Enhanced Sodium Storage Performance of Few-Layer Graphene-Encapsulated Hard Carbon Fiber Composite Electrodes
Abstract
:1. Introduction
2. Experiment
2.1. Preparation
2.2. Structural Characterization
2.3. Electrochemical Testing
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, C.; Wang, Q.; Yao, Z.; Wang, J.; Sánchez-Lengeling, B.; Ding, F.; Qi, X.; Lu, Y.; Bai, X.; Li, B.; et al. Rational design of layered oxide materials for sodium-ion batteries. Science 2020, 370, 708–711. [Google Scholar] [CrossRef] [PubMed]
- Ge, B.; Deng, J.; Wang, Z.; Liang, Q.; Hu, L.; Ren, X.; Li, R.; Lin, Y.; Li, Y.; Wang, Q.; et al. Aggregate-Dominated Dilute Electrolytes with Low-Temperature-Resistant Ion-Conducting Channels for Highly Reversible Na Plating/Stripping. Adv. Mater. 2024, 36, 2408161. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Ji, T.; Zhang, M.; Yan, X.; Yao, M.; Sheng, D.; Li, S.; Ren, P.; Shen, Z. Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chin. Chem. Lett. 2025, 36, 109551. [Google Scholar] [CrossRef]
- Reddy, M.A.; Helen, M.; Groß, A.; Fichtner, M.; Euchner, H. Insight into Sodium Insertion and the Storage Mechanism in Hard Carbon. ACS Energy Lett. 2018, 3, 2851–2857. [Google Scholar] [CrossRef]
- Iglesias, L.K.; Antonio, E.N.; Martinez, T.D.; Zhang, L.; Zhuo, Z.; Weigand, S.J.; Guo, J.; Toney, M. Revealing the Sodium Storage Mechanisms in Hard Carbon Pores. Adv. Energy Mater. 2023, 13, 2302171. [Google Scholar] [CrossRef]
- Ji, T.; Liu, X.; Sheng, D.; Li, Y.; Ruan, H.; Guo, H.; Shen, Z.X.; Lai, L. Machine learning-assisted thermomechanical coupling fabrication of hard carbon for sodium-ion batteries. Energy Storage Mater. 2024, 71, 103563. [Google Scholar] [CrossRef]
- Li, Y.; Vasileiadis, A.; Zhou, Q.; Lu, Y.; Meng, Q.; Li, Y.; Ombrini, P.; Zhao, J.; Chen, Z.; Niu, Y.; et al. Origin of fast charging in hard carbon anodes. Nat. Energy 2024, 9, 134–142. [Google Scholar] [CrossRef]
- He, X.; Lai, W.; Liang, Y.; Zhao, J.-H.; Yang, Z.; Peng, J.; Liu, X.-H.; Wang, Y.-X.; Qiao, Y.; Li, L.; et al. Achieving All-Plateau and High-Capacity Sodium Insertion in Topological Graphitized Carbon. Adv. Mater. 2023, 35, 2302613. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, C.; He, X.; Zhao, J.; Yang, Z.; Li, L.; Wu, X.; Li, L.; Chou, S. Boosting the Development of Hard Carbon for Sodium-Ion Batteries: Strategies to Optimize the Initial Coulombic Efficiency. Adv. Funct. Mater. 2023, 34, 2302277. [Google Scholar] [CrossRef]
- Ji, T.; Liu, X.; Wang, T.; Shi, Y.; Sheng, D.; Hao, X.; He, C.; Shen, Z. Commercial Carbon Fibers as Host for Sodium Deposition to Achieve High Volumetric Capacity. Adv. Funct. Mater. 2024, 34, 2408880. [Google Scholar] [CrossRef]
- Li, W.; Guo, X.; Song, K.; Chen, J.; Zhang, J.; Tang, G.; Liu, C.; Chen, W.; Shen, C. Binder-Induced Ultrathin SEI for Defect-Passivated Hard Carbon Enables Highly Reversible Sodium-Ion Storage. Adv. Energy Mater. 2023, 13, 2300648. [Google Scholar] [CrossRef]
- Lu, Z.; Geng, C.; Yang, H.; He, P.; Wu, S.; Yang, Q.; Zhou, H. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Proc. Natl. Acad. Sci. USA 2022, 119, e2210203119. [Google Scholar] [CrossRef]
- Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J. New Concepts in Electrolytes. Chem. Rev. 2020, 120, 6783–6819. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Rao, A.M.; Han, X.; Lu, B. Artificial SEI for Superhigh-Performance K-Graphite Anode. Adv. Sci. 2021, 8, 2003639. [Google Scholar] [CrossRef]
- Surace, Y.; Leanza, D.; Mirolo, M.; Kondracki, Ł.; Vaz, C.; El Kazzi, M.; Novák, P.; Trabesinger, S. Evidence for stepwise formation of solid electrolyte interphase in a Li-ion battery. Energy Storage Mater. 2022, 44, 156–167. [Google Scholar] [CrossRef]
- Yan, C.; Li, H.; Chen, X.; Zhang, X.; Cheng, X.-B.; Xu, R.; Huang, J.; Zhang, Q. Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes. J. Am. Chem. Soc. 2019, 141, 9422–9429. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, F.; Li, Y.; Liu, M.; Feng, X.; Bai, Y.; Wu, C. Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 2022, 51, 4484–4536. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, J.; Wang, P.; Liu, H.; Zeng, W.; Chen, L.; Chen, Z.; Mu, S. NH2-MIL-125 (Ti) derived flower-like fine TiO2 nanoparticles implanted in N-doped porous carbon as an anode with high activity and long cycle life for lithium-ion batteries. Acta Phys.Chim. Sin. 2022, 38, 2106002. [Google Scholar]
- Lu, H.; Chen, X.; Jia, Y.; Chen, H.; Wang, Y.; Ai, X.; Yang, H.; Cao, Y. Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. Nano Energy 2019, 64, 103903. [Google Scholar] [CrossRef]
- Li, Y.; Xu, S.; Wu, X.; Yu, J.; Wang, Y.; Hu, Y.-S.; Li, H.; Chen, L.; Huang, X. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 71–77. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Y.; Zhao, P.; Yuan, C.; Chen, M.; Wang, C. Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode. Carbon 2018, 129, 85–94. [Google Scholar] [CrossRef]
- Cheng, D.; Li, Z.; Zhang, M.; Duan, Z.; Wang, J.; Wang, C. Engineering Ultrathin Carbon Layer on Porous Hard Carbon Boosts Sodium Storage with High Initial Coulombic Efficiency. ACS Nano 2023, 17, 19063–19075. [Google Scholar] [CrossRef]
- Yu, Z.; Xin, S.; You, Y.; Yu, L.; Lin, Y.; Xu, D.; Qiao, C.; Huang, Z.; Yang, N.; Yu, S.; et al. Ion-Catalyzed Synthesis of Microporous Hard Carbon Embedded with Expanded Nanographite for Enhanced Lithium/Sodium Storage. J. Am. Chem. Soc. 2016, 138, 14915–14922. [Google Scholar] [CrossRef]
- Ji, T.; Liu, X.; Zhang, T.; Shi, Y.; Sheng, D.; Yin, H.; Shen, Z.X.; Chao, D. Potassium Metal Underpotential Deposition in Crystalline Carbon of Potassium—Ion Batteries. Adv. Energy Mater. 2024, 14, 2401908. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, W.; Luo, K.; Song, Y.; Zhong, Y.; Liu, Y.; Wang, G.; Zhong, B.; Wu, Z.; Guo, X. Hard carbon for sodium storage: Mechanism and optimization strategies toward commercialization. Energy Environ. Sci. 2021, 14, 2244–2262. [Google Scholar] [CrossRef]
- Dou, X.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 2019, 23, 87–104. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, Z.; Madhu, R.; Xie, F.; Chen, R.; Wang, J.; Tebyetekerwa, M.; Hu, Y.-S.; Titirici, M. Homogenous metallic deposition regulated by defect-rich skeletons for sodium metal batteries. Energy Environ. Sci. 2021, 14, 6381–6393. [Google Scholar] [CrossRef]
- Bommier, C.; Surta, T.W.; Dolgos, M.; Ji, X. New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon. Nano Lett. 2015, 15, 5888–5892. [Google Scholar] [CrossRef] [PubMed]
- Novko, D.; Zhang, Q.; Kaghazchi, P. Nonadiabatic Effects in Raman Spectra of AlCl4-graphite Based Batteries. Phys. Rev. Appl. 2019, 12, 024016. [Google Scholar] [CrossRef]
- Li, J.; Yin, J.; Feng, Y.; Liu, Y.; Zhao, H.; Li, Y.; Zhu, C.; Su, B.; Yue, D.; Liu, X. Role of interface between BNNS and LDPE in excellent electrical, thermal and mechanical properties of LDPE/BNNS composites. J. Mater. Sci. Mater. Electron. 2019, 30, 1531–1540. [Google Scholar] [CrossRef]
- Morikawa, Y.; Nishimura, S.; Hashimoto, R.; Ohnuma, M.; Yamada, A. Mechanism of Sodium Storage in Hard Carbon: An X-Ray Scattering Analysis. Adv. Energy Mater. 2020, 10, 1903176. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Gu, J.; Wang, H.; Liu, H.; Shen, Z. Inspired by nature: Self-fractal cobalt sulfate composite electrode for sodium ion storage. Chin. Chem. Lett. 2023, 34, 108471. [Google Scholar] [CrossRef]
- Chen, X.; Tian, J.; Li, P.; Fang, Y.; Fang, Y.; Liang, X.; Feng, J.; Dong, J.; Ai, X.; Yang, H.; et al. An Overall Understanding of Sodium Storage Behaviors in Hard Carbons by an “Adsorption-Intercalation/Filling” Hybrid Mechanism. Adv. Energy Mater. 2022, 12, 2200886. [Google Scholar] [CrossRef]
- Huang, Y.; Zhong, X.; Hu, X.; Li, Y.; Wang, K.; Tu, H.; Deng, W.; Zou, G.; Hou, H.; Ji, X. Rationally Designing Closed Pore Structure by Carbon Dots to Evoke Sodium Storage Sites of Hard Carbon in Low-Potential Region. Adv. Funct. Mater. 2024, 34, 2308392. [Google Scholar] [CrossRef]
- Chang, Z.; Yang, H.; Qiao, Y.; Zhu, X.; He, P.; Zhou, H. Tailoring the Solvation Sheath of Cations by Constructing Electrode Front-Faces for Rechargeable Batteries. Adv. Mater. 2022, 34, 2201339. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Xue, G.; Li, C.; Zhao, S.; Zheng, Y.; He, Y.; Yuan, R.; Wang, K.; Mo, T.; Xiang, Y.; et al. Accelerating Ion Desolvation via Bioinspired Ion Channel Design in Nonconcentrated Aqueous Electrolytes. J. Am. Chem. Soc. 2025, 147, 5943–5954. [Google Scholar] [CrossRef]
- Zhang, X.; Song, T.; He, T.; Ma, Q.; Wu, Z.; Wang, Y.; Xiong, H. Sub-Nanometer Porous Carbon Materials for High-Performance Supercapacitors Using Carbon Dots as Self-templated Pore-Makers. Adv. Funct. Mater. 2024, 35, 2419219. [Google Scholar] [CrossRef]
- Zhou, C.; Li, A.; Cao, B.; Chen, X.; Jia, M.; Song, H. The Non-Ignorable Impact of Surface Oxygen Groups on the Electrochemical Performance of N/O Dual-Doped Carbon Anodes for Sodium Ion Batteries. J. Electrochem. Soc. 2018, 165, A1447. [Google Scholar] [CrossRef]
- Song, Z.; Di, M.; Chen, S.; Bai, Y. Three-dimensional N/O co-doped hard carbon anode enabled superior stabilities for sodium-ion batteries. Chem. Eng. J. 2023, 470, 144237. [Google Scholar] [CrossRef]
- Jialin, G.; Zheng, P. Graphene-coated micro/nanostructure hard carbon with improved electrochemical performance for sodium-ion battery. Appl. Phys. A 2021, 127, 509. [Google Scholar] [CrossRef]
- Gong, Y.; Yu, C.; Li, Y.; Qian, J.; Wu, C.; Bai, Y. Constructing Robust Solid Electrolyte Interface via ZrO2 Coating Layer for Hard Carbon Anode in Sodium-Ion Batteries. Batteries 2022, 8, 115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Ji, T.; Liu, Q.; Li, L. Enhanced Sodium Storage Performance of Few-Layer Graphene-Encapsulated Hard Carbon Fiber Composite Electrodes. Batteries 2025, 11, 203. https://doi.org/10.3390/batteries11050203
Zhu B, Ji T, Liu Q, Li L. Enhanced Sodium Storage Performance of Few-Layer Graphene-Encapsulated Hard Carbon Fiber Composite Electrodes. Batteries. 2025; 11(5):203. https://doi.org/10.3390/batteries11050203
Chicago/Turabian StyleZhu, Bo, Tiany Ji, Qiong Liu, and Lixin Li. 2025. "Enhanced Sodium Storage Performance of Few-Layer Graphene-Encapsulated Hard Carbon Fiber Composite Electrodes" Batteries 11, no. 5: 203. https://doi.org/10.3390/batteries11050203
APA StyleZhu, B., Ji, T., Liu, Q., & Li, L. (2025). Enhanced Sodium Storage Performance of Few-Layer Graphene-Encapsulated Hard Carbon Fiber Composite Electrodes. Batteries, 11(5), 203. https://doi.org/10.3390/batteries11050203