Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (171)

Search Parameters:
Keywords = battery interphase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2351 KiB  
Article
Facile SEI Improvement in the Artificial Graphite/LFP Li-Ion System: Via NaPF6 and KPF6 Electrolyte Additives
by Sepehr Rahbariasl and Yverick Rangom
Energies 2025, 18(15), 4058; https://doi.org/10.3390/en18154058 (registering DOI) - 31 Jul 2025
Viewed by 227
Abstract
In this work, graphite anodes and lithium iron phosphate (LFP) cathodes are used to examine the effects of sodium hexafluorophosphate (NaPF6) and potassium hexafluorophosphate (KPF6) electrolyte additives on the formation of the solid electrolyte interphase and the performance of [...] Read more.
In this work, graphite anodes and lithium iron phosphate (LFP) cathodes are used to examine the effects of sodium hexafluorophosphate (NaPF6) and potassium hexafluorophosphate (KPF6) electrolyte additives on the formation of the solid electrolyte interphase and the performance of lithium-ion batteries in both half-cell and full-cell designs. The objective is to assess whether these additives may increase cycle performance, decrease irreversible capacity loss, and improve interfacial stability. Compared to the control electrolyte (1.22 M Lithium hexafluorophosphate (LiPF6)), cells with NaPF6 and KPF6 additives produced less SEI products, which decreased irreversible capacity loss and enhanced initial coulombic efficiency. Following the formation of the solid electrolyte interphase, the specific capacity of the control cell was 607 mA·h/g, with 177 mA·h/g irreversible capacity loss. In contrast, irreversible capacity loss was reduced by 38.98% and 37.85% in cells containing KPF6 and NaPF6 additives, respectively. In full cell cycling, a considerable improvement in capacity retention was achieved by adding NaPF6 and KPF6. The electrolyte, including NaPF6, maintained 67.39% greater capacity than the LiPF6 baseline after 20 cycles, whereas the electrolyte with KPF6 demonstrated a 30.43% improvement, indicating the positive impacts of these additions. X-ray photoelectron spectroscopy verified that sodium (Na+) and potassium (K+) ions were present in the SEI of samples containing NaPF6 and KPF6. While K+ did not intercalate in LFP, cyclic voltammetry confirmed that Na+ intercalated into LFP with negligible impact on the energy storage of full cells. These findings demonstrate that NaPF6 and KPF6 are suitable additions for enhancing lithium-ion battery performance in the popular artificial graphite/LFP system. Full article
(This article belongs to the Special Issue Research on Electrolytes Used in Energy Storage Systems)
Show Figures

Figure 1

13 pages, 5204 KiB  
Article
Spontaneous Formation of a Zincphilic Ag Interphase for Dendrite-Free and Corrosion-Resistant Zinc Metal Anodes
by Neng Yu, Qingpu Zeng, Yiming Fu, Hanbin Li, Jiating Li, Rui Wang, Longlong Meng, Hao Wu, Zhuyao Li, Kai Guo and Lei Wang
Batteries 2025, 11(8), 284; https://doi.org/10.3390/batteries11080284 - 24 Jul 2025
Viewed by 305
Abstract
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy [...] Read more.
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy has been proposed, involving the addition of a minute quantity of AgNO3 to the electrolyte to stabilize zinc anodes. This additive spontaneously forms a hierarchically porous Ag interphase on the zinc anodes, which is characterized by its zinc-affinitive nature. The interphase offers abundant zinc nucleation sites and accommodation space, leading to uniform zinc plating/stripping and enhanced kinetics of zinc deposition/dissolution. Moreover, the chemically inert Ag interphase effectively curtails side reactions by isolating water molecules. Consequently, the incorporation of AgNO3 enables zinc anodes to undergo cycling for extended periods, such as over 4000 h at a current density of 0.5 mA/cm2 with a capacity of 0.5 mAh/cm2, and for 450 h at 2 mA/cm2 with a capacity of 2 mAh/cm2. Full zinc-ion cells equipped with this additive not only demonstrate increased specific capacities but also exhibit significantly improved cycle stability. This research presents a cost-effective and practical approach for the development of reliable zinc anodes for ZIBs. Full article
(This article belongs to the Special Issue Flexible and Wearable Energy Storage Devices)
Show Figures

Graphical abstract

15 pages, 1845 KiB  
Article
Comparing the SEI Formation on Copper and Amorphous Carbon: A Study with Combined Operando Methods
by Michael Stich, Christian Leppin, Falk Thorsten Krauss, Jesus Eduardo Valdes Landa, Isabel Pantenburg, Bernhard Roling and Andreas Bund
Batteries 2025, 11(7), 273; https://doi.org/10.3390/batteries11070273 - 18 Jul 2025
Viewed by 255
Abstract
The solid electrolyte interphase (SEI) on the anode of lithium-ion batteries (LIBs) has been studied thoroughly due to its crucial importance to the battery’s long-term performance. At the same time, most studies of the SEI apply ex situ characterization methods, which may introduce [...] Read more.
The solid electrolyte interphase (SEI) on the anode of lithium-ion batteries (LIBs) has been studied thoroughly due to its crucial importance to the battery’s long-term performance. At the same time, most studies of the SEI apply ex situ characterization methods, which may introduce artifacts or misinterpretations as they do not investigate the SEI in its unaltered state immersed in liquid battery electrolyte. Thus, in this work, we focus on using the non-destructive combination of electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) and impedance spectroscopy (EIS) in the same electrochemical cell. EQCM-D can not only probe the solidified products of the SEI but also allows for the monitoring of viscoelastic layers and viscosity changes of the electrolyte at the interphase during the SEI formation. EIS complements those results by providing electrochemical properties of the formed interphase. Our results highlight substantial differences in the physical and electrochemical properties between the SEI formed on copper and on amorphous carbon and show how formation parameters and the additive vinylene carbonate (VC) influence their growth. The EQCM-D results show consistently that much thicker SEIs are formed on carbon substrates in comparison to copper substrates. Full article
(This article belongs to the Special Issue Electrocrystallization in Rechargeable Batteries)
Show Figures

Figure 1

13 pages, 2193 KiB  
Article
In Situ Electrochemical Atomic Force Microscopy Study of Interfacial Reactions on a Graphite Negative Electrode for Magnesium-Ion Batteries
by Sungjae Yoon, Paul Maldonado Nogales, Sangyup Lee, Seunga Yang and Soon-Ki Jeong
Int. J. Mol. Sci. 2025, 26(14), 6793; https://doi.org/10.3390/ijms26146793 - 15 Jul 2025
Viewed by 285
Abstract
The cointercalation of solvated Mg2+ ions into graphite has typically been considered challenging because of concerns regarding the instability of the electrolyte and the potential for structural degradation. However, recent developments in electrolyte design suggest that this process may be reversible under [...] Read more.
The cointercalation of solvated Mg2+ ions into graphite has typically been considered challenging because of concerns regarding the instability of the electrolyte and the potential for structural degradation. However, recent developments in electrolyte design suggest that this process may be reversible under appropriate conditions. In this study, the interfacial behavior of graphite in a magnesium-ion system was investigated using in situ electrochemical atomic force microscopy. Electrochemical tests in a triglyme-based electrolyte revealed a reversible capacity of 158 mAh g−1, attributed to the insertion of triglyme-solvated Mg2+ ions. Real-time surface imaging of highly oriented pyrolytic graphite revealed the formation of a passivating surface film during the initial cycle, along with nanoscale hill-like (~1 nm) and blister-like (~5 nm) structures, which were partially reversible and showed good correlation with the redox peaks observed in the cyclic voltammetry experiments, suggesting that the surface film enables Mg2+ transport while mitigating electrolyte decomposition. These findings demonstrate that stable co-intercalation of solvated Mg2+ ions is achievable in the early cycles in graphite and highlight the importance of interfacial engineering and solvation structures in the development of magnesium-ion batteries. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

23 pages, 3253 KiB  
Review
Overcoming Challenges in Silicon Anodes: The Role of Electrolyte Additives and Solid-State Electrolytes
by Jinsik Nam, Hanbyeol Lee and Oh B. Chae
Micromachines 2025, 16(7), 800; https://doi.org/10.3390/mi16070800 (registering DOI) - 9 Jul 2025
Viewed by 680
Abstract
Silicon-based anodes have emerged as promising candidates for advanced lithium-ion batteries (LIBs) owing to their outstanding lithium storage capacity; however, the commercial implementation of silicon-based anodes is hindered primarily by their significant volumetric changes and the resulting solid electrolyte interphase (SEI) instability during [...] Read more.
Silicon-based anodes have emerged as promising candidates for advanced lithium-ion batteries (LIBs) owing to their outstanding lithium storage capacity; however, the commercial implementation of silicon-based anodes is hindered primarily by their significant volumetric changes and the resulting solid electrolyte interphase (SEI) instability during the lithiation/delithiation process. To overcome these issues, electrolyte optimization, particularly through the use of functional additives and solid-state electrolytes, has attracted significant research attention. In this paper, we review the recent developments in electrolyte additives, such as vinylene carbonate, fluoroethylene carbonate, and silane-based additives, and new additives, such as dimethylacetamide, that improve the SEI stability and overall electrochemical performance of silicon-based anodes. We also discuss the role of solid electrolytes, including oxides, sulfides, and polymer-based systems, in mitigating the volume changes in Si and improving safety. Such approaches can effectively enhance both the longevity and capacity retention of silicon-based anodes. Despite significant progress, further studies are essential to optimize electrolyte formulation and solve interfacial problems. Integrating these advances with improved electrode designs and anode materials is critical for realizing the full potential of silicon-based anodes in high-performance LIBs, particularly in electric vehicles and portable electronics. Full article
(This article belongs to the Special Issue Nanomaterials for Micro/Nano Devices, 2nd Edition)
Show Figures

Figure 1

12 pages, 2634 KiB  
Article
Enhancing the Cycle Life of Silicon Oxide–Based Lithium-Ion Batteries via a Nonflammable Fluorinated Ester–Based Electrolyte
by Kihun An, Yen Hai Thi Tran, Dong Guk Kang and Seung-Wan Song
Batteries 2025, 11(7), 250; https://doi.org/10.3390/batteries11070250 - 30 Jun 2025
Viewed by 656
Abstract
Silicon oxide–graphite is a promising high-capacity anode material for next-generation lithium-ion batteries (LIBs). However, despite using a small fraction (≤5%) of Si, it suffers from a short cycle life owing to intrinsic swelling and particle pulverization during cycling, making practical application challenging. High-nickel [...] Read more.
Silicon oxide–graphite is a promising high-capacity anode material for next-generation lithium-ion batteries (LIBs). However, despite using a small fraction (≤5%) of Si, it suffers from a short cycle life owing to intrinsic swelling and particle pulverization during cycling, making practical application challenging. High-nickel (Ni ≥ 80%) oxide cathodes for high-energy-density LIBs and their operation beyond 4.2 V have been pursued, which requires the anodic stability of the electrolyte. Herein, we report a nonflammable multi-functional fluorinated ester–based liquid electrolyte that stabilizes the interfaces and suppresses the swelling of highly loaded 5 wt% SiO–graphite anode and LiNi0.88Co0.08Mn0.04O2 cathode simultaneously in a 3.5 mAh cm−2 full cell, and improves cycle life and battery safety. Surface characterization results reveal that the interfacial stabilization of both the anode and cathode by a robust and uniform solid electrolyte interphase (SEI) layer, enriched with fluorinated ester-derived inorganics, enables 80% capacity retention of the full cell after 250 cycles, even under aggressive conditions of 4.35 V, 1 C and 45 °C. This new electrolyte formulation presents a new opportunity to advance SiO-based high-energy density LIBs for their long operation and safety. Full article
(This article belongs to the Collection Feature Papers in Batteries)
Show Figures

Figure 1

16 pages, 1972 KiB  
Article
Interphase Engineering Enabled by Using a Separator with Electrochemically Active Carbazole Polymers for Lithium-Ion Batteries
by Bingning Wang, Lihong Gao, Zhenzhen Yang, Xianyang Wu, Qijia Zhu, Qian Liu, Fulya Dogan, Yang Qin and Chen Liao
Polymers 2025, 17(13), 1815; https://doi.org/10.3390/polym17131815 - 29 Jun 2025
Viewed by 419
Abstract
Separators are generally considered inert components in lithium-ion batteries. In the past, some electroactive polymers have been successfully applied in separator modifications for overcharge protection or as acid scavengers. This study highlights the first use of two “electroactive” carbazole polymers (copolymer 9-phenyl-9H-carbazole-phenyl [PCP] [...] Read more.
Separators are generally considered inert components in lithium-ion batteries. In the past, some electroactive polymers have been successfully applied in separator modifications for overcharge protection or as acid scavengers. This study highlights the first use of two “electroactive” carbazole polymers (copolymer 9-phenyl-9H-carbazole-phenyl [PCP] and poly(9-vinylcarbazole) [PVC]), which were each applied separately as coatings on the cathode-facing side of commercial Celgard 2325 separators, respectively, to enhance the cycling performance of 0.3Li2MnO3·0.7LiMn0.5Ni0.5O2//graphite (LMR-NM//Gr) full cells through interphase engineering. The team observed an irreversible polymer oxidation process of the carbazole-functionalized polymers—occurring only during the first charge—for the modified separator cells, and the results were confirmed by dQ/dV analysis, cyclic voltammetry measurements, and nuclear magnetic resonance characterizations. During this oxidation, carbazole polymers participate in the process of interphase formation, contributing to the improved cycling performance of LMR-NM//Gr batteries. Particularly, oxidation takes place at voltages of ~4.0 and ~3.5 V when PCP and PVC are used as separator coatings, which is highly irreversible. Further postmortem examinations suggest that the improvements using these modified separators arise from the formation of higher-quality and more inorganic SEI, as well as the beneficial CEI enriched in LixPOyFz. These interphases effectively inhibit the crosstalk effect by reducing TM dissolution. Full article
Show Figures

Figure 1

15 pages, 4353 KiB  
Article
Synthesis and Electrochemical Properties of the Li3PO4-Coated LiNi0.5Mn1.5O4 Cathode Materials for High-Voltage Lithium-Ion Batteries
by So Young Choi, Jong Hun Sung, Fuead Hasan, Sangram Keshari Mohanty, Madhusudana Koratikere Srinivasa and Hyun Deog Yoo
Energies 2025, 18(13), 3387; https://doi.org/10.3390/en18133387 - 27 Jun 2025
Viewed by 547
Abstract
High-voltage spinel (LiNi0.5Mn1.5O4; LNMO) has been a prospective cathode material that may exploit the maximal voltage of 5 V for lithium-ion batteries. However, the practical application has been hindered by the severe electrochemical instability of the Ni [...] Read more.
High-voltage spinel (LiNi0.5Mn1.5O4; LNMO) has been a prospective cathode material that may exploit the maximal voltage of 5 V for lithium-ion batteries. However, the practical application has been hindered by the severe electrochemical instability of the Ni2+/Ni4+ redox couple at such a high voltage. Herein, we coated lithium phosphate (Li3PO4) on the surface of the LNMO by a wet-coating method to improve the electrochemical stability. The coating layer provided an effective cathode–electrolyte interphase, which prevented the excessive decomposition of the electrolyte on the surface of LNMO cathode. The Li3PO4-coated LNMO exhibited enhanced rate capability in accordance with the lowered solid-electrolyte interphase (SEI) and charge-transfer resistance values from electrochemical impedance spectroscopy. Full article
Show Figures

Figure 1

29 pages, 4963 KiB  
Review
Protective Layer and Current Collector Design for Interface Stabilization in Lithium-Metal Batteries
by Dayoung Kim, Cheolhwan Song and Oh B. Chae
Batteries 2025, 11(6), 220; https://doi.org/10.3390/batteries11060220 - 5 Jun 2025
Viewed by 1189
Abstract
Recent advancements in lithium-metal-based battery technology have garnered significant attention, driven by the increasing demand for high-energy storage devices such as electric vehicles (EVs). Lithium (Li) metal has long been considered an ideal negative electrode due to its high theoretical specific capacity (3860 [...] Read more.
Recent advancements in lithium-metal-based battery technology have garnered significant attention, driven by the increasing demand for high-energy storage devices such as electric vehicles (EVs). Lithium (Li) metal has long been considered an ideal negative electrode due to its high theoretical specific capacity (3860 mAh g−1) and low redox potential. However, the commercialization of Li-metal batteries (LMBs) faces significant challenges, primarily related to the safety and cyclability of the negative electrodes. The formation of lithium dendrites and uneven solid electrolyte interphases, along with volumetric expansion during cycling, severely hinder the commercial viability of LMBs. Among the various strategies developed to overcome these challenges, the introduction of artificial protective layers and the structural engineering of current collectors have emerged as highly promising approaches. These techniques are critical for regulating Li deposition behavior, mitigating dendrite growth, and enhancing interfacial and mechanical stability. This review summarizes the current state of Li-negative electrodes and introduces methods of enhancing their performance using a protective layer and current collector design. Full article
Show Figures

Figure 1

53 pages, 13476 KiB  
Review
Solvation Structure and Interface Engineering Synergy in Low-Temperature Sodium-Ion Batteries: Advances and Prospects
by Shengchen Huang, Lin Liu, Chenchen Han, Chao Tian, Yongjian Wang, Tianlin Li, Danyang Zhao and Yanwei Sui
Nanomaterials 2025, 15(11), 820; https://doi.org/10.3390/nano15110820 - 29 May 2025
Viewed by 795
Abstract
The performance degradation of sodium-ion batteries (SIBs) in extremely low-temperature conditions has faced significant challenges for energy storage applications in extreme environments. This review systematically establishes failure mechanisms that govern the performance of low-temperature SIBs, including significantly increased electrolyte viscosity, lattice distortion and [...] Read more.
The performance degradation of sodium-ion batteries (SIBs) in extremely low-temperature conditions has faced significant challenges for energy storage applications in extreme environments. This review systematically establishes failure mechanisms that govern the performance of low-temperature SIBs, including significantly increased electrolyte viscosity, lattice distortion and adverse phase transitions in electrodes, and sluggish desolvation kinetics at the solid electrolyte interface. Herein, we specifically summarize a series of multi-scale optimization strategies to address these low-temperature challenges: (1) optimizing low-freezing-point solvent components and regulating solvation structures to increase ionic diffusion conductivity; (2) enhancing the hierarchical structure of electrodes and optimizing electron distribution density to improve structural stability and capacity retention at low temperatures; and (3) constructing an inorganic-rich solid electrolyte interphase to induce uniform ion deposition, reduce the desolvation barrier, and inhibit side reactions. This review provides a comprehensive overview of low-temperature SIB applications coupled with advanced characterization and first-principles simulations. Furthermore, we highlight solvation-shell dynamics, charge transfer kinetics, and metastable-phase evolution at the atomic scale, along with the critical pathways for overcoming low-temperature limitations. This review aims to establish fundamental principles and technological guidelines for deploying advanced SIBs in extreme low-temperature environments. Full article
Show Figures

Figure 1

21 pages, 8950 KiB  
Article
N/S Co-Doped Carbon-Coated Micro-Expanded Graphite for High-Performance Lithium-Ion Battery Anodes
by Wenjie Wang, Xuan Zhang, Xianchao Wang, Chengwei Gao, Jinling Yin, Qing Wen and Guiling Wang
Materials 2025, 18(11), 2477; https://doi.org/10.3390/ma18112477 - 25 May 2025
Viewed by 528
Abstract
Natural graphite (NG) is abundant and has a high capacity for lithium-ion storage, but its narrow interlayer spacing and poor cyclic stability limit its use in high-performance lithium-ion batteries (LIBs). To address this, a N/S co-doped micro-expanded graphite composite (BFAC@MEG) was prepared by [...] Read more.
Natural graphite (NG) is abundant and has a high capacity for lithium-ion storage, but its narrow interlayer spacing and poor cyclic stability limit its use in high-performance lithium-ion batteries (LIBs). To address this, a N/S co-doped micro-expanded graphite composite (BFAC@MEG) was prepared by coating micro-expanded graphite (MEG) with N/S-containing amorphous carbon derived from biochemical fulvic acid (BFAC). This enhanced the electrochemical kinetics of lithium ions, improving charge transfer rates and reducing diffusion resistance. GITT results showed a higher Li+ diffusion coefficient than MEG and spherical graphite (SG). BFAC@MEG exhibited excellent rate performance, robust storage capacity and remarkable cycling stability. It had a specific capacity of 333 mAh g−1 at 1 C, 205 mAh g−1 at 3 C, and retained 81.57% capacity after 500 cycles. Even at 5 C, BFAC@MEG exhibits a high reversible capacity of 98 mAh g−1 after 200 cycles. After cycling, SEM and XPS analyses revealed a low expansion rate of 15.96% cross-sectional expansion after 300 cycles at 3 C and a stable solid electrolyte interphase (SEI) film rich in LiF and Li2CO3. Full article
(This article belongs to the Special Issue Electrode Materials for Advanced Rechargeable Batteries)
Show Figures

Figure 1

13 pages, 7000 KiB  
Communication
Anion-Enriched Interfacial Chemistry Enabled by Effective Ion Transport Channels for Stable Lithium Metal Batteries
by Yi Li, Hongwei Huang, Haojun Liu, Dedong Shan, Xuezhong He, Lingkai Kong, Jing Wang, Qian Li and Jian Yang
Materials 2025, 18(11), 2415; https://doi.org/10.3390/ma18112415 - 22 May 2025
Viewed by 427
Abstract
The formation of unstable solid electrolyte interphases (SEIs) on the surface of lithium metal anodes poses a significant barrier to the commercialization of lithium metal batteries (LMBs). Rational modulation of solvation structures within the electrolytes emerged as one of the most effective strategies [...] Read more.
The formation of unstable solid electrolyte interphases (SEIs) on the surface of lithium metal anodes poses a significant barrier to the commercialization of lithium metal batteries (LMBs). Rational modulation of solvation structures within the electrolytes emerged as one of the most effective strategies to enhance interfacial stability in LMBs; however, this approach often compromises the structural stability of the bulk electrolyte. Herein, we present an innovative method that improves interface stability without adversely affecting the bulk electrolyte’s structural stability. By employing ZSM molecular sieves as efficient ion channels on the lithium metal anode surface—termed ZSM electrolytes—a more aggregated solvation structure is induced at the lithium metal interface, resulting in an anion-rich interphase. This anion-enriched environment promotes the formation of an SEI derived from anions, thereby enhancing the stability of the lithium metal interface. Consequently, Li||Cu cells utilizing the ZSM electrolyte achieve an average coulombic efficiency (CE) of 98.76% over 700 h. Moreover, LiFePO4||Li batteries exhibit stable cycling performance exceeding 900 cycles at a current density of 1 C. This design strategy offers robust support for effective interfacial regulation in lithium metal batteries. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

10 pages, 3197 KiB  
Article
Enhanced Sodium Storage Performance of Few-Layer Graphene-Encapsulated Hard Carbon Fiber Composite Electrodes
by Bo Zhu, Tiany Ji, Qiong Liu and Lixin Li
Batteries 2025, 11(5), 203; https://doi.org/10.3390/batteries11050203 - 21 May 2025
Viewed by 581
Abstract
Hard carbon anodes are promising for sodium-ion batteries due to their low cost and high reversible capacity. However, the long-term Na+ (de)intercalating process destroys the structure of the two-phase interface between the electrode and electrolyte, impairing cycling stability. In this paper, a [...] Read more.
Hard carbon anodes are promising for sodium-ion batteries due to their low cost and high reversible capacity. However, the long-term Na+ (de)intercalating process destroys the structure of the two-phase interface between the electrode and electrolyte, impairing cycling stability. In this paper, a few-layer graphene (FLG)-coated hard carbon fiber composite is constructed. A uniform graphene encapsulation is confirmed by synchrotron small-angle X-ray scattering and transmission electron microscopy technologies. Post-cycling observation reveals FLG participation in forming a hybrid solid electrolyte interphase (SEI). At a proper concentration, the FLG with a small specific surface area and pore size characteristics is well matched in the SEI. The FLG-integrated SEI not only mitigates volume expansion but also enhances ion conductivity through its oxygen-rich functional groups. As a result, the composite structure maintains 98.2% capacity retention after 100 cycles and reaches 164 mAh g−1 at 1000 mA g−1, compared to 97 mAh g−1 for the pristine hard carbon. This work demonstrates that FLG coating simultaneously stabilizes the interfacial chemistry and improves the ion transport, offering a practical pathway to advance hard carbon anodes for high-performance sodium-ion batteries. Full article
Show Figures

Figure 1

19 pages, 3864 KiB  
Article
A Fast SOC Balancing Method for MMC-BESS Based on Nonlinear Model-Predictive Control
by Xiaofan Ji, Fengxiang Xie, Yuantang Qi, Yongdong Ji, Decun Niu and Qizhong Yan
Energies 2025, 18(10), 2502; https://doi.org/10.3390/en18102502 - 13 May 2025
Viewed by 362
Abstract
In modular multilevel converter battery energy storage systems (MMC-BESS), state-of-charge (SOC) balancing is essential for ensuring safe and reliable operation. Existing methods based on linear controllers or conventional model-predictive control (MPC) often suffer from slow balancing speed, difficult parameter tuning, and high computational [...] Read more.
In modular multilevel converter battery energy storage systems (MMC-BESS), state-of-charge (SOC) balancing is essential for ensuring safe and reliable operation. Existing methods based on linear controllers or conventional model-predictive control (MPC) often suffer from slow balancing speed, difficult parameter tuning, and high computational burden. To address these challenges, this paper proposes a fast SOC balancing strategy based on nonlinear MPC. A nonlinear state-space model is first developed and then linearized to enable discrete single-step prediction of arm- and phase-level SOC values. A two-stage control scheme is introduced to coordinate inter-arm and inter-phase SOC balancing, significantly reducing the number of state variables involved in the MPC formulation. The proposed method eliminates the need for circulating current reference calculation and control parameter tuning. Simulation results demonstrate that the proposed method takes approximately 17.5 s and 39 s for inter-arm and inter-phase SOC balancing, respectively, while traditional three-level SOC balancing takes approximately 42 s and 88 s. Full article
(This article belongs to the Special Issue Control and Optimization of Power Converters)
Show Figures

Figure 1

18 pages, 5050 KiB  
Article
Study on Direct-Contact Prelithiation of Soft Carbon Anodes Using Lithium Foil for Lithium-Ion Capacitors
by Minji Kang, Sanghyeock Jeong, Gabjin Hwang and Cheolhwi Ryu
Energies 2025, 18(9), 2276; https://doi.org/10.3390/en18092276 - 29 Apr 2025
Viewed by 410
Abstract
As the global energy demand continues to rise, the utilization of lithium-ion capacitors (LICs), which combine the advantages of lithium-ion batteries (LIBs) and electrochemical capacitors (ECs), is also increasing. LICs offer high energy density, high power density, and a long life cycle. However, [...] Read more.
As the global energy demand continues to rise, the utilization of lithium-ion capacitors (LICs), which combine the advantages of lithium-ion batteries (LIBs) and electrochemical capacitors (ECs), is also increasing. LICs offer high energy density, high power density, and a long life cycle. However, a prelithiation process is required for graphite-based anode materials. In LICs, the formation of the solid electrolyte interphase (SEI) layer inevitably causes an initial irreversible capacity loss, often resulting in the excessive consumption of lithium ions. Considering the limited lithium resources, prelithiation is essential to achieve a satisfactory electrochemical performance in LICs. Various anode prelithiation techniques have been reported to enhance the capacity of LIBs and LICs. Among these, the direct-contact prelithiation method involves physically contacting lithium metal with the electrode or active material. In this study, direct-contact prelithiation was performed on soft carbon-based anode materials, and LICs were fabricated using activated carbon-based cathode materials. The electrochemical properties of the fabricated LICs were evaluated to demonstrate the feasibility of applying the direct-contact prelithiation technique. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

Back to TopTop