid Reinforced Beams
by Yazeed Elbawab, Youssef Elbawab, Zeina El Zoughby, Omar ElKadi, Mohamed AbouZeid and Ezzeldin Sayed-Ahmed
Polymers 2025, 17(15), 2027; https://doi.org/10.3390/polym17152027 - 25 Jul 2025
Viewed by 331
Abstract
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates [...] Read more.
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates the flexural performance of concrete beams reinforced with GFRP, BFRP, and hybrid systems combining these materials with steel, following ACI 440.1R-15 guidelines. Twelve beams were assessed under three-point bending to compare their flexural strength, ductility, and failure modes against steel reinforcement. The results indicate that GFRP and BFRP beams achieve 8% and 12% higher ultimate load capacities but 38% and 58% lower deflections at failure than steel, respectively. Hybrid reinforcements enhance both load capacity and deflection performance (7% to 17% higher load with 11% to 58% lower deflection). However, GFRP and BFRP beams show reduced energy absorption, suggesting that hybrid systems could better support critical applications like seismic and impact-prone structures by improving ductility and load handling. In addition, BFRP beams predominantly failed due to debonding and concrete crushing, while GFRP beams failed due to bar rupture, reflecting key differences in their flexural failure mechanisms. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Laminates: Structure and Properties)
Show Figures

Figure 1

18 pages, 4910 KiB  
Article
Experiment and Numerical Study on the Flexural Behavior of a 30 m Pre-Tensioned Concrete T-Beam with Polygonal Tendons
by Bo Yang, Chunlei Zhang, Hai Yan, Ding-Hao Yu, Yaohui Xue, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(15), 2595; https://doi.org/10.3390/buildings15152595 - 22 Jul 2025
Viewed by 300
Abstract
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical [...] Read more.
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical simulation research on a 30 m pre-tensioned, prestressed concrete T-beam with polygonal tendons practically used in engineering. The full-scale experiment applied symmetrical four-point bending to create a pure bending region and used embedded strain gauges, surface sensors, and optical 3D motion capture systems to monitor the beam’s internal strain, surface strain distribution, and three-dimensional displacement patterns during loading. The experiment observed that the test beam underwent elastic, crack development, and failure phases. The design’s service-load bending moment induced a deflection of 18.67 mm (below the 47.13 mm limit). Visible cracking initiated under a bending moment of 7916.85 kN·m, which exceeded the theoretical cracking moment of 5928.81 kN·m calculated from the design parameters. Upon yielding of the bottom steel reinforcement, the maximum of the crack width reached 1.00 mm, the deflection in mid-span measured 148.61 mm, and the residual deflection after unloading was 10.68 mm. These results confirmed that the beam satisfied design code requirements for serviceability stiffness and crack control, exhibiting favorable elastic recovery characteristics. Numerical simulations using ABAQUS further verified the structural performance of the T-beam. The finite element model accurately captured the beam’s mechanical response and verified its satisfactory ductility, highlighting the applicability of this beam type in bridge engineering. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

17 pages, 2698 KiB  
Article
Behavior of Demountable and Replaceable Fabricated RC Beam with Bolted Connection Under Mid-Span Compression
by Dongping Wu, Yan Liang, Huachen Liu and Sheng Peng
Buildings 2025, 15(15), 2589; https://doi.org/10.3390/buildings15152589 - 22 Jul 2025
Viewed by 192
Abstract
In order to verify the rationality and feasibility of a demountable and replaceable fabricated RC beam with bolted connection under mid-span compression, one cast-in-place RC beam and four fabricated RC beams were designed and fabricated. Through the mid-span static loading test and analysis [...] Read more.
In order to verify the rationality and feasibility of a demountable and replaceable fabricated RC beam with bolted connection under mid-span compression, one cast-in-place RC beam and four fabricated RC beams were designed and fabricated. Through the mid-span static loading test and analysis of five full-scale RC beams, the effects of high-strength bolt specifications and stiffeners were compared, and the behavior of the fabricated RC beams with bolted connections was analyzed. The test process was observed and the test results were analyzed. The failure mode, cracking load, yield load, ultimate load, stiffness change, deflection measured value, ductility, and other indicators of the specimens were compared and analyzed. It was shown that the failure mode of the fabricated RC beam was reinforcement failure, which met the three stress stages of the normal section bending of the reinforcement beam. The failure position occurred at 10~15 cm of the concrete outside the bolt connection, and the beam support and the core area of the bolt connection were not damaged. The fabricated RC beam has good mechanical performance and high bearing capacity. In addition, comparing the test value with the simulation value, it is found that they are in good agreement, indicating that ABAQUS software of 2024 can be well used for the simulation analysis of the behavior of fabricated RC beam structure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 2224 KiB  
Article
Electromagnetic Noise and Vibration Analyses in PMSMs: Considering Stator Tooth Modulation and Magnetic Force
by Yeon-Su Kim, Hoon-Ki Lee, Jun-Won Yang, Woo-Sung Jung, Yeon-Tae Choi, Jun-Ho Jang, Yong-Joo Kim, Kyung-Hun Shin and Jang-Young Choi
Electronics 2025, 14(14), 2882; https://doi.org/10.3390/electronics14142882 - 18 Jul 2025
Viewed by 271
Abstract
This study presents an analysis of the electromagnetic noise and vibration in a surface-mounted permanent magnet synchronous machine (SPMSM), focusing on their excitation sources. To investigate this, the excitation sources were identified through an analytical approach, and their effects on electromagnetic noise and [...] Read more.
This study presents an analysis of the electromagnetic noise and vibration in a surface-mounted permanent magnet synchronous machine (SPMSM), focusing on their excitation sources. To investigate this, the excitation sources were identified through an analytical approach, and their effects on electromagnetic noise and vibration were evaluated using a finite element method (FEM)-based analysis approach. Additionally, an equivalent curved-beam model based on three-dimensional shell theory was applied to determine the deflection forces on the stator yoke, accounting for the tooth-modulation effect. The stator’s natural frequencies were derived through the characteristic equation in free vibration analysis. Modal analysis was performed to validate the analytically derived natural frequencies and to investigate stator deformation under the tooth-modulation effect across various vibration modes. Furthermore, noise, vibration, and harshness (NVH) analysis via FEM reveals that major harmonic components align closely with the natural frequencies, identifying them as primary sources of elevated vibrations. A comparative study between 8-pole–9-slot and 8-pole–12-slot SPMSMs highlights the impact of force variations on the stator teeth in relation to vibration and noise characteristics, with FEM verification. The proposed method provides a valuable tool for early-stage motor design, enabling the rapid identification of resonance operating points that may induce severe vibrations. This facilitates proactive mitigation strategies to enhance motor performance and reliability. Full article
Show Figures

Figure 1

8 pages, 926 KiB  
Proceeding Paper
Formulation of a Torsion Displacement Equation for the Compatibility with Bending in Rectangular Section Thin-Walled Hollow-Box Beams
by Hugo Miguel Silva
Eng. Proc. 2025, 87(1), 95; https://doi.org/10.3390/engproc2025087095 - 17 Jul 2025
Viewed by 175
Abstract
In this work, a novel analytical equation is developed to accurately predict the mechanical behavior of thin-walled beams. The FEM was used for building the model and obtaining the results. The new equation developed is useful for the calculation of the displacement of [...] Read more.
In this work, a novel analytical equation is developed to accurately predict the mechanical behavior of thin-walled beams. The FEM was used for building the model and obtaining the results. The new equation developed is useful for the calculation of the displacement of a beam simply supported at its ends subjected to torsion loads, applied in opposite side areas of the Finite Element Method (FEM) model. The software Eureqa 1.24.0 was used to find hidden analytical models that were validated thereafter. The aim is to provide a formula that makes possible the comparison of analytic calculations with numerical calculations on bending and torsion combined load. A FEM model of a hollow-box beam with rectangular cross-section loaded with torsion was built and analytical calculations were performed. The analytic calculations were compared with the numeric results in order to know if the results are approximated. The results show good agreement. In the future, other models, such as internally reinforced beams, could also be tested with this methodology. Also, different conditions could be applied to the model studied in this work in order to evaluate the limitations and validity of the developed analytical model. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

20 pages, 5009 KiB  
Article
Combined Behavior of Reinforced Concrete Out-of-Plane Parts Beams Encased with Steel Section
by Hasan M. A. Albegmprli, Doaa T. Hashim and Muthanna A. N. Abbu
Buildings 2025, 15(14), 2473; https://doi.org/10.3390/buildings15142473 - 15 Jul 2025
Viewed by 330
Abstract
This research investigated and compared the structural behavior of reinforced concrete straight beams and beams made with out-of-plane parts. This study focused on the influence of the location and number of out-of-plane parts, as well as encasing the beams with a steel section, [...] Read more.
This research investigated and compared the structural behavior of reinforced concrete straight beams and beams made with out-of-plane parts. This study focused on the influence of the location and number of out-of-plane parts, as well as encasing the beams with a steel section, on the ultimate strength, deflection, and rotation in addition to the ductility, energy absorption, and failure mode. A total of nine beams were modelized numerically, divided into three series. The first one included one straight beam, while the remaining two series included four beams each made with out-of-plane parts with and without steel sections. The beams with out-of-plane parts connected the two, three, four, and five concrete segments. The outcomes revealed that the beams made with out-of-plane parts showed less strength than straight beams, which increased the connected segments and reduced the ultimate strength capacity. The regular beam’s linearity was dissimilar to the zigzag beams, which showed a linearity of 32% and was reduced to 22%, 20%, 19.67%, and 16% for beam out-of-plane parts made with two, three, four, and five segments, respectively. Forming a zigzag in the plane of the beams reduced the cracking load, but the decrement depended on the number of parts, which led to more reduction in the yielding load. Concerning the deflection and deformations, the concrete straight beams failed in flexure, with maximum deflection occurring at the midspan of the beam, which was different for beams without plane parts, which showed a combined shear-torsional failure for which the maximum deformation occurred at the midspan with inclination of connected parts on the interior perpendicular axis. Encasing the beams’ out-of-plane parts with steel sections enhanced the structural behavior. The ductility and energy absorption of the out-of-plane parts beams were less than the straight ones, but encasing the beams with a steel section improved the ductility and energy absorption twice. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 3855 KiB  
Article
Influence of Steel Fiber Content on the Fractal Evolution of Bending Cracks in Alkali-Activated Slag Concrete Beams
by Xiaohui Yuan, Ziyu Cui and Gege Chen
Buildings 2025, 15(14), 2444; https://doi.org/10.3390/buildings15142444 - 11 Jul 2025
Viewed by 195
Abstract
This study systematically investigates the effect of steel fiber content on the fractal evolution characteristics of bending cracks in alkali-activated slag concrete (AASC) beams. A four-point bending test on simply supported beams, combined with digital image correlation (DIC) technology, was employed to quantitatively [...] Read more.
This study systematically investigates the effect of steel fiber content on the fractal evolution characteristics of bending cracks in alkali-activated slag concrete (AASC) beams. A four-point bending test on simply supported beams, combined with digital image correlation (DIC) technology, was employed to quantitatively analyze the fractal dimension of crack propagation paths in AASC beams with steel fiber contents ranging from 0% to 1.4%, using the box-counting method. The relationship between fracture energy and fractal dimension was examined, along with the fractal control mechanisms of mid-span deflection, crack width, and the fractal evolution of fracture toughness parameters. The results revealed that as the steel fiber content increased, the crack fractal dimension decreased from 1.287 to 1.155, while the critical fracture energy of AASC beams increased by approximately 75%. Both mid-span deflection and maximum crack width were positively correlated with the crack fractal dimension, whereas the fractal dimension showed a negative correlation with critical cracking stress and fracture toughness and a positive correlation with the energy release rate. When the steel fiber content exceeded 1.2%, the performance gains began to diminish due to fiber agglomeration effects. Overall, the findings suggest that an optimal steel fiber content range of 1.0% to 1.2% provides the best crack control and mechanical performance, offering a theoretical basis for the design of AASC structures. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 4263 KiB  
Article
Quantitative Fractal Analysis of Fracture Mechanics and Damage Evolution in Recycled Aggregate Concrete Beams: Investigation of Dosage-Dependent Mechanical Response Under Incremental Load
by Xiu-Cheng Zhang and Xue-Fei Chen
Fractal Fract. 2025, 9(7), 454; https://doi.org/10.3390/fractalfract9070454 - 11 Jul 2025
Viewed by 251
Abstract
This study investigated the fracture behavior of concrete beams with recycled coarse aggregate (RCA) and recycled fine aggregate (RFA) using the box-counting method to measure crack fractal dimensions under load. Beams with RCA showed higher fractal dimensions due to RCA’s lower elastic moduli [...] Read more.
This study investigated the fracture behavior of concrete beams with recycled coarse aggregate (RCA) and recycled fine aggregate (RFA) using the box-counting method to measure crack fractal dimensions under load. Beams with RCA showed higher fractal dimensions due to RCA’s lower elastic moduli and compressive strengths, resulting in reduced deformation resistance, ductility, and more late-stage crack propagation. A direct proportional relationship existed between RCA/RFA replacement ratios and crack fractal dimensions. Second-order and third-order polynomial trend surface-fitting techniques were applied to examine the complex relationships among RFA/RCA dosage, applied load, and crack fractal dimension. The results indicated that the RFA dosage had a negative quadratic influence, while load had a positive linear effect, with dosage impact increasing with load. A second-order functional relationship was found between mid-span deflection and crack fractal dimension, reflecting nonlinear behavior consistent with concrete mechanics. This study enhances the understanding of recycled aggregate concrete beam fracture behavior, with the crack fractal dimension serving as a valuable quantitative indicator for damage state and crack complexity assessment. These findings are crucial for engineering design and application, enabling better evaluation of structural performance under various conditions. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

7 pages, 837 KiB  
Communication
Dielectric Catenary Metasurface for Broadband and High-Efficiency Anomalous Reflection
by Xinjian Lu, Wenxin Li, Guiyong Chen, Bo Liu, Xin Xie, Zhongming Zang, Kuo Hai and Zhu Li
Photonics 2025, 12(7), 684; https://doi.org/10.3390/photonics12070684 - 7 Jul 2025
Viewed by 232
Abstract
This paper proposes a broadband and high-efficiency anomalous reflection device based on a dielectric catenary metasurface, addressing the bottleneck problems of low efficiency and narrow bandwidth in traditional discrete metasurfaces. By designing a silicon-based equal-strength catenary structure, the efficient control of circularly polarized [...] Read more.
This paper proposes a broadband and high-efficiency anomalous reflection device based on a dielectric catenary metasurface, addressing the bottleneck problems of low efficiency and narrow bandwidth in traditional discrete metasurfaces. By designing a silicon-based equal-strength catenary structure, the efficient control of circularly polarized light beams within a wide angular range in the infrared band has been achieved. Simulation results show that the designed metasurface exhibits excellent beam steering performance when the deflection angle reaches 65°. Furthermore, to characterize the diffraction efficiency of the metasurface within a large angular range, the results indicate that under oblique incidence (0–60°), the diffraction efficiency of the ±1st order exceeds 80%, and the undesired higher-order diffractions are significantly suppressed. This ultrahigh working efficiency is attributed to the nearly perfect polarization conversion and continuous phase profile of the dielectric catenary structure. By combining catenary optics with the low-loss properties of the dielectric material, this design provides a new solution for the design of efficient, broadband, and wide-angle planar optical devices. Full article
Show Figures

Figure 1

18 pages, 1933 KiB  
Article
LTBWTB: A Mathematica Software to Evaluate the Lateral-Torsional Buckling Load of Web-Tapered Mono-Symmetric I-Section Beams
by Tolga Yılmaz
Appl. Sci. 2025, 15(13), 7572; https://doi.org/10.3390/app15137572 - 6 Jul 2025
Viewed by 293
Abstract
Web-tapered beams with I-sections, which are aesthetic and structurally efficient, have been widely used in steel structures. Web-tapered I-section beams bent about the strong axis may undergo out-of-plane buckling through lateral deflection and twisting. This primary stability failure mode in slender beams is [...] Read more.
Web-tapered beams with I-sections, which are aesthetic and structurally efficient, have been widely used in steel structures. Web-tapered I-section beams bent about the strong axis may undergo out-of-plane buckling through lateral deflection and twisting. This primary stability failure mode in slender beams is known as lateral-torsional buckling (LTB). Unlike prismatic I-beams, the complex mode shape of web-tapered I-section beams makes it challenging or even impossible to derive a closed-form expression for the LTB load under certain transverse loading conditions. Therefore, the LTB assessment of web-tapered I-section beams is primarily performed using finite element analysis (FEA). However, this method involves multiple steps, requires specialized expertise, and demands significant computational resources, making it impractical in certain cases. This study proposes an analytical approach based on the Ritz method to evaluate the LTB of simply supported web-tapered beams with doubly or mono-symmetric I-sections. The proposed analytical method accounts for web tapering, I-section mono-symmetry, types and positions of transverse loads, and beam slenderness. The method was implemented in Mathematica to allow the rapid evaluation of the LTB capacity of web-tapered I-beams. The study validates the LTB loads computed using the developed Mathematica package against results from shell-based FEA. An excellent agreement was observed between the analytically and numerically calculated LTB loads. Full article
Show Figures

Figure 1

21 pages, 3171 KiB  
Review
Self-Mode-Locking and Frequency-Modulated Comb Semiconductor Disk Lasers
by Arash Rahimi-Iman
Photonics 2025, 12(7), 677; https://doi.org/10.3390/photonics12070677 - 5 Jul 2025
Viewed by 507
Abstract
Optically pumped semiconductor disk lasers—known as vertical-external-cavity surface-emitting lasers (VECSELs)—are promising devices for ultrashort pulse formation. For it, a “SESAM-free” approach labeled “self-mode-locking” received considerable attention in the past decade, relying solely on a chip-related nonlinear optical property which can establish adequate pulsing [...] Read more.
Optically pumped semiconductor disk lasers—known as vertical-external-cavity surface-emitting lasers (VECSELs)—are promising devices for ultrashort pulse formation. For it, a “SESAM-free” approach labeled “self-mode-locking” received considerable attention in the past decade, relying solely on a chip-related nonlinear optical property which can establish adequate pulsing conditions—thereby suggesting a reduced reliance on a semiconductor saturable-absorber mirror (the SESAM) in the cavity. Self-mode-locked (SML) VECSELs with sub-ps pulse durations were reported repeatedly. This motivated investigations on a Kerr-lensing type effect acting as an artificial saturable absorber. So-called Z-scan and ultrafast beam-deflection experiments were conducted to emphasize the role of nonlinear lensing in the chip for pulse formation. Recently, in addition to allowing stable ultrashort pulsed operation, self-starting mode-locked operation gave rise to another emission regime related to frequency comb formation. While amplitude-modulated combs relate to signal peaks in time, providing a so-called pulse train, a frequency-modulated comb is understood to cause quasi continuous-wave output with its sweep of instantaneous frequency over the range of phase-locked modes. With gain-bandwidth-enhanced chips, as well as with an improved understanding of the impacts of dispersion and nonlinear lensing properties and cavity configurations on the device output, an enhanced employment of SML VECSELs is to be expected. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

24 pages, 3359 KiB  
Article
Water Basin Effect of Cofferdam Foundation Pit
by Guofeng Li, Qinchao Zuo, Xiaoyan Zhou, Yanbo Hu and Ning Li
Appl. Sci. 2025, 15(13), 7374; https://doi.org/10.3390/app15137374 - 30 Jun 2025
Viewed by 219
Abstract
This study addresses the water basin effect in the underwater sand layer of steel pipe pile cofferdams by integrating the concept from building foundation pits to cofferdam foundation pit analysis. A theoretical derivation is presented for the deformation evolution of steel pipe piles [...] Read more.
This study addresses the water basin effect in the underwater sand layer of steel pipe pile cofferdams by integrating the concept from building foundation pits to cofferdam foundation pit analysis. A theoretical derivation is presented for the deformation evolution of steel pipe piles and bottom seals within the cofferdam pit. The cofferdam construction dewatering process is divided into four stages: riverbed excavation for bottom sealing, dewatering to the second support, dewatering to the third support, and dewatering to final bottom sealing. The steel pipe piles are modeled as single-span or multi-span cantilever continuous beam structures. Using the superposition principle, deformation evolution equations for these statically indeterminate structures across the four stages are derived. The bottom seal is simplified to a single-span end-fixed beam, and its deflection curve equation under uniform load and end-fixed additional load is obtained via the same principle. A case study based on the 6# pier steel pipe pile cofferdam of Xi’an Metro Line 10 Jingwei Bridge rail-road project employs FLAC3D for hydrological–mechanical coupling analysis of the entire dewatering process to validate the water basin effect. Results reveal a unique water basin effect in cofferdam foundation pits. Consistent horizontal deformation patterns of steel pipe piles occur across all working conditions, with maximum horizontal displacement (20.72 mm) observed at 14 m below the pile top during main pier construction completion. Close agreements are found among theoretical, numerical, and monitored deformation results for both steel pipe piles and bottom seals. Proper utilization of the formed water basin effect can effectively enhance cofferdam stability. These findings offer insights for similar engineering applications. Full article
Show Figures

Figure 1

Back to TopTop