Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,064)

Search Parameters:
Keywords = battery manufacturability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 900 KB  
Article
Optimal Incentive Strategy of Technology Information Sharing in Power Battery Recycling Supply Chain
by Jiumei Chen and Jiale Jiang
Sustainability 2026, 18(1), 144; https://doi.org/10.3390/su18010144 - 22 Dec 2025
Abstract
With the rapid development of the new energy vehicle industry, the efficiency of information sharing in the power battery recycling supply chain greatly affects resource utilization and sustainability. This paper examines battery manufacturers and third-party recyclers as game participants. We analyze incentive mechanisms [...] Read more.
With the rapid development of the new energy vehicle industry, the efficiency of information sharing in the power battery recycling supply chain greatly affects resource utilization and sustainability. This paper examines battery manufacturers and third-party recyclers as game participants. We analyze incentive mechanisms for sharing technical information, considering both information quality and leakage risks. This study constructs three types of Stackelberg game models: contract mechanisms, profit-sharing mechanisms, and cost-sharing mechanisms. We analyze the impact of technical information quality and leakage costs on supply chain decisions. Results show that manufacturer profits increase with growing leakage costs, following optimal transitions through profit-sharing, contract, and cost-sharing mechanisms. Recycler profits are influenced by both the quality of technical information and leakage costs. Overall supply chain profits trend toward cost-sharing mechanisms when technical information quality is low and favor profit-sharing mechanisms when quality is high. Under low leakage risk, cost-sharing mechanisms dominate at the technological level and in terms of recycling quantity. Under high leakage risk, profit-sharing mechanisms share leakage costs and lead in technology investment and recycling quantity. Contract mechanisms consistently have the lowest levels and volumes because they lack cost sharing and profit compensation. This study provides a theoretical foundation and practical guidance for information-sharing strategies in power battery recycling supply chains. Full article
Show Figures

Figure 1

14 pages, 3108 KB  
Article
Analysis of the Relationship Between Discharge Cutoff Voltage and Thermal Behavior in Different Lithium-Ion Cell Types
by Szabolcs Kocsis Szürke, Gellért Ádám Gladics and Illés Lőrincz
Appl. Sci. 2026, 16(1), 79; https://doi.org/10.3390/app16010079 (registering DOI) - 21 Dec 2025
Abstract
Optimizing the operating temperature of lithium-ion batteries is critical for safe, reliable, and efficient cell operation. Manufacturers’ recommendations vary in this area, which is primarily determined by the cells’ chemical composition and internal structural characteristics. Most manufacturers define the maximum charging voltage level [...] Read more.
Optimizing the operating temperature of lithium-ion batteries is critical for safe, reliable, and efficient cell operation. Manufacturers’ recommendations vary in this area, which is primarily determined by the cells’ chemical composition and internal structural characteristics. Most manufacturers define the maximum charging voltage level as the same or close to the same value, but there are significant differences in the lower threshold voltage. Lithium-ion cells exhibit increased internal resistance at lower state-of-charge levels, resulting in elevated heat generation during operation, with intensity proportional to the depth of discharge. However, using a too low voltage threshold causes a significant loss of usable capacity, which reduces the cell’s energy utilization. The present research aims to define and analyze the optimal value of the lower voltage threshold more precisely, considering both thermal development and usable capacity aspects. A further objective is to determine an optimal energy safety margin level that provides a suitable compromise for longer-term storage. Different 18650 and 21700 standard lithium-ion cell types were tested using various load profiles. The results show that the two cell formats have different electro-thermal behaviors. The 21700 cells show a clear increase in thermal efficiency at around 3.1 V. In contrast, the 18650 cells have a heating pattern that depends heavily on the load. This requires selecting a cutoff that adapts to the discharge rate to prevent excessive thermal stress. These findings indicate that a fixed lower threshold voltage for all cells is not ideal. Instead, we need cutoff strategies that are specific to each cell and can change dynamically. The TER-based evaluation introduced in this work provides a practical framework for defining these adaptive limits. It may improve control in battery management systems in real-world applications. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

38 pages, 1295 KB  
Review
Secondary Use of Retired Lithium-Ion Traction Batteries: A Review of Health Assessment, Interface Technology, and Supply Chain Management
by Wen Gao, Ai Chin Thoo, Moniruzzaman Sarker, Noven Lee, Xiaojun Deng and Yun Yang
Batteries 2026, 12(1), 1; https://doi.org/10.3390/batteries12010001 - 19 Dec 2025
Viewed by 227
Abstract
Lithium-ion batteries (LIBs) dominate energy storage for electric vehicles (EVs) due to their high energy density, long cycle life, and low self-discharge. However, high costs, complex manufacturing, and the requirement for advanced battery management systems (BMSs) constrain their broader deployment. Therefore, extending the [...] Read more.
Lithium-ion batteries (LIBs) dominate energy storage for electric vehicles (EVs) due to their high energy density, long cycle life, and low self-discharge. However, high costs, complex manufacturing, and the requirement for advanced battery management systems (BMSs) constrain their broader deployment. Therefore, extending the utility of LIBs through reuse is essential for economic and environmental sustainability. Retired EV batteries with 70–80% state-of-health (SOH) can be repurposed in battery energy storage systems (BESSs) to support power grids. Effective reuse depends on accurate and rapid assessment of SOH and state-of-safety (SOS), which relies on precise state-of-charge (SOC) detection, particularly for aged LIBs with elevated thermal and electrochemical risks. This review systematically surveys SOC, SOH, and SOS detection methods for second-life LIBs, covering model-based, data-driven, and hybrid approaches, and highlights strategies for a fast and reliable evaluation. It further examines power electronics topologies and control strategies for integrating second-life LIBs into power grids, focusing on safety, efficiency, and operational performance. Finally, it analyzes key factors within the closed-loop supply chain, particularly reverse logistics, and provides guidance on enhancing adoption and supporting the establishment of circular battery ecosystems. This review serves as a comprehensive resource for researchers, industry stakeholders, and policymakers aiming to optimize second-life utilization of traction LIBs. Full article
(This article belongs to the Special Issue Industrialization of Second-Life Batteries)
Show Figures

Figure 1

25 pages, 11724 KB  
Review
Tab-to-Busbar Interconnections in EV Battery Packs: An Introductory Review of Typical Welding Methods
by Sooyong Choi, Sooman Lim, Ali Shan, Jinkyu Lee, Tae Gwang Yun and Byungil Hwang
Micromachines 2026, 17(1), 2; https://doi.org/10.3390/mi17010002 - 19 Dec 2025
Viewed by 171
Abstract
This paper reviews tab-to-busbar interconnections in lithium-ion battery packs, focusing on resistance welding (RW), laser beam welding (LBW), and ultrasonic welding (USW). The functional roles of tabs and busbars and typical material choices (Al-, Cu-, and Ni-plated Cu) are outlined. Subsequently, the processes [...] Read more.
This paper reviews tab-to-busbar interconnections in lithium-ion battery packs, focusing on resistance welding (RW), laser beam welding (LBW), and ultrasonic welding (USW). The functional roles of tabs and busbars and typical material choices (Al-, Cu-, and Ni-plated Cu) are outlined. Subsequently, the processes are compared in terms of heat input, interfacial metallurgy, electrical resistance, mechanical robustness, and manufacturability. USW, as a solid-state method, suppresses porosity and limits Al-Cu intermetallic growth, but is sensitive to thickness, stack geometry, and tool wear. LBW enables high-speed, automated production with precise energy delivery, yet requires careful control to mitigate spatter, porosity, and brittle IMCs in dissimilar joints. RW remains cost-effective and flexible but can suffer from electrode wear and variability with highly conductive stacks. This review also summarizes the effect of the busbar material (Al versus Cu) and thickness on the connection resistance and temperature increase under a high current. No single process is universally superior, and the selection should match the stack-up, reliability targets, and production constraints. This paper aims to provide an overview of recent and conventional research trends for each welding method and to introduce selected non-traditional approaches, thereby presenting a range of viable options for future applications. Full article
(This article belongs to the Special Issue Micro/Nano Manufacturing of Electronic Devices)
Show Figures

Figure 1

22 pages, 3019 KB  
Article
Total CO2 Release from Combustion, Electric, and Hybrid Vehicles—A Case Study for Latin America’s Countries
by Robert E. Rockwood, Ana Vassileva Borissova and Klaus Lieutenant
Energies 2025, 18(24), 6623; https://doi.org/10.3390/en18246623 - 18 Dec 2025
Viewed by 125
Abstract
This study investigates the total carbon dioxide (CO2) emissions from various types of passenger vehicles in five Latin American countries: Argentina, Brazil, Ecuador, Mexico, and Paraguay. The aim was to analyze to which degree CO2 output can be reduced in [...] Read more.
This study investigates the total carbon dioxide (CO2) emissions from various types of passenger vehicles in five Latin American countries: Argentina, Brazil, Ecuador, Mexico, and Paraguay. The aim was to analyze to which degree CO2 output can be reduced in Latin America by switching from petrol cars to electric cars. The vehicles analyzed include petrol-driven cars, short-, mid-, and long-range battery electric vehicles, fuel cell electric vehicles, plug-in hybrid electric vehicles, and hybrid electric vehicles. The study examines the total CO2 emissions including battery production, vehicle manufacturing, and their operation, considering the energy grid mix of the selected countries for the year 2023. Using experimental data and considering production conditions yields more reliable results than previous studies. The results indicate that battery cars with the shortest cruising range using batteries produced in Europe and/or America generate the lowest levels of CO2 emissions, regardless of the energy mix. However, the emission values vary across different countries. In countries with a predominant share of renewable energy for the electricity generation, such as Paraguay, Brazil, and Ecuador, battery cars are the most effective in reducing overall CO2 emissions. Conversely, in countries like Argentina and Mexico, where renewable energy sources constitute a smaller share of the energy mix, the use of electric vehicles yields only a minor reduction in CO2 output, while emissions of long-range vehicles with batteries produced in Asia even exceed those of internal combustion engine vehicles. Therefore, eco-friendly electricity generation is a prerequisite for eco-friendly use of electric cars and should therefore be the goal of every country. Full article
Show Figures

Figure 1

30 pages, 3933 KB  
Review
Next-Generation Electrically Conductive Polymers: Innovations in Solar and Electrochemical Energy Devices
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(24), 3331; https://doi.org/10.3390/polym17243331 - 17 Dec 2025
Viewed by 253
Abstract
The emergence of electrically conductive polymeric materials has revolutionized the landscape of sustainable energy technologies, presenting unprecedented opportunities for advancing both photovoltaic conversion systems and electrochemical energy-storage platforms. These remarkable macromolecular materials exhibit distinctive characteristics including adjustable electronic band structures, exceptional mechanical adaptability, [...] Read more.
The emergence of electrically conductive polymeric materials has revolutionized the landscape of sustainable energy technologies, presenting unprecedented opportunities for advancing both photovoltaic conversion systems and electrochemical energy-storage platforms. These remarkable macromolecular materials exhibit distinctive characteristics including adjustable electronic band structures, exceptional mechanical adaptability, solution-phase processability, and cost-effective manufacturing potential. This extensive review provides an in-depth examination of the fundamental principles governing charge carrier mobility in conjugated polymer systems, explores diverse synthetic methodologies for tailoring molecular architectures, and analyzes their transformative applications across multiple energy technology domains. In photovoltaic technologies, electrically conductive polymers have driven major advancements in organic solar cells and photoelectrochemical systems, significantly improving energy conversion efficiency while reducing manufacturing costs. In electrochemical energy storage, their integration into supercapacitors and rechargeable lithium-based batteries has enhanced charge storage capability, accelerated charge–discharge processes, and extended operational lifespan compared with conventional electrode materials. This comprehensive analysis emphasizes emerging developments in hybrid composite architectures that combine conductive polymers with carbon-based nanomaterials, metal oxides, and other functional components to create next-generation flexible, lightweight, and wearable energy systems. By synthesizing fundamental materials chemistry with device engineering perspectives, this review illuminates the transformative potential of electrically conductive polymers in establishing sustainable, efficient, and resilient energy infrastructures for future technological landscapes. Full article
Show Figures

Figure 1

23 pages, 655 KB  
Article
Unlocking Demand-Side Flexibility in Cement Manufacturing: Optimized Production Scheduling for Participation in Electricity Balancing Markets
by Sebastián Rojas-Innocenti, Enrique Baeyens, Alejandro Martín-Crespo, Sergio Saludes-Rodil and Fernando A. Frechoso-Escudero
Energies 2025, 18(24), 6585; https://doi.org/10.3390/en18246585 - 17 Dec 2025
Viewed by 107
Abstract
The growing share of variable renewable energy sources in power systems is increasing the need for short-term operational flexibility—particularly from large industrial electricity consumers. This study proposes a practical, two-stage optimization framework to unlock this flexibility in cement manufacturing and support participation in [...] Read more.
The growing share of variable renewable energy sources in power systems is increasing the need for short-term operational flexibility—particularly from large industrial electricity consumers. This study proposes a practical, two-stage optimization framework to unlock this flexibility in cement manufacturing and support participation in electricity balancing markets. In Stage 1, a mixed-integer linear programming model minimizes electricity procurement costs by optimally scheduling the raw milling subsystem, subject to technical and operational constraints. In Stage 2, a flexibility assessment model identifies and evaluates profitable deviations from this baseline, targeting participation in Spain’s manual Frequency Restoration Reserve market. The methodology is validated through a real-world case study at a Spanish cement plant, incorporating photovoltaic (PV) generation and battery energy storage systems (BESS). The results show that flexibility services can yield monthly revenues of up to €800, with limited disruption to production processes. Additionally, combined PV + BESS configurations achieve electricity cost reductions and investment paybacks as short as six years. The proposed framework offers a replicable pathway for integrating demand-side flexibility into energy-intensive industries—enhancing grid resilience, economic performance, and decarbonization efforts. Full article
Show Figures

Figure 1

23 pages, 3223 KB  
Article
Comprehensive Well-to-Wheel Life Cycle Assessment of Battery Electric Heavy-Duty Trucks Using Real-World Data: A Case Study in Southern California
by Miroslav Penchev, Kent C. Johnson, Arun S. K. Raju and Tahir Cetin Akinci
Vehicles 2025, 7(4), 162; https://doi.org/10.3390/vehicles7040162 - 16 Dec 2025
Viewed by 236
Abstract
This study presents a well-to-wheel life-cycle assessment (WTW-LCA) comparing battery-electric heavy-duty trucks (BEVs) with conventional diesel trucks, utilizing real-world fleet data from Southern California’s Volvo LIGHTS project. Class 7 and Class 8 vehicles were analyzed under ISO 14040/14044 standards, combining measured diesel emissions [...] Read more.
This study presents a well-to-wheel life-cycle assessment (WTW-LCA) comparing battery-electric heavy-duty trucks (BEVs) with conventional diesel trucks, utilizing real-world fleet data from Southern California’s Volvo LIGHTS project. Class 7 and Class 8 vehicles were analyzed under ISO 14040/14044 standards, combining measured diesel emissions from portable emissions measurement systems (PEMSs) with BEV energy use derived from telematics and charging records. Upstream (“well-to-tank”) emissions were estimated using USLCI datasets and the 2020 Southern California Edison (SCE) power mix, with an additional scenario for BEVs powered by on-site solar energy. The analysis combines measured real-world energy consumption data from deployed battery electric trucks with on-road emission measurements from conventional diesel trucks collected by the UCR team. Environmental impacts were characterized using TRACI 2.1 across climate, air quality, toxicity, and fossil fuel depletion impact categories. The results show that BEVs reduce total WTW CO2-equivalent emissions by approximately 75% compared to diesel. At the same time, criteria pollutants (NOx, VOCs, SOx, PM2.5) decline sharply, reflecting the shift in impacts from vehicle exhaust to upstream electricity generation. Comparative analyses indicate BEV impacts range between 8% and 26% of diesel levels across most environmental indicators, with near-zero ozone-depletion effects. The main residual hotspot appears in the human-health cancer category (~35–38%), linked to upstream energy and materials, highlighting the continued need for grid decarbonization. The analysis focuses on operational WTW impacts, excluding vehicle manufacturing, battery production, and end-of-life phases. This use-phase emphasis provides a conservative yet practical basis for short-term fleet transition strategies. By integrating empirical performance data with life-cycle modeling, the study offers actionable insights to guide electrification policies and optimize upstream interventions for sustainable freight transport. These findings provide a quantitative decision-support basis for fleet operators and regulators planning near-term heavy-duty truck electrification in regions with similar grid mixes, and can serve as an empirical building block for future cradle-to-grave and dynamic LCA studies that extend beyond the operational well-to-wheels scope adopted here. Full article
Show Figures

Figure 1

18 pages, 3189 KB  
Article
A Study on Thermal Performance Enhancement of Mini-Channel Cooling Plates with an Interconnected Design for Li-Ion Battery Cooling
by Armanto P. Simanjuntak, Joohan Bae, Benrico Fredi Simamora and Jae Young Lee
Batteries 2025, 11(12), 461; https://doi.org/10.3390/batteries11120461 - 15 Dec 2025
Viewed by 241
Abstract
The increasing adoption of lithium-ion (Li-ion) batteries in electric vehicles (EVs) and renewable energy systems has heightened the demand for efficient Battery Thermal Management Systems (BTMS). Effective thermal regulation is critical to prevent performance degradation, extend battery lifespan, and mitigate safety risks such [...] Read more.
The increasing adoption of lithium-ion (Li-ion) batteries in electric vehicles (EVs) and renewable energy systems has heightened the demand for efficient Battery Thermal Management Systems (BTMS). Effective thermal regulation is critical to prevent performance degradation, extend battery lifespan, and mitigate safety risks such as thermal runaway. Liquid cooling has become the dominant strategy in commercial EVs due to its superior thermal performance over air cooling. However, optimizing liquid cooling systems remains challenging due to the trade-off between heat transfer efficiency and pressure drop. Recent studies have explored various coolant selection, nanofluid enhancements, and complex channel geometries, an ideal balance remains difficult to achieve. While advanced methods such as topology optimization offer promising performance gains, they often introduce significant modeling and manufacturing complexity. In this study, we propose a practical alternative: an interconnected straight-channel cooling plate that introduces lateral passages to disrupt the thermal boundary layer and enhance mixing. Comparative analysis shows that the design improves temperature uniformity and reduces peak battery temperature, all while maintaining a moderate pressure drop. The proposed configuration offers a scalable and effective solution for next-generation BTMS, particularly in EV applications where thermal performance and manufacturability are both critical. Full article
(This article belongs to the Special Issue Thermal Management System for Lithium-Ion Batteries: 2nd Edition)
Show Figures

Figure 1

14 pages, 1444 KB  
Article
Li-Ion Battery Recycling via High-Intensity Milling Followed by Organic Acid Leaching for Preferential Lithium Extraction
by Brenda Segura-Bailón, Léa Rouquette, Nathália Vieceli, Karolina Bogusz, Cécile Moreau and Martina Petranikova
Batteries 2025, 11(12), 458; https://doi.org/10.3390/batteries11120458 - 12 Dec 2025
Viewed by 188
Abstract
Nowadays, spent batteries are considered a secondary and potential resource to meet the growing demand for lithium, a critical element widely used in the manufacturing of electric vehicles. Therefore, this work presents a hydrometallurgical method for extracting lithium from Nickel–Manganese–Cobalt (NMC) batteries. Citric [...] Read more.
Nowadays, spent batteries are considered a secondary and potential resource to meet the growing demand for lithium, a critical element widely used in the manufacturing of electric vehicles. Therefore, this work presents a hydrometallurgical method for extracting lithium from Nickel–Manganese–Cobalt (NMC) batteries. Citric (C6H8O7) and oxalic (C2H2O4) acids were used as leaching agents, both of which are cataloged as environmentally friendly organic compounds. To comprehend the chemical interactions between citrate (cit), oxalate (ox) and metallic ions, a thermodynamic analysis is presented. According to this analysis, both ions were effective in dissolving lithium; however, the experimental studies demonstrated that oxalate ensured a selective process and achieved complete lithium dissolution under the experimental conditions 1 M C2H2O4, 50 g/L, 60 °C, and 60 min, with a mechanically treated sample (milling time 8 min at 1000 rpm). In this process, the other metals present in the sample, such as cobalt, nickel, and manganese, formed insoluble species with oxalate, allowing their recovery in subsequent stages. Therefore, this investigation provides a proficient methodology for battery recycling, emphasizing sustainable practices. Full article
(This article belongs to the Special Issue Selected Papers from Circular Materials Conference 2025)
Show Figures

Graphical abstract

21 pages, 4153 KB  
Article
Profit-Driven Framework for Low-Carbon Manufacturing: Integrating Green Certificates, Demand Response, Distributed Generation and CCUS
by Yi-Chang Li, Mengyao Wang, Rui Huang, Lu Chen, Xueying Wang, Xiaoqin Xiong, Min Jiang, Lijie Cui, Zhiyang Jia and Zhong Jin
Energies 2025, 18(24), 6517; https://doi.org/10.3390/en18246517 - 12 Dec 2025
Viewed by 191
Abstract
In recent years, the manufacturing industry and power sector have collectively accounted for nearly 60% of global carbon emissions, presenting a formidable obstacle to achieving net-zero targets by 2050. To address the urgent need for industrial decarbonization, this paper proposes a profit-driven framework [...] Read more.
In recent years, the manufacturing industry and power sector have collectively accounted for nearly 60% of global carbon emissions, presenting a formidable obstacle to achieving net-zero targets by 2050. To address the urgent need for industrial decarbonization, this paper proposes a profit-driven framework for low-carbon manufacturing that synergistically integrates green certificates, demand response, distributed generation, and carbon capture, utilization, and storage (CCUS) technologies. A comprehensive optimization model is formulated to enable manufacturers to maximize profits through strategic participation in electricity, carbon, green certificate, and industrial manufacturing product markets simultaneously. By solving this optimization problem, manufacturers can derive optimal production decisions. The framework’s effectiveness is demonstrated through a case study on lithium-ion battery manufacturing, which reveals promising outcomes: meaningful profit growth, substantial carbon emission reductions, and only minimal impacts on production output. Furthermore, the proposed demand response strategy achieves significant reductions in electricity consumption during peak hours, while the integration of distributed generation systems markedly decreases reliance on the main grid. The incorporation of CCUS extends the clean operation periods of thermal power units, generating additional revenue from carbon trading and CO2 utilization. In summary, the proposed model represents the first unified profit-maximizing optimization framework for low-carbon manufacturing industries, shifting from traditional cost minimization to profitability optimization, addressing gaps in fragmented low-carbon strategies, and providing a replicable blueprint for carbon-neutral operations while enhancing profitability. Full article
Show Figures

Figure 1

16 pages, 11074 KB  
Article
Investigation of the Phosphorus Effect on Solidification Cracking in Cu–Steel Single-Mode Fiber-Laser Welds for Reliable Li-Ion Battery Busbar Assembly
by Ye-Ji Yoo, Jeong-Hoi Koo and Eun-Joon Chun
Materials 2025, 18(24), 5585; https://doi.org/10.3390/ma18245585 - 12 Dec 2025
Viewed by 285
Abstract
Solidification cracking is a critical defect in Cu–steel dissimilar laser welding for cylindrical lithium-ion battery busbar assembly, yet the metallurgical role of phosphorus (P) in crack formation has not been quantitatively established. In this study, the influence of phosphorus in the coating layer [...] Read more.
Solidification cracking is a critical defect in Cu–steel dissimilar laser welding for cylindrical lithium-ion battery busbar assembly, yet the metallurgical role of phosphorus (P) in crack formation has not been quantitatively established. In this study, the influence of phosphorus in the coating layer on weld solidification behavior was clarified by preparing Cu substrates with four different coating conditions—Ni–P-coated Cu (10 and 50 μm) and pure Ni-coated Cu (10 and 50 μm)—and performing high-speed single-mode fiber-laser welding under identical heat-input conditions. Shear-tensile testing, EPMA-based microstructural analysis, and Thermo-Calc solidification calculations were combined to correlate P segregation with solidification cracking susceptibility. The Ni–P 10 μm coating generated severe solidification cracking compared with the pure Ni 50 μm coating, which was attributed to excessive P enrichment in the terminal liquid phase (up to 8.8 mass%). This enrichment significantly expanded the mushy-zone width to approximately 869 K, yielding a highly solidification crack-susceptible fusion zone. In contrast, 50 μm pure Ni coatings produced narrow mushy-zone widths (200–400 K) and extremely low residual P levels (~0.1 mass%), resulting in fully crack-free microstructures. The 50 μm Ni coating exhibited the highest shear-tensile strength and largest rupture displacement among all conditions, confirming that suppression of P segregation directly improves both structural integrity and mechanical performance. Overall, this study demonstrates that phosphorus enrichment critically governs the solidification-cracking susceptibility of Cu–steel dissimilar welds by widening the solidification temperature range. Eliminating P from the coating layer and applying an adequately thick pure Ni coating constitute highly effective strategies for achieving crack-free, mechanically robust welds in lithium-ion battery busbar manufacturing. Full article
Show Figures

Graphical abstract

15 pages, 3625 KB  
Article
3D-Printed hBN-PLA Composite Battery Case for Enhanced Passive Thermal Management in Li-Ion Module
by Ali Cem Yakaryilmaz, Ana Pilipović, Mustafa Ilteris Biçak, Mustafa İstanbullu, Sinan Keyinci, Erdi Tosun and Mustafa Özcanli
Appl. Sci. 2025, 15(24), 13067; https://doi.org/10.3390/app152413067 - 11 Dec 2025
Viewed by 317
Abstract
In this study, a battery case was developed using a 3D (three dimensional)-printed composite of hexagonal boron nitride (hBN) and polylactic acid (PLA) to enhance the thermal performance of lithium-ion battery (LiB) modules. A 10 wt.% amount of hBN was incorporated into the [...] Read more.
In this study, a battery case was developed using a 3D (three dimensional)-printed composite of hexagonal boron nitride (hBN) and polylactic acid (PLA) to enhance the thermal performance of lithium-ion battery (LiB) modules. A 10 wt.% amount of hBN was incorporated into the PLA matrix to improve the composite’s thermal conductivity while maintaining electrical insulation. A 3S2P (3 series and 2 parallel) battery configuration was initially evaluated based on the results of a baseline study for comparison and subsequently subjected to a newly developed test procedure to assess the thermal behavior of the designed case under identical environmental conditions. Initially, X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were utilized for material characterization, and their results verified the successful integration of hBN by confirming its presence in the hBN-PLA composite. In thermal tests, experimental results revealed that the fabricated hBN-PLA composite battery case significantly enhanced heat conduction and reduced surface temperature gradients compared to the previous baseline study with no case. Specifically, the maximum cell temperature (Tmax) decreased from 48.54 °C to 45.84 °C, and the temperature difference (ΔT) between the hottest and coldest cells was reduced from 4.65 °C to 3.75 °C, corresponding to an improvement of approximately 20%. A 3S2P LiB module was also tested under identical environmental conditions using a multi-cycle charge–discharge procedure designed to replicate real electric vehicle (EV) operation. Each cycle consisted of sequential low and high discharge zones with gradually increased current values from 2 A to 14 A followed by controlled charging and rest intervals. During the experimental procedure, the average ΔT between the cells was recorded as 2.38 °C, with a maximum value of 3.50 °C. These results collectively demonstrate that the 3D-printed hBN-PLA composite provides an effective and lightweight passive cooling solution for improving the thermal stability and safety of LiB modules in EV applications. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Graphical abstract

19 pages, 3215 KB  
Article
Thick LiMn2O4 Electrode with Polymer Electrolyte for Electrochemical Extraction of Lithium from Brines
by Daiwei Yao, Jing Qin, Hongtan Liu, Mert Akin and Xiangyang Zhou
Batteries 2025, 11(12), 454; https://doi.org/10.3390/batteries11120454 - 10 Dec 2025
Viewed by 195
Abstract
Thick (900–1500 µm), crack-free lithium manganese oxide (LMO) electrodes with a polyvinylidene fluoride (PVDF)-based polymer electrolyte were prepared using an innovated slurry casting method. The selectivity and intercalation capacity of the thick electrodes of 900–1500 μm were evaluated in aqueous chloride solutions containing [...] Read more.
Thick (900–1500 µm), crack-free lithium manganese oxide (LMO) electrodes with a polyvinylidene fluoride (PVDF)-based polymer electrolyte were prepared using an innovated slurry casting method. The selectivity and intercalation capacity of the thick electrodes of 900–1500 μm were evaluated in aqueous chloride solutions containing main cations in synthetic Salar de Atacama brine using cyclic voltammetry (CV) measurements. The CV data indicated that a high Li+ selectivity of Li/Na = 152.7 could be achieved under potentiostatic conditions. With the thickest electrode, while the mass specific intercalation capacity was 6.234 mg per gram of LMO, the area specific capacity was increased by 3–11 folds compared to that for conventional thin electrodes to 0.282 mg per square centimeter. In addition, 82% of capacity was retained over 30 intercalation/dis-intercalation cycles. XRD and electrochemical analyses revealed that both Faradaic diffusion-controlled or battery-like intercalation and Faradaic non-diffusion controlled or pseudocapacitive intercalation contributed to the capacity and selectivity. This work demonstrates a practical technology for thick electrode fabrication that promises to result in a significant reduction in manufacturing and operational costs for lithium extraction from brines. Full article
(This article belongs to the Special Issue Solid Polymer Electrolytes for Lithium Batteries and Beyond)
Show Figures

Figure 1

27 pages, 5771 KB  
Article
Electricity Energy Flow Analysis of a Fuel Cell Electric Vehicle (FCEV) Under Real Driving Conditions (RDC)
by Wojciech Cieslik, Andrzej Stolarski and Sebastian Freda
Energies 2025, 18(24), 6458; https://doi.org/10.3390/en18246458 - 10 Dec 2025
Viewed by 125
Abstract
The study analyzed the energy flow of a second-generation Toyota Mirai FCEV under Real Driving Conditions (RDC) in ECO and Normal driving modes. The results demonstrated significant operational differences between the two modes. The ECO mode reduced the maximum motor torque from 286.5 [...] Read more.
The study analyzed the energy flow of a second-generation Toyota Mirai FCEV under Real Driving Conditions (RDC) in ECO and Normal driving modes. The results demonstrated significant operational differences between the two modes. The ECO mode reduced the maximum motor torque from 286.5 Nm to 187.6 Nm (−51%) but increased the high-voltage (HV) battery State of Charge swing (ΔSOC = 17.26% vs. 10.59%, +63%). Regenerative energy recovery rose by ~19.8% overall and by 25.7% in urban driving. The ECO mode exhibited higher HV battery cycling (4.03 Wh vs. 3.27 Wh) and slightly higher fuel cell energy use in urban conditions (+8.5%). The average fuel cell power was 36% higher in Normal mode, whereas the HV battery output was 11.4% higher in ECO mode. Hydrogen consumption in Normal mode was two times higher in urban and highway phases and three times higher in rural driving compared to ECO mode. In summary, the ECO mode enhances regenerative energy utilization and reduces total onboard energy consumption, at the expense of peak torque and increased battery cycling. These results provide valuable insights for optimizing energy management strategies in fuel cell electric powertrains under real driving conditions. The study introduces an independent methodology for high-resolution (1 Hz) electric energy-flow monitoring and quantification of energy exchange between the fuel cell, high-voltage battery, and powertrain system under Real Driving Conditions (RDC). Unlike manufacturer-derived data or laboratory simulations, the presented approach enables empirical validation of on-board energy management strategies in production FCEVs. The results reveal distinctive energy-flow patterns in ECO and Normal modes, offering reference data for the optimization of future hybrid control algorithms in hydrogen-powered vehicles. Full article
(This article belongs to the Special Issue Energy Transfer Management in Personal Transport Vehicles)
Show Figures

Figure 1

Back to TopTop