Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,749)

Search Parameters:
Keywords = battery temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2219 KiB  
Article
Assessing Lithium-Ion Battery Safety Under Extreme Transport Conditions: A Comparative Study of Measured and Standardised Parameters
by Yihan Pan, Xingliang Liu, Jinzhong Wu, Haocheng Zhou and Lina Zhu
Energies 2025, 18(15), 4144; https://doi.org/10.3390/en18154144 - 5 Aug 2025
Abstract
The safety of lithium-ion batteries during transportation is critically important. However, current standards exhibit limitations, as their environmental testing parameter thresholds fail to fully encompass actual transportation conditions. To enhance both safety and standard applicability, in this study, we focused on four representative [...] Read more.
The safety of lithium-ion batteries during transportation is critically important. However, current standards exhibit limitations, as their environmental testing parameter thresholds fail to fully encompass actual transportation conditions. To enhance both safety and standard applicability, in this study, we focused on four representative environmental conditions: temperature, vibration, shock, and low atmospheric pressure. Field measurements were conducted across road, rail, and air transport modes using a self-developed data acquisition system based on the NearLink communication technology. The measured data were then compared with the threshold values defined in current international and national standards. The results reveal that certain measured values exceeded the upper limits prescribed by existing standards, indicating limitations in their applicability under extreme transport conditions. Based on these findings, we propose revised testing parameters that better reflect actual transport risks, including a temperature cycling range of 72 ± 2 °C (high) and −40 ± 2 °C (low), a shock acceleration limit of 50 gn, adjusted peak frequencies in the vibration PSD profile, and a minimum pressure threshold of 11.6 kPa. These results provide a scientific basis for optimising safety standards and improving the safety of lithium-ion battery transportation. Full article
Show Figures

Figure 1

13 pages, 4335 KiB  
Article
Mg-Doped O3-Na[Ni0.6Fe0.25Mn0.15]O2 Cathode for Long-Cycle-Life Na-Ion Batteries
by Zebin Song, Hao Zhou, Yin Zhang, Haining Ji, Liping Wang, Xiaobin Niu and Jian Gao
Inorganics 2025, 13(8), 261; https://doi.org/10.3390/inorganics13080261 - 4 Aug 2025
Abstract
The O3-type layered oxide materials have the advantage of high specific capacity, which makes them more competitive in the practical application of cathode materials for sodium-ion batteries (SIBs). However, the existing reported O3-type layered oxide materials still have a complex irreversible phase transition [...] Read more.
The O3-type layered oxide materials have the advantage of high specific capacity, which makes them more competitive in the practical application of cathode materials for sodium-ion batteries (SIBs). However, the existing reported O3-type layered oxide materials still have a complex irreversible phase transition phenomenon, and the cycle life of batteries needs, with these materials, to be further improved to meet the requirements. Herein, we performed structural characterization and electrochemical performance tests on O3-NaNi0.6−xFe0.25Mn0.15MgxO2 (x = 0, 0.025, 0.05, and 0.075, denoted as NFM, NFM-2.5Mg, NFM-5.0Mg, and NFM-7.5Mg). The optimized NFM-2.5Mg has the largest sodium layer spacing, which can effectively enhance the transmission rate of sodium ions. Therefore, the reversible specific capacity can reach approximately 148.1 mAh g−1 at 0.2C, and it can even achieve a capacity retention of 85.4% after 100 cycles at 1C, demonstrating excellent cycle stability. Moreover, at a low temperature of 0 °C, it also can keep capacity retention of 86.6% after 150 cycles at 1C. This study provides a view on the cycling performance improvement of sodium-ion layered oxide cathodes with a high theoretical specific capacity. Full article
Show Figures

Graphical abstract

50 pages, 9033 KiB  
Article
Heat Pipe Integrated Cooling System of 4680 Lithium–Ion Battery for Electric Vehicles
by Yong-Jun Lee, Tae-Gue Park, Chan-Ho Park, Su-Jong Kim, Ji-Su Lee and Seok-Ho Rhi
Energies 2025, 18(15), 4132; https://doi.org/10.3390/en18154132 - 4 Aug 2025
Abstract
This study investigates a novel heat pipe integrated cooling system designed for thermal management of Tesla’s 4680 cylindrical lithium–ion batteries in electric vehicles (EVs). Through a comprehensive approach combining experimental analysis, 1-D AMESim simulations, and 3-D Computational Fluid Dynamics (CFD) modeling, the thermal [...] Read more.
This study investigates a novel heat pipe integrated cooling system designed for thermal management of Tesla’s 4680 cylindrical lithium–ion batteries in electric vehicles (EVs). Through a comprehensive approach combining experimental analysis, 1-D AMESim simulations, and 3-D Computational Fluid Dynamics (CFD) modeling, the thermal performance of various wick structures and working fluid filling ratios was evaluated. The experimental setup utilized a triangular prism chamber housing three surrogate heater blocks to replicate the heat generation of 4680 cells under 1C, 2C, and 3C discharge rates. Results demonstrated that a blended fabric wick with a crown-shaped design (Wick 5) at a 30–40% filling ratio achieved the lowest maximum temperature (Tmax of 47.0°C), minimal surface temperature deviation (ΔTsurface of 2.8°C), and optimal thermal resistance (Rth of 0.27°C/W) under 85 W heat input. CFD simulations validated experimental findings, confirming stable evaporation–condensation circulation at a 40% filling ratio, while identifying thermal limits at high heat loads (155 W). The proposed hybrid battery thermal management system (BTMS) offers significant potential for enhancing the performance and safety of high-energy density EV batteries. This research provides a foundation for optimizing thermal management in next-generation electric vehicles. Full article
(This article belongs to the Special Issue Optimized Energy Management Technology for Electric Vehicle)
Show Figures

Graphical abstract

21 pages, 3744 KiB  
Article
A First-Principles Modeling of the Elastic Properties and Generalized Stacking Fault Energy of Ir-W Solid Solution Alloys
by Pengwei Shi, Jianbo Ma, Fenggang Bian and Guolu Li
Materials 2025, 18(15), 3629; https://doi.org/10.3390/ma18153629 - 1 Aug 2025
Viewed by 242
Abstract
Iridium, with its excellent high-temperature chemical inertness, is a preferred cladding material for radioisotope batteries. However, its inherent room-temperature brittleness severely restricts its application. In this research, pure Ir and six Ir-W solid solutions (Ir31W1 to Ir26W6 [...] Read more.
Iridium, with its excellent high-temperature chemical inertness, is a preferred cladding material for radioisotope batteries. However, its inherent room-temperature brittleness severely restricts its application. In this research, pure Ir and six Ir-W solid solutions (Ir31W1 to Ir26W6) were modeled. The effects of W on the elastic properties, generalized stacking fault energy, and bonding properties of Ir solid solution alloys were investigated by first-principles simulation, aiming to find a way to overcome the intrinsic brittleness of Ir. With the W concentration increasing from 0 to 18.75 at %, the calculated Cauchy pressure (C12C44) increases from −22 to 5 GPa, Pugh’s ratio (B/G) increases from 1.60 to 1.72, the intrinsic stacking fault energy reduces from 337.80 to 21.16 mJ/m2, and the unstable stacking fault energy reduces from 636.90 to 547.39 mJ/m2. According to these results, it is predicted that the addition of W improves the toughness of iridium alloys. The alloying of W weakens the covalency properties of the Ir-Ir bond (the ICOHP value increases from −0.8512 to −0.7923 eV). These phenomena result in a decrease in the energy barrier for grain slip. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

32 pages, 1970 KiB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 - 1 Aug 2025
Viewed by 143
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

30 pages, 2537 KiB  
Review
The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges
by Kang Tang, Bingbing Luo, Dian Chen, Chengshuo Wang, Long Chen, Feiliang Li, Yuan Cao and Chunsheng Wang
World Electr. Veh. J. 2025, 16(8), 429; https://doi.org/10.3390/wevj16080429 - 1 Aug 2025
Viewed by 215
Abstract
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus [...] Read more.
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus on HIs related to capacity degradation and internal resistance increase. However, due to the complexity of lithium-ion battery degradation mechanisms, the relationships between these mechanisms and health indicators remain insufficiently explored. This paper provides a comprehensive review of core methodologies for SOH estimation, with a particular emphasis on the classification and extraction of health indicators, direct measurement techniques, model-based and data-driven SOH estimation approaches, and emerging trends in battery management system applications. The findings indicate that capacity, internal resistance, and temperature-related indicators significantly impact SOH estimation accuracy, while machine learning models demonstrate advantages in multi-source data fusion. Future research should further explore composite health indicators and aging mechanisms of novel battery materials, and improve the interpretability of predictive models. This study offers theoretical support for the intelligent management and lifespan optimization of lithium-ion batteries. Full article
Show Figures

Figure 1

29 pages, 5343 KiB  
Article
Optimizing Electric Bus Efficiency: Evaluating Seasonal Performance in a Southern USA Transit System
by MD Rezwan Hossain, Arjun Babuji, Md. Hasibul Hasan, Haofei Yu, Amr Oloufa and Hatem Abou-Senna
Future Transp. 2025, 5(3), 92; https://doi.org/10.3390/futuretransp5030092 (registering DOI) - 1 Aug 2025
Viewed by 107
Abstract
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced [...] Read more.
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced battery performance, this study presents a contrasting perspective based on a three-year longitudinal analysis of the LYMMO fleet in Orlando, Florida—a subtropical U.S. region. The findings reveal that summer is the most energy-intensive season, primarily due to sustained HVAC usage driven by high ambient temperatures—a seasonal pattern rarely reported in the current literature and a key regional contribution. Additionally, idling time exceeds driving time across all seasons, with HVAC usage during idling emerging as the dominant contributor to total energy consumption. To mitigate these inefficiencies, a proxy-based HVAC energy estimation method and an optimization model were developed, incorporating ambient temperature and peak passenger load. This approach achieved up to 24% energy savings without compromising thermal comfort. Results validated through non-parametric statistical testing support operational strategies such as idling reduction, HVAC control, and seasonally adaptive scheduling, offering practical pathways to improve EB efficiency in warm-weather transit systems. Full article
Show Figures

Figure 1

18 pages, 4344 KiB  
Article
Lithium Lanthanum Titanate (LLTO) Solid Electrolyte with High Ionic Conductivity and Excellent Mechanical Properties Prepared by Aerodynamic Levitation Rapid Solidification
by Yidong Hu, Fan Yang, Jianguo Li and Qiaodan Hu
Crystals 2025, 15(8), 707; https://doi.org/10.3390/cryst15080707 - 31 Jul 2025
Viewed by 163
Abstract
Lithium lanthanum titanate (LLTO) is a promising solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs), and its total conductivity is dramatically influenced by the ceramic microstructure. Here we report a novel aerodynamic levitation rapid solidification method to prepare dense LLTO ceramics with a dendrite-like [...] Read more.
Lithium lanthanum titanate (LLTO) is a promising solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs), and its total conductivity is dramatically influenced by the ceramic microstructure. Here we report a novel aerodynamic levitation rapid solidification method to prepare dense LLTO ceramics with a dendrite-like microstructure, which can be hardly obtained by conventional sintering. At optimal nominal lithium content and cooling rate, the solidified LLTO ceramic achieved a high total conductivity of 2.5 × 10−4 S·cm−1 at room temperature, along with excellent mechanical properties such as a high Young’s modulus of 240 GPa and a high hardness of 16.7 GPa. Results from this work suggest that aerodynamic levitation rapid solidification is an effective processing method to manipulate the microstructure of LLTO ceramics to minimize the GBs’ contribution to the total conductivity, which may be expanded to prepare other oxide-type lithium electrolytes. Full article
Show Figures

Figure 1

32 pages, 10052 KiB  
Article
A Study on Large Electric Vehicle Fires in a Tunnel: Use of a Fire Dynamics Simulator (FDS)
by Roberto Dessì, Daniel Fruhwirt and Davide Papurello
Processes 2025, 13(8), 2435; https://doi.org/10.3390/pr13082435 - 31 Jul 2025
Viewed by 311
Abstract
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use [...] Read more.
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use of batteries with no direct and local emissions. However, accidents of battery electric vehicles pose new challenges, such as thermal runaway. Such accidents can be serious and, in some cases, may result in uncontrolled overheating that causes the battery pack to spontaneously ignite. In particular, the most dangerous vehicles are heavy goods vehicles (HGVs), as they release a large amount of energy that generate high temperatures, poor visibility, and respiratory damage. This study aims to determine the potential consequences of large BEV fires in road tunnels using computational fluid dynamics (CFD). Furthermore, a comparison between a BEV and an ICEV fire shows the differences related to the thermal and the toxic impact. Furthermore, the adoption of a longitudinal ventilation system in the tunnel helped to mitigate the BEV fire risk, keeping a safer environment for tunnel users and rescue services through adequate smoke control. Full article
Show Figures

Figure 1

12 pages, 1828 KiB  
Article
Preparation of Comb-Shaped Polyether with PDMS and PEG Side Chains and Its Application in Polymer Electrolytes
by Tomoya Enoki, Ryuta Kosono, Nurul Amira Shazwani Zainuddin, Takahiro Uno and Masataka Kubo
Molecules 2025, 30(15), 3201; https://doi.org/10.3390/molecules30153201 - 30 Jul 2025
Viewed by 252
Abstract
Polyethylene oxide (PEO) is the most well-studied polymer used in solid polymer electrolytes (SPEs) for lithium ion batteries (Li-ion batteries). However, ionic conductivity is greatly reduced in the low temperature range due to the crystallization of PEO. Therefore, methods to suppress the crystallization [...] Read more.
Polyethylene oxide (PEO) is the most well-studied polymer used in solid polymer electrolytes (SPEs) for lithium ion batteries (Li-ion batteries). However, ionic conductivity is greatly reduced in the low temperature range due to the crystallization of PEO. Therefore, methods to suppress the crystallization of PEO at room temperature by cross-linking or introducing a branched structure are currently being investigated. In this study, we synthesized new comb-type ion-conducting polyethers with two different side chains such as polydimethylsiloxane (PDMS) and polyethylene glycol monomethyl ether (mPEG) segments as flexible and ion-conducting segments, respectively. The introduction of the PDMS segment was found to prevent a decrease in ionic conductivity in the low-temperature region, but led to an ionic conductivity decrease in the high temperature region. On the other hand, the introduction of mPEG segments improved ionic conductivity in the high-temperature region. The introduction of mPEG segments with longer chains resulted in a significant decrease in ionic conductivity in the low-temperature region. Full article
(This article belongs to the Special Issue Materials for Emerging Electrochemical Devices—2nd Edition)
Show Figures

Figure 1

24 pages, 3325 KiB  
Article
Multi-Energy Flow Optimal Dispatch of a Building Integrated Energy System Based on Thermal Comfort and Network Flexibility
by Jian Sun, Bingrui Sun, Xiaolong Cai, Dingqun Liu and Yongping Yang
Energies 2025, 18(15), 4051; https://doi.org/10.3390/en18154051 - 30 Jul 2025
Viewed by 227
Abstract
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve [...] Read more.
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve dispatch optimization, an integrated building energy system incorporating waste heat recovery via an absorption heat pump based on the flow temperature model is adopted. A comprehensive analysis was conducted to investigate the correlation among heat pump operational strategies, thermal comfort, and the dynamic thermal storage capacity of piping network systems. The optimization calculations and comparative analyses were conducted across five cases on typical season days via the CPLEX solver with MATLAB R2018a. The simulation results indicate that the operational modes of absorption heat pump reduced the costs by 4.4–8.5%, while the absorption rate of waste heat increased from 37.02% to 51.46%. Additionally, the utilization ratio of battery and thermal storage units decreased by up to 69.82% at most after considering the pipeline thermal inertia and thermal comfort, thus increasing the system’s energy-saving ability and reducing the pressure of energy storage equipment, ultimately increasing the scheduling flexibility of the integrated building energy system. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Figure 1

38 pages, 21337 KiB  
Article
Full-Scale Experimental Analysis of the Behavior of Electric Vehicle Fires and the Effectiveness of Extinguishing Methods
by Ana Olona and Luis Castejon
Fire 2025, 8(8), 301; https://doi.org/10.3390/fire8080301 - 29 Jul 2025
Viewed by 345
Abstract
The emergence of electric vehicles (EVs) has brought specific risks, including the possibility of fires or explosions resulting from mechanical, thermal, or electrical failures, which can lead to thermal runaway (TR). There is a great lack of knowledge about how to act safely [...] Read more.
The emergence of electric vehicles (EVs) has brought specific risks, including the possibility of fires or explosions resulting from mechanical, thermal, or electrical failures, which can lead to thermal runaway (TR). There is a great lack of knowledge about how to act safely in this type of fire. This study carried out two full-scale fire experiments on electric vehicles to investigate response strategies to electric vehicle fires caused by thermal runaway. Centro Zaragoza provided technical advice for these tests, so that they could be carried out safely, controlling the risks. This advice has allowed Centro Zaragoza to analyze different response strategies to the fires in electric vehicles caused by thermal runaway. On the other hand, the propagation patterns of thermal runaway fires in electric vehicles were investigated. The early-phase effectiveness of fire blankets and other extinguishing measures was tested, and the temperature distributions inside the vehicle and the type of fire generated were measured. The results showed that fire blankets successfully extinguished flames by cutting off the oxygen supply. These findings contribute to the development of effective strategies for responding to electric vehicle fires, enabling the establishment of good practice for fire suppression in electric vehicles and their batteries. Full article
Show Figures

Figure 1

20 pages, 3170 KiB  
Article
Sensorless SPMSM Control for Heavy Handling Machines Electrification: An Innovative Proposal
by Marco Bassani, Andrea Toscani and Carlo Concari
Energies 2025, 18(15), 4021; https://doi.org/10.3390/en18154021 - 28 Jul 2025
Viewed by 270
Abstract
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting [...] Read more.
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting fan drives in heavy machinery, like bulldozers and tractors, utilizing existing 48 VDC batteries. By replacing or complementing internal combustion and hydraulic technologies with electric solutions, significant advantages in efficiency, reduced environmental impact, and versatility can be achieved. Focusing on the fan drive system addresses the critical challenge of thermal management in high ambient temperatures and harsh environments, particularly given the high current requirements for 3kW-class applications. A sensorless architecture has been selected to enhance reliability by eliminating mechanical position sensors. The developed fan drive has been extensively tested both on a braking bench and in real-world applications, demonstrating its effectiveness and robustness. Future work will extend this prototype to electrify additional onboard hydraulic motors in these machines, further advancing the electrification of heavy-duty equipment and improving overall efficiency and environmental impact. Full article
(This article belongs to the Special Issue Electronics for Energy Conversion and Renewables)
Show Figures

Figure 1

17 pages, 706 KiB  
Article
Empirical Energy Consumption Estimation and Battery Operation Analysis from Long-Term Monitoring of an Urban Electric Bus Fleet
by Tom Klaproth, Erik Berendes, Thomas Lehmann, Richard Kratzing and Martin Ufert
World Electr. Veh. J. 2025, 16(8), 419; https://doi.org/10.3390/wevj16080419 - 25 Jul 2025
Viewed by 351
Abstract
Electric buses are key in the strategy towards a greenhouse-gas-neutral fleet. However, their restrictions in terms of range and refueling as well as their increased price point present new challenges for public transport companies. This study aims to address, based on real-world operational [...] Read more.
Electric buses are key in the strategy towards a greenhouse-gas-neutral fleet. However, their restrictions in terms of range and refueling as well as their increased price point present new challenges for public transport companies. This study aims to address, based on real-world operational data, how energy consumption and charging behavior affect battery aging and how operational strategies can be optimized to extend battery life under realistic conditions. This article presents an energy consumption analysis with respect to ambient temperatures and average vehicle speed based exclusively on real-world data of an urban bus fleet, providing a data foundation for range forecasting and infrastructure planning optimized for public transport needs. Additionally, the State of Charge (SOC) window during operation and vehicle idle time as well as the charging power were analyzed in this case study to formulate recommendations towards a more battery-friendly treatment. The central research question is whether battery-friendly operational strategies—such as reduced charging power and lower SOC windows—can realistically be implemented in daily public transport operations. The impact of the recommendations on battery lifetime is estimated using a battery aging model on drive cycles. Finally, the reduction in CO2 emissions compared to diesel buses is estimated. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

23 pages, 16399 KiB  
Article
Design and Implementation of a Full SiC-Based Phase-Shifted Full-Bridge DC-DC Converter with Nanocrystalline-Cored Magnetics for Railway Battery Charging Applications
by Fatih Enes Gocen, Salih Baris Ozturk, Mehmet Hakan Aksit, Gurkan Dugan, Benay Cakmak and Caner Demir
Energies 2025, 18(15), 3945; https://doi.org/10.3390/en18153945 - 24 Jul 2025
Viewed by 243
Abstract
This paper presents the design and implementation of a high-efficiency, full silicon carbide (SiC)-based center-tapped phase-shifted full-bridge (PSFB) converter for NiCd battery charging applications in railway systems. The converter utilizes SiC MOSFET modules on the primary side and SiC diodes on the secondary [...] Read more.
This paper presents the design and implementation of a high-efficiency, full silicon carbide (SiC)-based center-tapped phase-shifted full-bridge (PSFB) converter for NiCd battery charging applications in railway systems. The converter utilizes SiC MOSFET modules on the primary side and SiC diodes on the secondary side, resulting in significant efficiency improvements due to the superior switching characteristics and high-temperature tolerance inherent in SiC devices. A nanocrystalline-cored center-tapped transformer is optimized to minimize voltage stress on the rectifier diodes. Additionally, the use of a nanocrystalline core provides high saturation flux density, low core loss, and excellent permeability, particularly at high frequencies, which significantly enhances system efficiency. The converter also compensates for temperature fluctuations during operation, enabling a wide and adjustable output voltage range according to the temperature differences. A prototype of the 10-kW, 50-kHz PSFB converter, operating with an input voltage range of 700–750 V and output voltage of 77–138 V, was developed and tested both through simulations and experimentally. The converter achieved a maximum efficiency of 97% and demonstrated a high power density of 2.23 kW/L, thereby validating the effectiveness of the proposed design for railway battery charging applications. Full article
(This article belongs to the Special Issue Advancements in Electromagnetic Technology for Electrical Engineering)
Show Figures

Figure 1

Back to TopTop