Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (211)

Search Parameters:
Keywords = beach profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8897 KiB  
Article
Numerical Study of Wave-Induced Longshore Current Generation Zones on a Circular Sandy Sloping Topography
by Mohammad Shaiful Islam, Tomoaki Nakamura, Yong-Hwan Cho and Norimi Mizutani
Water 2025, 17(15), 2263; https://doi.org/10.3390/w17152263 - 29 Jul 2025
Viewed by 277
Abstract
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes [...] Read more.
Wave deformation and sediment transport nearest the shoreside are among the main reasons for sand erosion and beach profile changes. In particular, identifying the areas of incident-wave breaking and longshore current generation parallel to the shoreline is important for understanding the morphological changes of coastal beaches. In this study, a two-phase incompressible flow model along with a sandy sloping topography was employed to investigate the wave deformation and longshore current generation areas in a circular wave basin model. The finite volume method (FVM) was implemented to discretize the governing equations in cylindrical coordinates, the volume-of-fluid method (VOF) was adopted to differentiate the air–water interfaces in the control cells, and the zonal embedded grid technique was employed for grid generation in the cylindrical computational domain. The water surface elevations and velocity profiles were measured in different wave conditions, and the measurements showed that the maximum water levels per wave were high and varied between cases, as well as between cross-sections in a single case. Additionally, the mean water levels were lower in the adjacent positions of the approximated wave-breaking zones. The wave-breaking positions varied between cross-sections in a single case, with the incident-wave height, mean water level, and wave-breaking position measurements indicating the influence of downstream flow variation in each cross-section on the sloping topography. The cross-shore velocity profiles became relatively stable over time, while the longshore velocity profiles predominantly moved in the alongshore direction, with smaller fluctuations, particularly during the same time period and in measurement positions near the wave-breaking zone. The computed velocity profiles also varied between cross-sections, and for the velocity profiles along the cross-shore and longshore directions nearest the wave-breaking areas where the downstream flow had minimal influence, it was presumed that there was longshore-current generation in the sloping topography nearest the shoreside. The computed results were compared with the experimental results and we observed similar characteristics for wave profiles in the same wave period case in both models. In the future, further investigations can be conducted using the presented circular wave basin model to investigate the oblique wave deformation and longshore current generation in different sloping and wave conditions. Full article
(This article belongs to the Special Issue Numerical Modeling of Hydrodynamics and Sediment Transport)
Show Figures

Figure 1

17 pages, 1978 KiB  
Article
Insights into Persian Gulf Beach Sand Mycobiomes: Promises and Challenges in Fungal Diversity
by Abolfazl Saravani, João Brandão, Bahram Ahmadi, Ali Rezaei-Matehkolaei, Mohammad Taghi Hedayati, Mahdi Abastabar, Hossein Zarrinfar, Mojtaba Nabili, Leila Faeli, Javad Javidnia, Shima Parsay, Zahra Abtahian, Maryam Moazeni and Hamid Badali
J. Fungi 2025, 11(8), 554; https://doi.org/10.3390/jof11080554 - 26 Jul 2025
Viewed by 437
Abstract
Beach Sand Mycobiome is currently among the most important health challenges for viticulture in the world. Remarkably, the study of fungal communities in coastal beach sand and recreational waters remains underexplored despite their potential implications for human health. This research aimed to assess [...] Read more.
Beach Sand Mycobiome is currently among the most important health challenges for viticulture in the world. Remarkably, the study of fungal communities in coastal beach sand and recreational waters remains underexplored despite their potential implications for human health. This research aimed to assess the prevalence of fungal species and the antifungal susceptibility profiles of fungi recovered from the beaches of the Persian Gulf and the Sea of Oman. Sand and seawater samples from 39 stations distributed within 13 beaches along the coastline were collected between May and July 2023. The grown isolates were identified at the species level based on morphological characteristics and DNA sequencing. Antifungal susceptibility testing was performed according to the Clinical Laboratory Standards Institute guidelines. Of 222 recovered isolates, 206 (92.8%) filamentous fungi and 16 (7.2%) yeast strains were identified. Sand-recovered fungi comprised 82.9%, while water-originated fungi accounted for 17.1%. The DNA sequencing technique categorized 191 isolates into 13 genera and 26 species. The most recovered genus was Aspergillus (68.9%), and Aspergillus terreus sensu stricto was the commonly identified species (26.14%). Voriconazole was the most effective antifungal drug against Aspergillus species. Research on fungal contamination levels at these locations could provide a foundation for establishing regulatory frameworks to diminish fungal risks, thereby enhancing public health protection. The ecological significance of fungal communities in sandy beaches to human infections remains to be explored, and earlier reports in the literature may motivate researchers to focus on detecting this mycobiome in natural environments where further investigation is warranted. Ultimately, our discovery serves as a reminder that much remains to be learned about pathogenic fungi and underscores the need for vigilance in areas where emerging pathogens have not yet been identified. Full article
(This article belongs to the Special Issue Fungi Activity on Remediation of Polluted Environments, 2nd Edition)
Show Figures

Figure 1

24 pages, 3783 KiB  
Article
Morphodynamic Interactions Between Sandbar, Beach Profile, and Dune Under Variable Hydrodynamic and Morphological Conditions
by Alirio Sequeira, Carlos Coelho and Márcia Lima
Water 2025, 17(14), 2112; https://doi.org/10.3390/w17142112 - 16 Jul 2025
Viewed by 242
Abstract
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial [...] Read more.
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial nourishment has proven to be an effective method for erosion control. However, its success depends on factors such as the placement location, sediment volume, and frequency of operations. To optimize these interventions, simulations were conducted using both a numerical model (CS-Model) and a physical flume model, based on the same cross-section beach/dune profile, to compare cross-shore nourishment performance across different scenarios. The numerical modeling approach is presented first, including a description of the reference prototype-scale scenario. This is followed by an overview of the physical modeling, detailing the experimental 2D cross-section flume setup and tested scenarios. These scenarios simulate nourishment interventions with variations in beach profile, aiming to assess the influence of water level, berm width, bar volume, and bar geometry. The results from both numerical and physical simulations are presented, focusing on the cross-shore morphological response of the beach profile under wave action, particularly the effects on profile shape, water level, bar volume, and the position and depth of the bar crest. The main conclusion highlights that a wider initial berm leads to greater wave energy dissipation, thereby contributing to the mitigation of dune erosion. Full article
Show Figures

Figure 1

19 pages, 12183 KiB  
Article
A Study on the Sedimentary Environment and Facies Model of Triassic Carbonate Rocks in the Mangeshlak Basin
by Fanyang Meng, Kaixun Zhang, Zhiping He, Miao Miao and Feng Wang
Appl. Sci. 2025, 15(14), 7788; https://doi.org/10.3390/app15147788 - 11 Jul 2025
Viewed by 270
Abstract
Based on drilling, core and seismic data, combined with the regional tectonic sedimentary evolution background, the sedimentary environment of the Triassic carbonate rocks in the Mangeshlak Basin was studied. A sedimentary facies model of this set of carbonate rocks was established. Research has [...] Read more.
Based on drilling, core and seismic data, combined with the regional tectonic sedimentary evolution background, the sedimentary environment of the Triassic carbonate rocks in the Mangeshlak Basin was studied. A sedimentary facies model of this set of carbonate rocks was established. Research has shown that the Mangeshlak Basin underwent a complete large-scale marine transgression–regression sedimentary evolution process during the Triassic. During the early to middle Triassic, seawater gradually invaded the northwest region of the basin from northwest to southeast and gradually regressed in the late Middle Triassic. In the lower part of the Triassic carbonate rocks, the primary components are developed granular limestone or dolomite with oolitic structures, interspersed with a small amount of thin mudstone, which is a good reservoir; the upper part of the Triassic is mainly composed of sedimentary mudstone and mudstone, which can form good sealings. The hill-shaped reflections of the platform edge facies, along with the high-frequency, strong-amplitude, and moderately continuous reflections within the restricted platform interior, are clearly visible on the seismic profile. These features are consistent with the sedimentary environment and lithofacies characteristics revealed by drilling data along the profile. Drilling and seismic data revealed that the sedimentary environment of the early and middle Triassic in the basin is mainly composed of shallow water platform edges and restricted platforms, as well as carbonate rock slopes and open non-marine shelves in deep water areas. A sedimentary facies model of the Triassic carbonate rock segment in the basin was established, comprising restricted platforms, platform edges, carbonate rock slopes, and non-marine shelves. Unlike the modified Wilson marginal carbonate rock platform model, the carbonate rock platform edge in the Mangeshlak Basin does not develop reef facies. Instead, it is mainly composed of oolitic beach (dam) sediments, making it the most favorable sedimentary facies zone for the Triassic reservoir development in the basin. Full article
Show Figures

Figure 1

15 pages, 1134 KiB  
Article
Cross-Shore Microplastic Accumulation on Sri Lanka’s West Coast One Year After the Catastrophic X-Press Pearl Pollution Event
by Paula Masiá Lillo, Susantha Udagedara, Ross Williamson and Daniel Gorman
Microplastics 2025, 4(3), 37; https://doi.org/10.3390/microplastics4030037 - 1 Jul 2025
Viewed by 763
Abstract
Understanding how marine debris accumulates within coastal ecosystems is a crucial aspect of predicting its long-term environmental and biological consequences. The release and subsequent dispersion of 50 billion microplastic pellets from the fire and subsequent sinking of the container ship X-Press Pearl along [...] Read more.
Understanding how marine debris accumulates within coastal ecosystems is a crucial aspect of predicting its long-term environmental and biological consequences. The release and subsequent dispersion of 50 billion microplastic pellets from the fire and subsequent sinking of the container ship X-Press Pearl along the western coast of Sri Lanka in 2021 provides an important case study. Here, we present a three-dimensional assessment of pellet accumulation (number density) along affected beaches and compare this with other common microplastic particles one year following the incident. Surveys confirmed that pellets were still widely present in the surface sediments of ocean beaches, with some locations returning average densities of 588 pellets m2 (very high according to the global Pellet Pollution Index [PPI]). Profiling deeper into beach sediments showed pellets were present to depths of 30 cm; however, most were restricted to the top 10 cm. Our observations of persistent pellet contamination of beaches along Sri Lanka’s west coast emphasize the need for continued monitoring of these types of events to assess the magnitude and persistence of risks to the environment, wildlife, and human well-being. Full article
Show Figures

Figure 1

32 pages, 4453 KiB  
Article
Integration of Earth Observation and Field-Based Monitoring for Morphodynamic Characterisation of Tropical Beach Ecosystems
by James Murphy, Jonathan E. Higham, Andrew J. Plater, Kasey E. Clark and Rachel Collin
Environments 2025, 12(6), 205; https://doi.org/10.3390/environments12060205 - 16 Jun 2025
Viewed by 1217
Abstract
Coastal erosion poses a significant threat to small tropical island regions, where coastal tourism and infrastructure play vital economic roles. However, the processes affecting tropical beaches, particularly in Central America, remain underexplored due to a lack of data on waves and atmospheric conditions. [...] Read more.
Coastal erosion poses a significant threat to small tropical island regions, where coastal tourism and infrastructure play vital economic roles. However, the processes affecting tropical beaches, particularly in Central America, remain underexplored due to a lack of data on waves and atmospheric conditions. We propose a novel approach that utilises low-cost smartphone and satellite imagery to characterise beach ecosystems, where typically expensive and technologically intensive monitoring strategies are impractical and background data are scarce. As a test of its performance under real conditions, we apply this approach to four contrasting beaches in the low-lying islands of the Bocas del Toro Archipelago, Panama. We employ Earth Observation data and field-based monitoring to enhance understanding of beach erosion. Optical flow tracking velocimetry (OFTV) is applied to smartphone camera footage to provide a quantitative metric of wave characteristics during the high wave energy season. These data are combined with satellite-derived shoreline change data and additional field data on beach profiles and grain size. The results reveal distinct patterns of accretion and erosion across the study sites determined by wave climate, beach morphology, and grain size. Accreting beaches are generally characterised by longer wave periods, more consistent wave velocities, and finer, positively skewed sediments indicative of swell-dominated conditions and dissipative beach profiles. Conversely, more erosive sites are associated with shorter wave periods, more variable wave velocities, coarser and better-sorted sediments, and a shorter, steeper beach profile. Seasonal erosion during the high-energy wave season (January–April) and subsequent recovery were observed at most sites. This work demonstrates how foundational data for evidence-based coastal management can be generated in remote locations that lack essential baseline data. Full article
Show Figures

Figure 1

38 pages, 11886 KiB  
Article
The Estimation of Suspended Solids Concentration from an Acoustic Doppler Current Profiler in a Tidally Dominated Continental Shelf Sea Setting and Its Use as a Numerical Modelling Validation Technique
by Shauna Creane, Michael O’Shea, Mark Coughlan and Jimmy Murphy
Water 2025, 17(12), 1788; https://doi.org/10.3390/w17121788 - 14 Jun 2025
Viewed by 410
Abstract
Reliable coastal and offshore sediment transport data is a requirement for many engineering and environmental projects including port and harbour design, dredging and beach nourishment, sea shoreline protection, inland navigation, marine pollution monitoring, benthic habitat mapping, and offshore renewable energy (ORE). Novel sediment [...] Read more.
Reliable coastal and offshore sediment transport data is a requirement for many engineering and environmental projects including port and harbour design, dredging and beach nourishment, sea shoreline protection, inland navigation, marine pollution monitoring, benthic habitat mapping, and offshore renewable energy (ORE). Novel sediment transport numerical modelling approaches allow engineers and scientists to investigate the physical interactions involved in these projects both in the near and far field. However, a lack of confidence in simulated sediment transport results is evident in many coastal and offshore studies, mainly due to limited access to validation datasets. This study addresses the need for cost-effective sediment validation datasets by investigating the applicability of four new suspended load validation techniques to a 2D model of the south-western Irish Sea. This involves integrating an estimated spatial time series of suspended solids concentration (SSCsolids) derived from acoustic Doppler current profiler (ADCP) acoustic backscatter with several in situ water sample-based SSCsolids datasets. Ultimately, a robust spatial time series of ADCP-based SSCsolids was successfully calculated in this offshore, tidally dominated setting, where the correlation coefficient between estimated SSCsolids and directly measured SSCsolids is 0.87. Three out of the four assessed validation techniques are deemed advantageous in developing an accurate 2D suspended sediment transport model given the assumptions of the depth-integrated approach. These recommended techniques include (i) the validation of 2D modelled suspended sediment concentration (SSCsediment) using water sample-based SSCsolids, (ii) the validation of the flood–ebb characteristics of 2D modelled suspended load transport and SSCsediment using ADCP-based datasets, and (iii) the validation of the 2D modelled peak SSCsediment over a spring–neap cycle using the ADCP-based SSCsolids. Overall, the multi-disciplinary method of collecting in situ metocean and sediment dynamic data via acoustic instruments (ADCPs) is a cost-effective in situ data collection method for future ORE developments and other engineering and scientific projects. Full article
Show Figures

Figure 1

19 pages, 3237 KiB  
Article
Therapeutic Potentials of Virtual Blue Spaces: A Study on the Physiological and Psychological Health Benefits of Virtual Waterscapes
by Su-Hsin Lee, Yi-Chien Chu, Li-Wen Wang and Shu-Chen Tsai
Healthcare 2025, 13(11), 1353; https://doi.org/10.3390/healthcare13111353 - 5 Jun 2025
Viewed by 763
Abstract
Background: Physical and mental health issues are increasingly becoming a global focus of attention, and telemedicine is widely attracting academic interest. Objectives: This exploratory study aimed to investigate the therapeutic potential of immersive virtual blue spaces for individuals with distinct lifestyle backgrounds—specifically, office [...] Read more.
Background: Physical and mental health issues are increasingly becoming a global focus of attention, and telemedicine is widely attracting academic interest. Objectives: This exploratory study aimed to investigate the therapeutic potential of immersive virtual blue spaces for individuals with distinct lifestyle backgrounds—specifically, office workers and retirees. The research explores how different virtual waterscapes influence emotional and physiological states in populations with varying stress profiles and life rhythms. Methods: A mixed-methods design was employed, combining quantitative measurements with qualitative interviews. In September 2023, forty participants (20 office workers and 20 retirees) from Hualien, Taiwan, were exposed to 360° VR simulations of three blue environments: a forest stream, a forest waterfall, and a beach scene. Pre- and post-session assessments included physiological indicators (blood pressure and heart rate) and emotional states measured using the Profile of Mood States (POMS) scale. Results: Significant physiological relaxation was observed among retirees. Office workers demonstrated greater emotional improvements, with noticeable variation depending on the type of virtual environment. Comparative analysis highlighted the stream landscape’s unique benefit for reducing depression and enhancing positive mood states. Thematic findings from post-session interviews further indicated that emotional responses were moderated by individual background and prior emotional experiences. Conclusions: These findings underscore the short-term therapeutic potential of virtual blue spaces for diverse user groups and reveal the influence of personal context on their effectiveness. The study supports the integration of VR-based nature exposure into personalized digital healthcare interventions and offers a foundation for future development in immersive therapeutic technologies. Full article
Show Figures

Figure 1

20 pages, 4677 KiB  
Article
Characterizing Post-Storm Beach Recovery Modes: A Field-Based Morphodynamic Study from Dongdao Beach, China
by Lulu Liu, Yan Sun, Run Liu, Daoheng Zhu, Zhaoguang Chen and Zhiqiang Li
J. Mar. Sci. Eng. 2025, 13(6), 1117; https://doi.org/10.3390/jmse13061117 - 3 Jun 2025
Viewed by 444
Abstract
The post-storm beach recovery process exhibits variability. Understanding its mechanisms is crucial for advancing the study of beach morphodynamics. This study involved a 25-day continuous field observation on Dongdao Beach, Hailing Island, Yangjiang City, Guangdong Province, following the passage of Typhoon Cempaka. The [...] Read more.
The post-storm beach recovery process exhibits variability. Understanding its mechanisms is crucial for advancing the study of beach morphodynamics. This study involved a 25-day continuous field observation on Dongdao Beach, Hailing Island, Yangjiang City, Guangdong Province, following the passage of Typhoon Cempaka. The evolution of beach morphology and the spatiotemporal variations in erosion and accretion were analyzed to explore the key influencing factors, response mechanisms, and recovery modes during the short-term recovery process. The post-storm evolution of beach profile structures is predominantly influenced by major geomorphic units such as berms and sandbars, whereas localized responses are characterized by adjustments of fine-scale features like micro-troughs. The width of the supratidal zone and the position of the berm crest continuously fluctuate, while the slope of the intertidal zone increases or decreases as the berm crest migrates landward or seaward. The erosion–accretion process was complex and occurred in distinct stages, with marked spatial heterogeneity. In some areas, the beach experienced multiple short-term cycles of alternating erosion and accretion. Beach slope plays a significant role in short-term recovery. Three types of response relationships between beach unit-width volume and changes in slope were observed, with flatter beaches being more sensitive to changes in unit-width volume. Based on this, four recovery modes in the post-storm short-term recovery process were explored from the perspective of beach slope. This study provides theoretical support for managing beaches after storms and recommends the implementation of zoned and phased management strategies based on different recovery modes to enhance the efficiency and resilience of coastal recovery. Full article
Show Figures

Figure 1

21 pages, 6159 KiB  
Article
Coastal Flooding Hazards in Northern Portugal: A Practical Large-Scale Evaluation of Total Water Levels and Swash Regimes
by Jose Eduardo Carneiro-Barros, Ajab Gul Majidi, Theocharis Plomaritis, Tiago Fazeres-Ferradosa, Paulo Rosa-Santos and Francisco Taveira-Pinto
Water 2025, 17(10), 1478; https://doi.org/10.3390/w17101478 - 14 May 2025
Viewed by 747
Abstract
The northern Portuguese coast has been increasingly subjected to wave-induced coastal flooding, highlighting a critical need for comprehensive overwash assessment in the region. This study systematically evaluates the total water levels (TWLs) and swash regimes over a 120 km stretch of the northern [...] Read more.
The northern Portuguese coast has been increasingly subjected to wave-induced coastal flooding, highlighting a critical need for comprehensive overwash assessment in the region. This study systematically evaluates the total water levels (TWLs) and swash regimes over a 120 km stretch of the northern coast of Portugal. Traditional approaches to overwash assessment often rely on detailed models and location-specific data, which can be resource-intensive. The presented methodology addresses these limitations by offering a pragmatic balance between accuracy and practicality, suitable for extended coastal areas with reduced human and computational resources. A coastal digital terrain model was used to extract essential geomorphological features, including the dune toe, dune crest, and/or crown of defense structures, as well as the sub-aerial beach profile. These features help establish a critical threshold for flooding, alongside assessments of beach slope and other relevant parameters. Additionally, a wave climate derived from a SWAN regional model was integrated, providing a comprehensive time-series hindcast of sea-states from 1979 to 2023. The wave contribution to TWL was considered by using the wave runup, which was calculated using different empirical formulas based on SWAN’s outputs. Astronomical tides and meteorological surge—the latter reconstructed using a long short-term memory (LSTM) neural network—were also integrated to form the TWL. This integration of geomorphological and oceanographic data allows for a straightforward evaluation of swash regimes and consequently overwash potential. The accuracy of various empirical predictors for wave runup, a primary hydrodynamic factor in overwash processes, was assessed. Several reports from hazardous events along this stretch were used as validation for this method. This study further delineates levels of flooding hazard—ranging from swash and collision to overwash at multiple representative profiles along the coast. This regional-scale assessment contributes to a deeper understanding of coastal flooding dynamics and supports the development of targeted, effective coastal management strategies for the northern Portuguese coast. Full article
(This article belongs to the Special Issue Urban Flood Frequency Analysis and Risk Assessment)
Show Figures

Figure 1

17 pages, 5280 KiB  
Article
The Optimization of Four Key Parameters in the XBeach Model by GLUE Method: Taking Chudao South Beach as an Example
by Yunyun Gai, Longsheng Li, Zikang Li and Hongyuan Shi
J. Mar. Sci. Eng. 2025, 13(3), 555; https://doi.org/10.3390/jmse13030555 - 13 Mar 2025
Viewed by 833
Abstract
When the XBeach model is used to simulate beach profiles, the selection of four sensitive parameters—facua, gammax, eps, and gamma—is crucial. Among these, the two key parameters, facua and gamma, are particularly sensitive. However, the XBeach model does not specify the exact choice [...] Read more.
When the XBeach model is used to simulate beach profiles, the selection of four sensitive parameters—facua, gammax, eps, and gamma—is crucial. Among these, the two key parameters, facua and gamma, are particularly sensitive. However, the XBeach model does not specify the exact choice of these four key parameters, offering only a broad range for each one. In this paper, we investigate the applicability of tuning these four parameters within the XBeach model. We employ Generalized Likelihood Uncertainty Estimation (GLUE) to optimize the model settings. The Brier Skill Score (BSS) for each parameter combination is calculated to quantify the likelihood probability distribution of each parameter. The optimal parameter set (facua = 0.20, gamma = 0.50) was ultimately determined. Here, the facua parameter represents the degree of influence of wave skewness and asymmetry on the direction of sediment transport, while the gamma parameter represents the equivalent random wave in the wave dissipation model and is used to calculate the probability of wave breaking. Six profiles of the southern beach on Chudao Island are selected to validate the results, establishing the XBeach model based on profile measurement data before and after Typhoon “Lekima”. The results indicate that after parameter optimization, the simulation accuracy of XBeach is significantly improved, with the BSS increasing from 0.3 and 0.17 to 0.68 and 0.79 in P1 and P6 profiles, respectively. This paper provides a recommended range for parameter values for future research. Full article
(This article belongs to the Special Issue Advances in Storm Tide and Wave Simulations and Assessment)
Show Figures

Figure 1

19 pages, 4389 KiB  
Article
Beach Erosion Characteristics Induced by Human Activities—A Case Study in Haiyang, Yellow Sea
by Changle Zhang, Yongzhi Wang, Jun Du, Ziwen Tian and Yi Zhong
Remote Sens. 2025, 17(5), 736; https://doi.org/10.3390/rs17050736 - 20 Feb 2025
Viewed by 894
Abstract
Coastal zones, which serve as transitional areas between land and sea, possess unique ecological values. Sandy coasts, celebrated for their distinctive natural beauty and ideal recreational settings, have garnered significant attention. However, uncontrolled human activities can exacerbate erosion or even trigger more severe [...] Read more.
Coastal zones, which serve as transitional areas between land and sea, possess unique ecological values. Sandy coasts, celebrated for their distinctive natural beauty and ideal recreational settings, have garnered significant attention. However, uncontrolled human activities can exacerbate erosion or even trigger more severe erosion along these coasts. This study utilizes unmanned aerial photography and typical beach profile survey data collected from the main areas of Wanmi Beach over the past eight years to quantify annual changes in beach erosion and elucidate the erosion characteristics and their variations across different shore profiles. Additionally, the impact of various types of human activities in different regions is analyzed, revealing the erosion patterns prevalent in the main areas of Wanmi Beach. The findings indicate that the eastern research area (ERA) has been in a continuous state of erosion, primarily due to a reduction in sediment supply in the region, with severe erosion observed on the foreshore of Fengxiang Beach and Wanmi Bathing Beach (WBB). In contrast, the central research area (CRA), particularly around Yangjiao Bay, has experienced significant siltation in recent years, with the highest siltation volume recorded between 2021 and 2023, totaling 90,352.91 m3. Nevertheless, the foreshore areas at both ends of the research area, distant from Yangjiao Bay, have been subject to erosion. The western research area (WRA) is notably impacted by surrounding aquaculture activities, leading to alternating periods of erosion and siltation on the beach surface. Consequently, due to the influence of human activities on different shore profiles, most of Wanmi Beach, except for the area near Yangjiao Bay, is experiencing erosion. Full article
Show Figures

Figure 1

22 pages, 15316 KiB  
Article
Application of Unmanned Aerial Vehicle 3D Reconstruction for Quantitative Measurements of the Tailing Pond Dry Beach
by Yani Li, Guangyin Lu, Bei Cao, Xudong Zhu and Zicheng Yang
Appl. Sci. 2025, 15(4), 2014; https://doi.org/10.3390/app15042014 - 14 Feb 2025
Viewed by 631
Abstract
Dry beach parameters are important indicators for measuring the safe operation of tailings ponds. The Unmanned Aerial Vehicle (UAV) is widely used in construction, disaster monitoring, and agriculture. In this paper, a new semi-automatic method is proposed that measures the length and slope [...] Read more.
Dry beach parameters are important indicators for measuring the safe operation of tailings ponds. The Unmanned Aerial Vehicle (UAV) is widely used in construction, disaster monitoring, and agriculture. In this paper, a new semi-automatic method is proposed that measures the length and slope of the dry beach in a tailings pond using the point cloud obtained through the 3D reconstruction of UAVs. The programs of dry beach boundary identification, point cloud profile denoising, dry beach length, and slope measurement were established. The proposed method was applied to a case study to monitor the length and slope of a tailings pond dry beach. The results show that the maximum error of the dry beach length measurement is 2.25%, and the error of the slope measurement is 2.67%. The error is within a reasonable range, which can be accepted in practical applications, demonstrating the reliability and accuracy of the proposed method. Compared with traditional methods and image-based dry-beach-monitoring methods, the point cloud model provides comprehensive coverage of the entire dry beach. It enables the measurement of the length and slope of the dry beach at any point while offering an intuitive representation of its surface morphology and topographic features. Full article
Show Figures

Figure 1

17 pages, 2605 KiB  
Article
Microplastic Deposit Predictions on Sandy Beaches by Geotechnologies and Machine Learning Models
by Anderson Targino da Silva Ferreira, Regina Célia de Oliveira, Maria Carolina Hernandez Ribeiro, Pedro Silva de Freitas Sousa, Lucas de Paula Miranda, Saulo de Oliveira Folharini and Eduardo Siegle
Coasts 2025, 5(1), 4; https://doi.org/10.3390/coasts5010004 - 30 Jan 2025
Cited by 1 | Viewed by 1507
Abstract
Microplastics (MPs) are polymeric particles, mainly fossil-based, widely found in marine ecosystems, linked to environmental and public health impacts due to their persistence and ability to carry pollutants. In São Paulo’s northern coast, geomorphological factors and anthropogenic activities intensify the deposition of these [...] Read more.
Microplastics (MPs) are polymeric particles, mainly fossil-based, widely found in marine ecosystems, linked to environmental and public health impacts due to their persistence and ability to carry pollutants. In São Paulo’s northern coast, geomorphological factors and anthropogenic activities intensify the deposition of these pollutants. Through multivariate techniques, this study aims to investigate the role of the morphometrical parameters as independent variables in quantifying the distribution of MPs on the region’s sandy beaches. Using beach face slope (tanβ) and orientation (Aspect) derived from remote sensing images, calibrated by in situ topographic profiles collected through GNSS positioning, and laboratory analyses, six machine learning models Random Forest, Gradient Boosting, Lasso and Ridge regression, Support Vector Regression, and Partial Least Squares regression were tested and evaluated for performance. The Gradient Boosting model demonstrated the best performance, indicating its superior capacity to capture complex relationships between predictor variables and MPs deposition, followed by Random Forest model. Morphometric analysis revealed, once again, that in this coastal section of São Paulo, beaches with Sloping profiles oriented toward the SSW are more susceptible to MPs accumulation, especially near urban centers. Ultimately, incorporating geomorphological variables into predictive models enhances understanding of MPs deposition, providing a foundation for environmental policies focused on marine pollution mitigation and coastal ecosystem conservation while also contributing to achieve SDG 14. Full article
Show Figures

Figure 1

17 pages, 6640 KiB  
Article
Analysis of Tidal Cycle Wave Breaking Distribution Characteristics on a Low-Tide Terrace Beach Using Video Imagery Segmentation
by Hang Yin, Feng Cai, Hongshuai Qi, Yuwu Jiang, Gen Liu, Zhubin Cao, Yi Sun and Zheyu Xiao
Remote Sens. 2024, 16(24), 4616; https://doi.org/10.3390/rs16244616 - 10 Dec 2024
Cited by 1 | Viewed by 1327
Abstract
Wave breaking is a fundamental process in ocean energy dissipation and plays a crucial role in the exchange between ocean and nearshore sediments. Foam, the primary visible feature of wave breaking areas, serves as a direct indicator of wave breaking processes. Monitoring the [...] Read more.
Wave breaking is a fundamental process in ocean energy dissipation and plays a crucial role in the exchange between ocean and nearshore sediments. Foam, the primary visible feature of wave breaking areas, serves as a direct indicator of wave breaking processes. Monitoring the distribution of foam via remote sensing can reveal the spatiotemporal patterns of nearshore wave breaking. Existing studies on wave breaking processes primarily focus on individual wave events or short timescales, limiting their effectiveness for nearshore regions where hydrodynamic processes are often represented at tidal cycles. In this study, video imagery from a typical low-tide terrace (LTT) beach was segmented into four categories, including the wave breaking foam, using the DeepLabv3+ architecture, a convolutional neural networks (CNNs)-based model suitable for semantic segmentation in complex visual scenes. After training and testing on a manually labelled dataset, which was divided into training, validation, and testing sets based on different time periods, the overall classification accuracy of the model was 96.4%, with an accuracy of 96.2% for detecting wave breaking foam. Subsequently, a heatmap of the wave breaking foam distribution over a tidal cycle on the LTT beach was generated. During the tidal cycle, the foam distribution density exhibited both alongshore variability, and a pronounced bimodal structure in the cross-shore direction. Analysis of morphodynamical data collected in the field indicated that the bimodal structure is primarily driven by tidal variations. The wave breaking process is a key factor in shaping the profile morphology of LTT beaches. High-frequency video monitoring further showed the wave breaking patterns vary significantly with tidal levels, leading to diverse geomorphological features at various cross-shore locations. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

Back to TopTop