Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (274)

Search Parameters:
Keywords = battery aggregation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1585 KiB  
Article
Binary Secretary Bird Optimization Clustering by Novel Fitness Function Based on Voronoi Diagram in Wireless Sensor Networks
by Mohammed Abdulkareem, Hadi S. Aghdasi, Pedram Salehpour and Mina Zolfy
Sensors 2025, 25(14), 4339; https://doi.org/10.3390/s25144339 - 11 Jul 2025
Viewed by 178
Abstract
Minimizing energy consumption remains a critical challenge in wireless sensor networks (WSNs) because of their reliance on nonrechargeable batteries. Clustering-based hierarchical communication has been widely adopted to address this issue by improving residual energy and balancing the network load. In this architecture, cluster [...] Read more.
Minimizing energy consumption remains a critical challenge in wireless sensor networks (WSNs) because of their reliance on nonrechargeable batteries. Clustering-based hierarchical communication has been widely adopted to address this issue by improving residual energy and balancing the network load. In this architecture, cluster heads (CHs) are responsible for data collection, aggregation, and forwarding, making their optimal selection essential for prolonging network lifetime. The effectiveness of CH selection is highly dependent on the choice of metaheuristic optimization method and the design of the fitness function. Although numerous studies have applied metaheuristic algorithms with suitably designed fitness functions to tackle the CH selection problem, many existing approaches fail to fully capture both the spatial distribution of nodes and dynamic energy conditions. To address these limitations, we propose the binary secretary bird optimization clustering (BSBOC) method. BSBOC introduces a binary variant of the secretary bird optimization algorithm (SBOA) to handle the discrete nature of CH selection. Additionally, it defines a novel multiobjective fitness function that, for the first time, considers the Voronoi diagram of CHs as an optimization objective, besides other well-known objectives. BSBOC was thoroughly assessed via comprehensive simulation experiments, benchmarked against two advanced methods (MOBGWO and WAOA), under both homogeneous and heterogeneous network models across two deployment scenarios. Findings from these simulations demonstrated that BSBOC notably decreased energy usage and prolonged network lifetime, highlighting its effectiveness as a reliable method for energy-aware clustering in WSNs. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

38 pages, 1901 KiB  
Article
Aggregator-Based Optimization of Community Solar Energy Trading Under Practical Policy Constraints: A Case Study in Thailand
by Sanvayos Siripoke, Varinvoradee Jaranya, Chalie Charoenlarpnopparut, Ruengwit Khwanrit, Puthisovathat Prum and Prasertsak Charoen
Energies 2025, 18(13), 3231; https://doi.org/10.3390/en18133231 - 20 Jun 2025
Viewed by 1073
Abstract
This paper presents SEAMS (Solar Energy Aggregator Management System), an optimization-based framework for managing solar energy trading in smart communities under Thailand’s regulatory constraints. A major challenge is the prohibition of residential grid feed-in, which limits the use of conventional peer-to-peer energy models. [...] Read more.
This paper presents SEAMS (Solar Energy Aggregator Management System), an optimization-based framework for managing solar energy trading in smart communities under Thailand’s regulatory constraints. A major challenge is the prohibition of residential grid feed-in, which limits the use of conventional peer-to-peer energy models. Additionally, fixed pricing is required to ensure simplicity and trust among users. SEAMS coordinates prosumer and consumer households, a shared battery energy storage system (BESS), and a centralized aggregator (AGG) to minimize total electricity costs while maintaining financial neutrality for the aggregator. A mixed-integer linear programming (MILP) model is developed to jointly optimize PV sizing, BESS capacity, and internal buying price, accounting for Time-of-Use (TOU) tariffs and local policy limitations. Simulation results show that a 6 kW PV system and a 70–75 kWh shared BESS offer optimal performance. A 60:40 prosumer-to-consumer ratio yields the lowest total cost, with up to 49 percent savings compared to grid-only systems. SEAMS demonstrates a scalable and policy-aligned approach to support Thailand’s transition toward decentralized solar energy adoption and improved energy affordability. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

30 pages, 1122 KiB  
Article
Inventory Strategies for Warranty Replacements of Electric Vehicle Batteries Considering Symmetric Demand Statistics
by Miaomiao Feng, Wei Xie and Xia Wang
Symmetry 2025, 17(6), 928; https://doi.org/10.3390/sym17060928 - 11 Jun 2025
Viewed by 313
Abstract
Driven by growing environmental awareness and supportive regulatory frameworks, electric vehicles (EVs) are witnessing accelerating market penetration. However, a key consumer concern remains: the economic impact of battery degradation, manifesting as vehicle depreciation and diminished driving range. To alleviate this concern, EV manufacturers [...] Read more.
Driven by growing environmental awareness and supportive regulatory frameworks, electric vehicles (EVs) are witnessing accelerating market penetration. However, a key consumer concern remains: the economic impact of battery degradation, manifesting as vehicle depreciation and diminished driving range. To alleviate this concern, EV manufacturers commonly offer performance-guaranteed free-replacement warranties, under which batteries are replaced at no cost if capacity falls below a specified threshold within the warranty period. This paper develops a symmetry-informed analytical framework to forecast time-varying aggregate warranty replacement demand (AWRD) and to design optimal battery inventory strategies. By coupling stochastic EV sales dynamics with battery performance degradation thresholds, we construct a demand forecasting model that presents structural symmetry over time. Based on this, two inventory optimization models are proposed: the Service-Level Symmetry Model (SLSM), which prioritizes reliability and customer satisfaction, and the Cost-Efficiency Symmetry Model (CESM), which focuses on economic balance and inventory cost minimization. Comparative analysis demonstrates that CESM achieves superior cost performance, reducing total cost by 20.3% while maintaining operational stability. Moreover, incorporating CESM-derived strategies into SLSM yields a hybrid solution that preserves service-level guarantees and achieves a 3.9% cost reduction. Finally, the applicability and robustness of the AWRD forecasting framework and both symmetry-based inventory models are validated using real-world numerical data and Monte Carlo simulations. This research offers a structured and symmetrical perspective on EV battery warranty management and inventory control, aligning with the core principles of symmetry in complex system optimization. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

29 pages, 2472 KiB  
Article
Prospective Assessment of Life Cycle, Quality, and Cost for Electric Product Improvement: Supporting Prototyping and Conceptualization by Employing CQ-LCA
by Dominika Siwiec and Andrzej Pacana
Energies 2025, 18(12), 3038; https://doi.org/10.3390/en18123038 - 8 Jun 2025
Viewed by 464
Abstract
The process of conceptualisation and prototyping of electric energy products is demanding due to the need for a multifaceted approach to product design. This task becomes even more complex during sustainable development, within which supporting techniques are sought. Energy conversion products such as [...] Read more.
The process of conceptualisation and prototyping of electric energy products is demanding due to the need for a multifaceted approach to product design. This task becomes even more complex during sustainable development, within which supporting techniques are sought. Energy conversion products such as electric motorcycles require special attention due to their impact on energy efficiency, environmental emissions, and operating and production costs. The research gap refers to the lack of a model to aggregate these aspects simultaneously. The objective of the research was to develop a CQ-LCA model (Cost–Quality–Life Cycle Assessment) supporting the creation of alternative product solutions and their evaluation in terms of the following: (i) environmental impact in the life cycle (LCA), (ii) quality, and (iii) production and/or purchase costs. The model was developed in seven main stages and tested for electric motorcycles and their ten prototypes, which are examples of modern products that convert electrical energy into mechanical energy. Using the EDAS method, the quality of electric motorcycle prototypes was calculated. Then, by the LCA method according to ISO 14040, the CO2 emissions were estimated and modelled adequately to quality change. Next, by the parametric model based on the static method and the cost value function, including the nominal least squares method, the cost was estimated adequately to quality and environmental change. The model provided a qualitative and quantitative interpretation of electric motorcycle prototypes (CQ-LCA), allowing for the consideration of product characteristics, such as engine power, charging time, and battery capacity, but also environmental impacts and costs. The originality is the provision of a multi-aspect morphological analysis, after which different scenarios of product solutions. The model can be useful for various commonly used energy-converting products. Full article
Show Figures

Figure 1

13 pages, 7000 KiB  
Communication
Anion-Enriched Interfacial Chemistry Enabled by Effective Ion Transport Channels for Stable Lithium Metal Batteries
by Yi Li, Hongwei Huang, Haojun Liu, Dedong Shan, Xuezhong He, Lingkai Kong, Jing Wang, Qian Li and Jian Yang
Materials 2025, 18(11), 2415; https://doi.org/10.3390/ma18112415 - 22 May 2025
Viewed by 409
Abstract
The formation of unstable solid electrolyte interphases (SEIs) on the surface of lithium metal anodes poses a significant barrier to the commercialization of lithium metal batteries (LMBs). Rational modulation of solvation structures within the electrolytes emerged as one of the most effective strategies [...] Read more.
The formation of unstable solid electrolyte interphases (SEIs) on the surface of lithium metal anodes poses a significant barrier to the commercialization of lithium metal batteries (LMBs). Rational modulation of solvation structures within the electrolytes emerged as one of the most effective strategies to enhance interfacial stability in LMBs; however, this approach often compromises the structural stability of the bulk electrolyte. Herein, we present an innovative method that improves interface stability without adversely affecting the bulk electrolyte’s structural stability. By employing ZSM molecular sieves as efficient ion channels on the lithium metal anode surface—termed ZSM electrolytes—a more aggregated solvation structure is induced at the lithium metal interface, resulting in an anion-rich interphase. This anion-enriched environment promotes the formation of an SEI derived from anions, thereby enhancing the stability of the lithium metal interface. Consequently, Li||Cu cells utilizing the ZSM electrolyte achieve an average coulombic efficiency (CE) of 98.76% over 700 h. Moreover, LiFePO4||Li batteries exhibit stable cycling performance exceeding 900 cycles at a current density of 1 C. This design strategy offers robust support for effective interfacial regulation in lithium metal batteries. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

28 pages, 2079 KiB  
Article
Energy Valorization Strategies in Rural Renewable Energy Communities: A Path to Social Revitalization and Sustainable Development
by Cristina Sanz-Cuadrado, Luis Narvarte and Ana Belén Cristóbal
Energies 2025, 18(10), 2561; https://doi.org/10.3390/en18102561 - 15 May 2025
Viewed by 549
Abstract
Energy communities led by local citizens are vital for achieving the European energy transition goals. This study examines the design of a regional energy community in a rural area of Spain, aiming to address the pressing issue of rural depopulation. Seven villages were [...] Read more.
Energy communities led by local citizens are vital for achieving the European energy transition goals. This study examines the design of a regional energy community in a rural area of Spain, aiming to address the pressing issue of rural depopulation. Seven villages were selected based on criteria such as size, energy demand, population, and proximity to infrastructure. Three energy valorization scenarios, generating eight subscenarios, were analyzed: (1) self-consumption, including direct sale (1A), net billing (1B), and selling to other consumers (1C); (2) battery storage, including storing for self-consumption (2A), battery-to-grid (2B), and electric vehicle recharging points (2C); and (3) advanced options such as hydrogen refueling stations (3A) and hydrogen-based fertilizer production (3B). The findings underscore that designing rural energy communities with a focus on social impact—especially in relation to depopulation—requires an innovative approach to both their design and operation. Although none of the scenarios alone can fully reverse depopulation trends or drive systemic change, they can significantly mitigate the issue if social impact is embedded as a core principle. For rural energy communities to effectively tackle depopulation, strategies such as acting as an energy retailer or aggregating individual villages into a single, unified energy community structure are crucial. These approaches align with the primary objective of revitalizing rural communities through the energy transition. Full article
Show Figures

Figure 1

36 pages, 20097 KiB  
Article
Optimal Siting and Sizing of Battery Energy Storage System in Distribution System in View of Resource Uncertainty
by Gauri Mandar Karve, Mangesh S. Thakare and Geetanjali A. Vaidya
Energies 2025, 18(9), 2340; https://doi.org/10.3390/en18092340 - 3 May 2025
Viewed by 599
Abstract
The integration of intermittent Distributed Generations (DGs) like solar photovoltaics into Radial Distribution Systems (RDSs) reduces system losses but causes voltage and power instability issues. It has also been observed that seasonal variations affect the performance of such DGs. These issues can be [...] Read more.
The integration of intermittent Distributed Generations (DGs) like solar photovoltaics into Radial Distribution Systems (RDSs) reduces system losses but causes voltage and power instability issues. It has also been observed that seasonal variations affect the performance of such DGs. These issues can be resolved by placing optimum-sized Battery Energy Storage (BES) Systems into RDSs. This work proposes a new approach to the placement of optimally sized BESSs considering multiple objectives, Active Power Losses, the Power Stability Index, and the Voltage Stability Index, which are prioritized using the Weighted Sum Method. The proposed multi-objectives are investigated using the probabilistic and Polynomial Multiple Regression (PMR) approaches to account for the randomness in solar irradiance and its effect on BESS sizing and placements. To analyze system behavior, simultaneous and sequential strategies considering aggregated and distributed BESS placement are executed on IEEE 33-bus and 94-bus Portuguese RDSs by applying the Improved Grey Wolf Optimization and TOPSIS techniques. Significant loss reduction is observed in distributed BESS placement compared to aggregated BESSs. Also, the sequentially distributed BESS stabilized the RDS to a greater extent than the simultaneously distributed BESS. In view of the uncertainty, the probabilistic and PMR approaches require a larger optimal BESS size than the deterministic approach, representing practical systems. Additionally, the results are validated using Improved Particle Swarm Optimization–TOPSIS techniques. Full article
Show Figures

Figure 1

20 pages, 16930 KiB  
Article
Design of Magnetic Concrete for Inductive Power Transfer System in Rail Applications
by Karl Lin, Shen-En Chen, Tiefu Zhao, Nicole L. Braxtan, Xiuhu Sun and Lynn Harris
Appl. Sci. 2025, 15(9), 4987; https://doi.org/10.3390/app15094987 - 30 Apr 2025
Viewed by 566
Abstract
Inductive power transfer (IPT) systems are transforming railway infrastructure by enabling efficient, wireless energy transmission for electric locomotives equipped with Li-ion batteries. This technology eliminates the need for overhead power lines and third rails, offering financial and operational advantages over conventional electric propulsion [...] Read more.
Inductive power transfer (IPT) systems are transforming railway infrastructure by enabling efficient, wireless energy transmission for electric locomotives equipped with Li-ion batteries. This technology eliminates the need for overhead power lines and third rails, offering financial and operational advantages over conventional electric propulsion systems. Despite its potential, IPT deployment in rail applications faces significant challenges, including the fragility of materials (i.e., ferrite and Litz wires), thermal management during high-power transfers, and electromagnetic interference (EMI) on the transmitter side. This study discusses several factors affecting IPT efficiency and introduces magnetic concrete as a durable and cost-effective material solution for IPT systems. Magnetic concrete combines soft ferrite powder with water and coarse aggregates to enhance magnetic functionality while maintaining structural strength comparable to conventional concrete. Its durability and optimized magnetic properties promote consistent power transfer efficiency, making it a viable alternative to traditional ferrite cores. A comparative study has been performed on non-magnetic and magnetic concrete (with 33% ferrite powder) using both permeability tests and finite element analysis (FEA). The FEA includes both thermal and electromagnetic simulations using Ansys Maxwell (v.16), revealing that magnetic concrete can improve temperature management and EMI mitigation, and the findings underscore its potential to revolutionize IPT technology by overcoming the limitations of traditional materials and enhancing durability, cost-efficiency, and power transfer efficiency. By addressing the challenges of fragility, thermal management, and shielding of the unique coil topology design presented, this study lays the groundwork for improving IPT infrastructure in sustainable and efficient rail transport systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

13 pages, 5903 KiB  
Article
Assembled Carbon Nanostructure Prepared by Spray Freeze Drying for Si-Based Anodes
by Wanxiong Zhu, Liewen Guo, Kairan Li, Mengxue Shen, Chang Lu, Zipeng Jiang, Huaihe Song and Ang Li
Nanomaterials 2025, 15(9), 661; https://doi.org/10.3390/nano15090661 - 26 Apr 2025
Viewed by 494
Abstract
Silicon-based materials provide a new pathway to break through the energy storage limits of battery systems but their industrialization process is still constrained by inherent diffusion hysteresis and unstable electrode structures. In this work, we propose a novel structural design strategy employing a [...] Read more.
Silicon-based materials provide a new pathway to break through the energy storage limits of battery systems but their industrialization process is still constrained by inherent diffusion hysteresis and unstable electrode structures. In this work, we propose a novel structural design strategy employing a modified spray freeze drying technique to construct multidimensional carbon nanostructures. The continuous morphological transition from carbon nanowires to carbon nanosheets was facilitated by the inducement of ultralow-temperature phase separation and the effect of polymer self-assembly. The unique wrinkled carbon nanosheet encapsulation effectively mitigated the stress concentration induced by the aggregation of silicon nanoparticles, while the open two-dimensional structure buffered the volume changes of silicon. As expected, the SSC-5M composite retained a reversible capacity of 1279 mAh g−1 after 100 cycles at 0.2 C (1 C = 1700 mAh g−1) and exhibited a capacity retention of 677.1 mAh g−1 after 400 cycles at 1 C, demonstrating excellent cycling stability. This study offers a new strategy for the development of silicon-based energy storage devices. Full article
(This article belongs to the Special Issue Nanoscale Carbon Materials for Advanced Energy-Related Applications)
Show Figures

Figure 1

22 pages, 7142 KiB  
Article
Zeolitic Imidazolate Framework-67-Derived NiCoMn-Layered Double Hydroxides Nanosheets Dispersedly Grown on the Conductive Networks of Single-Walled Carbon Nanotubes for High-Performance Hybrid Supercapacitors
by Yingying Li, Qin Zhou and Yongfu Lian
Nanomaterials 2025, 15(7), 481; https://doi.org/10.3390/nano15070481 - 23 Mar 2025
Viewed by 598
Abstract
A supercapacitor’s energy storage capability is greatly dependent on electrode materials. Layered double hydroxides (LDHs) were extensively studied as battery-type electrodes because of their 2D structure and quick intercalation/deintercalation of electrolyte ions. However, the energy storage capability for pristine LDHs is limited by [...] Read more.
A supercapacitor’s energy storage capability is greatly dependent on electrode materials. Layered double hydroxides (LDHs) were extensively studied as battery-type electrodes because of their 2D structure and quick intercalation/deintercalation of electrolyte ions. However, the energy storage capability for pristine LDHs is limited by their large aggregation tendency and poor electrical conductivity. Herein, a novel NiCoMn-LDH/SWCNTs (single-walled carbon nanotubes) composite electrode material, with ultrathin NiCoMn-LDH nanosheets dispersedly grown among the highly conductive networks of SWCNTs, was prepared via a facile zeolitic imidazolate framework-67 (ZIF-67)-derived in situ etching and deposition procedure. The NiCoMn-LDH/SWCNTs electrode demonstrates a specific capacitance as large as 1704.3 F g−1 at 1 A g−1, which is ascribed to its exposure of more active sites than NiCoMn-LDH. Moreover, the assembled NiCoMn-LDH/SWCNTs//BGA (boron-doped graphene aerogel) hybrid supercapacitor exhibits a superior capacitance of 167.9 F g−1 at 1.0 A g−1, an excellent energy density of 45.7 Wh kg−1 with a power density of 700 W kg−1, and an outstanding cyclic stability with 82.3% incipient capacitance maintained when subjected to 5000 charge and discharge cycles at the current density of 10 A g−1, suggesting the significant potential of NiCoMn-LDH/SWCNTs as the electrode material applicable in supercapacitors. Full article
Show Figures

Graphical abstract

15 pages, 4112 KiB  
Article
Carbon-Coated CF-Si/Al Anodes for Improved Lithium-Ion Battery Performance
by Liangliang Zeng, Peng Li, Mi Ouyang, Shujuan Gao and Kun Liang
Batteries 2025, 11(3), 114; https://doi.org/10.3390/batteries11030114 - 18 Mar 2025
Viewed by 914
Abstract
Despite their high specific capacity, magnetron-sputtered Si/Al thin films face rapid capacity decay due to stress-induced cracking, delamination, and detrimental electrolyte reactions. This study introduces a carbon-coated composite anode that overcomes these limitations, delivering superior reversible capacity, exceptional rate capability, and stable cycling [...] Read more.
Despite their high specific capacity, magnetron-sputtered Si/Al thin films face rapid capacity decay due to stress-induced cracking, delamination, and detrimental electrolyte reactions. This study introduces a carbon-coated composite anode that overcomes these limitations, delivering superior reversible capacity, exceptional rate capability, and stable cycling performance. An electrochemical evaluation reveals that the CF-Si/Al@C-500-1h composite exhibits marked enhancements in capacity retention (43.5% after 100 cycles at 0.6 A·g−1) and rate capability, maintaining 579.1 mAh·g−1 at 3 A·g−1 (1 C). The carbon layer enhances electrical conductivity, buffers volume expansion during lithiation/delithiation, and suppresses silicon aggregation and electrolyte side reactions. Coupled with an aluminum framework, this architecture ensures robust structural integrity and efficient lithium-ion transport. These advancements position CF-Si/Al@C-500-1h as a promising anode material for next-generation lithium-ion batteries, while insights into scalable fabrication and carbon integration strategies pave the way for practical applications. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Battery Applications)
Show Figures

Figure 1

11 pages, 1651 KiB  
Article
Modelling of the Power Demand of Peripheral Aggregates of an Airborne Fuel Cell-Based Power System
by Nejat Mahdavi
Aerospace 2025, 12(3), 234; https://doi.org/10.3390/aerospace12030234 - 13 Mar 2025
Viewed by 603
Abstract
Because of the higher energy density of hydrogen as a clean energy source, the use of proton exchange membrane fuel cells (PEMFCs) for aviation applications has become an important research topic in recent years. Unlike batteries, fuel cells require a lot of peripheral [...] Read more.
Because of the higher energy density of hydrogen as a clean energy source, the use of proton exchange membrane fuel cells (PEMFCs) for aviation applications has become an important research topic in recent years. Unlike batteries, fuel cells require a lot of peripheral aggregates to operate properly. The peripheral aggregates of a fuel cell, which constitute the so-called balance of plant (BoP), consume a certain part of the power generated by the fuel cell stack, which reduces the overall efficiency of the fuel cell system. One of the greatest challenges in the design of a fuel cell system is the sizing of the fuel cell stack and the determination of the internal power consumption of the BoP. This paper models the power demand of the BoP of a fuel cell system based on an automotive fuel cell power system. Furthermore, the effect of flight altitude on the power demand of the BoP is investigated. Full article
Show Figures

Figure 1

11 pages, 2083 KiB  
Article
Unlocking the Potential of Na2Ti3O7-C Hollow Microspheres in Sodium-Ion Batteries via Template-Free Synthesis
by Yong-Gang Sun, Yu Hu, Li Dong, Ting-Ting Zhou, Xiang-Yu Qian, Fa-Jia Zhang, Jia-Qi Shen, Zhi-Yang Shan, Li-Ping Yang and Xi-Jie Lin
Nanomaterials 2025, 15(6), 423; https://doi.org/10.3390/nano15060423 - 10 Mar 2025
Viewed by 818
Abstract
Layered sodium trititanate (Na2Ti3O7) is a promising anode material for sodium-ion batteries due to its suitable charge/discharge plateaus, cost-effectiveness, and eco-friendliness. However, its slow Na+ diffusion kinetics, poor electron conductivity, and instability during cycling pose significant [...] Read more.
Layered sodium trititanate (Na2Ti3O7) is a promising anode material for sodium-ion batteries due to its suitable charge/discharge plateaus, cost-effectiveness, and eco-friendliness. However, its slow Na+ diffusion kinetics, poor electron conductivity, and instability during cycling pose significant challenges for practical applications. To address these issues, we developed a template-free method to synthesize Na2Ti3O7-C hollow microspheres. The synthesis began with polymerization-induced colloid aggregation to form a TiO2–urea–formaldehyde (TiO2-UF) precursor, which was then subjected to heat treatment to induce inward crystallization, creating hollow cavities within the microspheres. The hollow structure, combined with a conductive carbon matrix, significantly enhanced the cycling performance and rate capability of the material. When used as an anode, the Na2Ti3O7-C hollow microspheres exhibited a high reversible capacity of 188 mAh g1 at 0.2C and retained 169 mAh g1 after 500 cycles. Additionally, the material demonstrated excellent rate performance with capacities of 157, 133, 105, 77, 62, and 45 mAh g1 at current densities of 0.5, 1, 2, 5, 10, and 20C, respectively. This innovative approach provides a new strategy for developing high-performance sodium-ion battery anodes and has the potential to significantly advance the field of energy storage. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

14 pages, 3683 KiB  
Article
Monodisperse Hierarchical N-Doped Carbon Microspheres with Uniform Pores as a Cathode Host for Advanced K–Se Batteries
by Hyun-Jin Kim, Jeong-Ho Na and Seung-Keun Park
Batteries 2025, 11(3), 101; https://doi.org/10.3390/batteries11030101 - 7 Mar 2025
Cited by 1 | Viewed by 945
Abstract
K–Se batteries offer high energy density and cost-effectiveness, making them promising candidates for energy storage systems. However, their practical applications are hindered by Se aggregation, sluggish ion diffusion, and significant volumetric expansion. To address these challenges, monodisperse hierarchical N-doped carbon microspheres (NCHS) with [...] Read more.
K–Se batteries offer high energy density and cost-effectiveness, making them promising candidates for energy storage systems. However, their practical applications are hindered by Se aggregation, sluggish ion diffusion, and significant volumetric expansion. To address these challenges, monodisperse hierarchical N-doped carbon microspheres (NCHS) with uniformly sized pores were synthesized as cathode hosts. The flower-like microstructure, formed by the assembly of two-dimensional building blocks, mitigated Se aggregation and facilitated uniform distribution within the pores, enhancing Se utilization. Nitrogen doping, introduced during synthesis, strengthened chemical bonding between selenium and the carbon host, suppressed side reactions, and accelerated reaction kinetics. These synergistic effects enabled efficient ion transport, improved electrolyte accessibility, and enhanced redox reactions. Additionally, the uniform particle and pore sizes of NCHS effectively mitigated volumetric expansion and surface accumulation, ensuring long-term cycling stability and superior electrochemical performance. Se-loaded NCHS (Se@NCHS) exhibited a high discharge capacity of 199.4 mA h g−1 at 0.5 C after 500 cycles with 70.4% capacity retention and achieved 188 mA h g−1 at 3.0 C, outperforming conventional carbon hosts such as Super P. This study highlights the significance of structural and chemical modifications in optimizing cathode materials and offers valuable insights for developing high-performance energy storage systems. Full article
Show Figures

Graphical abstract

18 pages, 2631 KiB  
Article
Antioxidant Defenses and Poly(ADP-Ribose) Polymerase (PARP) Activity Provide “Radioresilience” Against Ionizing Radiation-Induced Stress in Dwarf Bean Plants
by Bruno Hay Mele, Anna Rita Bianchi, Valeria Guerretti, Mariagabriella Pugliese, Anna De Maio and Carmen Arena
Antioxidants 2025, 14(3), 261; https://doi.org/10.3390/antiox14030261 - 25 Feb 2025
Viewed by 665
Abstract
Exposure to ionizing radiation (IR) poses a significant risk for all organisms. Although plants are generally more resistant than animals, radiation still impacts their structure and function. Plant resistance to ionizing radiation is a pivotal property to guarantee their survival. This study evaluates [...] Read more.
Exposure to ionizing radiation (IR) poses a significant risk for all organisms. Although plants are generally more resistant than animals, radiation still impacts their structure and function. Plant resistance to ionizing radiation is a pivotal property to guarantee their survival. This study evaluates bean leaves’ early and long-term responses to oxidative stress induced by ionizing radiation. To assess the early response, we measured a battery of photosynthetic efficiency and oxidative stress markers after exposure of dwarf bean plants to X-ray doses of 0.3, 10, 50, and 100 Gy. We observed that doses started to impact photosynthetic activity at 50 Gy and that markers aggregate in two kinds of behaviors. To test the capacity to recover from radiation-induced damages, 50 Gy-irradiated plants were evaluated with the same markers 3-, 10-, 12-, and 20-days post-irradiation. Dwarf beans displayed remarkable resilience, recovering photosynthetic activity to pre-stress level after three days and pigment content after ten days. The remodulation of oxidative stress markers is slower and more complex, with catalase and total polyphenols failing to recover completely and residual antioxidant activity after twenty days. Despite that, PARP activity recovers to pre-irradiation after three days. The restoration of photosynthesis to pre-irradiated conditions highlights the DNA-repairing efficiency of poly(ADP-ribose) polymerase and antioxidant machinery in providing resilience to radiation-induced oxidative stress. Understanding resilience mechanisms sheds light on the ability of plants to survive and thrive in radiation-intense environments, such as space or radioactively contaminated areas. Full article
(This article belongs to the Special Issue Antioxidant Activity of Polyphenolic Extracts)
Show Figures

Figure 1

Back to TopTop