Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = bandstop mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 5339 KiB  
Article
Plasmonic Nanosensors Based on Highly Tunable Multiple Fano Resonances Induced in Metal–Insulator–Metal Waveguide Systems
by Ping Jiang and Yilin Wang
Nanomaterials 2025, 15(9), 686; https://doi.org/10.3390/nano15090686 - 30 Apr 2025
Viewed by 455
Abstract
We designed and investigated a plasmonic nanosensor with ultra-high sensitivity and tunability, which is composed of a metal–insulator–metal (MIM) waveguide integrated with a side-coupled resonator (SR) and metal baffle. Its high performance is derived from Fano resonance, which is generated by the interaction [...] Read more.
We designed and investigated a plasmonic nanosensor with ultra-high sensitivity and tunability, which is composed of a metal–insulator–metal (MIM) waveguide integrated with a side-coupled resonator (SR) and metal baffle. Its high performance is derived from Fano resonance, which is generated by the interaction between the modes of the SR and the baffle, and it can be precisely tuned by adjusting the parameters of the SR. Further investigation based on the incorporation of a side-coupled rectangular-ring resonator (SRR) generates three distinct Fano resonances, and the Fano resonance can be accurately tuned by manipulating the parameters of the resonators within the system. Our proposed plasmonic system can serve as a highly sensitive refractive index nanosensor, achieving a sensitivity up to 1150 nm/RIU. The plasmonic structures featuring independently tunable triple Fano resonances open new avenues for applications in nanosensing, bandstop filtering, and slow-light devices. Full article
(This article belongs to the Special Issue Photonics and Plasmonics of Low-Dimensional Materials)
Show Figures

Figure 1

18 pages, 6465 KiB  
Article
0.5-V High-Order Universal Filter for Bio-Signal Processing Applications
by Montree Kumngern, Fabian Khateb, Tomasz Kulej and Somkiat Lerkvaranyu
Appl. Sci. 2025, 15(7), 3969; https://doi.org/10.3390/app15073969 - 3 Apr 2025
Viewed by 397
Abstract
In this paper, a novel multiple-input operational transconductance amplifier (MI-OTA) is proposed. The MI-OTA can be obtained by using the multiple-input bulk-driven MOS transistor (MIBD MOST) technique. The circuit structure is simple, can operate with a supply voltage of 0.5 V, and consumes [...] Read more.
In this paper, a novel multiple-input operational transconductance amplifier (MI-OTA) is proposed. The MI-OTA can be obtained by using the multiple-input bulk-driven MOS transistor (MIBD MOST) technique. The circuit structure is simple, can operate with a supply voltage of 0.5 V, and consumes 937 pW at a current setting of 625 pA. The proposed MI-OTA was used to implement a high-order multiple-input voltage-mode universal filter. The proposed filter can provide non-inverting and inverting low-pass, high-pass, band-pass, band-stop, and all-pass transfer functions to the same topology. In addition, it has a high input impedance and does not need any inverted input signals, so there is no additional buffering circuit. The proposed filter can be used for biological signal processing. The proposed MI-OTA and the second-order universal filter were simulated in Cadence using CMOS process parameters of 0.18 μm from TSMC to verify the functionality and performance of the new structures. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 6315 KiB  
Article
A 328 nW, 0.45 V Current Differencing Transconductance Amplifier and Its Application in a Current-Mode Universal Filter
by Fabian Khateb, Montree Kumngern, Tomasz Kulej and Jiri Vavra
Appl. Sci. 2025, 15(7), 3471; https://doi.org/10.3390/app15073471 - 21 Mar 2025
Cited by 1 | Viewed by 454
Abstract
This paper presents a low-voltage, low-power current differencing transconductance amplifier (CDTA) utilizing the bulk-driven MOS transistor technique in the subthreshold region for reduced voltage and power consumption. The proposed CDTA includes a z-copy terminal, which enhances its functionality in current-mode circuit applications. Designed [...] Read more.
This paper presents a low-voltage, low-power current differencing transconductance amplifier (CDTA) utilizing the bulk-driven MOS transistor technique in the subthreshold region for reduced voltage and power consumption. The proposed CDTA includes a z-copy terminal, which enhances its functionality in current-mode circuit applications. Designed in the Cadence Virtuoso environment using 0.18 µm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC), the amplifier operates with a supply voltage of 0.45 V and consumes 328 nW of power, with a bias current set to 10 nA. The current bandwidth and offset of the CDTA are 35 kHz and 0.3 nA, respectively. To demonstrate its performance, the CDTA is applied in a current-mode universal filter, which can realize low-pass, band-pass, high-pass, band-stop, and all-pass responses within a single topology. This design eliminates issues related to inverting input signals, input signal matching, or the need for multiple input signals. Additionally, the natural frequency of these filtering functions can be electronically controlled. The low-pass filter achieves a dynamic range of 61 dB, with a total harmonic distortion of 0.8%. Full article
Show Figures

Figure 1

11 pages, 3516 KiB  
Article
High-Sensitivity, High-Resolution Miniaturized Spectrometers for Ultraviolet to Near-Infrared Using Guided-Mode Resonance Filters
by Jingjun Wu, Cong Wei, Hanxiao Cui, Fujia Chen, Kang Hu, Ang Li, Shilong Pan, Yihao Yang, Jun Ma, Zongyin Yang, Wanguo Zheng and Rihong Zhu
Molecules 2024, 29(23), 5580; https://doi.org/10.3390/molecules29235580 - 26 Nov 2024
Viewed by 1312
Abstract
Miniaturized spectrometers have significantly advanced real-time analytical capabilities in fields such as environmental monitoring, healthcare diagnostics, and industrial quality control by enabling precise on-site spectral analysis. However, achieving high sensitivity and spectral resolution within compact devices remains a significant challenge, particularly when detecting [...] Read more.
Miniaturized spectrometers have significantly advanced real-time analytical capabilities in fields such as environmental monitoring, healthcare diagnostics, and industrial quality control by enabling precise on-site spectral analysis. However, achieving high sensitivity and spectral resolution within compact devices remains a significant challenge, particularly when detecting low-concentration analytes or subtle spectral variations critical for chemical and molecular analysis. This study introduces an innovative approach employing guided-mode resonance filters (GMRFs) to address these limitations. Functioning similarly to notch filters, GMRFs selectively block specific spectral bands while allowing others to pass, maximizing energy extraction from incident light and enhancing spectral encoding. Our design incorporates narrow band-stop filters, which are essential for accurate spectrum reconstruction, resulting in improved resolution and sensitivity. Our spectrometer delivers a spectral resolution of 0.8 nm over a range of 370–810 nm. It achieves sensitivity values that are more than ten times greater than those of conventional grating spectrometers during fluorescence spectroscopy of mouse jejunum. This enhanced sensitivity and resolution are particularly beneficial for chemical and biological applications, facilitating the detection of trace analytes in complex matrices. Furthermore, the spectrometer’s compatibility with complementary metal oxide semiconductor (CMOS) technology enables scalable and cost-effective production, fostering broader adoption in chemical analysis, materials science, and biomedical research. This study underscores the transformative potential of the GMRF-based spectrometer as an innovative tool for advancing chemical and interdisciplinary analytical applications. Full article
Show Figures

Figure 1

18 pages, 6152 KiB  
Article
0.5 V, Low-Power Bulk-Driven Current Differencing Transconductance Amplifier
by Montree Kumngern, Fabian Khateb and Tomasz Kulej
Sensors 2024, 24(21), 6852; https://doi.org/10.3390/s24216852 - 25 Oct 2024
Cited by 2 | Viewed by 1162
Abstract
This paper presents a novel low-power low-voltage current differencing transconductance amplifier (CDTA). To achieve a low-voltage low-power CDTA, the BD-MOST (bulk-driven MOS transistor) technique operating in a subthreshold region is used. The proposed CDTA is designed in 0.18 µm CMOS technology, can operate [...] Read more.
This paper presents a novel low-power low-voltage current differencing transconductance amplifier (CDTA). To achieve a low-voltage low-power CDTA, the BD-MOST (bulk-driven MOS transistor) technique operating in a subthreshold region is used. The proposed CDTA is designed in 0.18 µm CMOS technology, can operate with a supply voltage of 0.5 V, and consumes 1.05 μW of power. The proposed CDTA is used to realize a current-mode universal filter. The filter can realize five standard transfer functions of low-pass, band-pass, high-pass and band-stop, and all-pass from the same circuit. Neither component-matching conditions nor input signals of the inverse type are required to realize these filter functions. The current-mode filter offers low-input and high-output impedance and uses grounded capacitors. The natural frequency and quality factor of the filters can be orthogonally controlled. The proposed CDTA and its applications are simulated using SPICE to confirm the feasibility and functionality of the new circuits. Full article
(This article belongs to the Special Issue CMOS Integrated Circuits for Sensor Applications)
Show Figures

Figure 1

25 pages, 6348 KiB  
Article
1-V Mixed-Mode Universal Filter Using Differential Difference Current Conveyor Transconductance Amplifiers
by Montree Kumngern, Fabian Khateb and Tomasz Kulej
Appl. Sci. 2024, 14(20), 9422; https://doi.org/10.3390/app14209422 - 16 Oct 2024
Cited by 2 | Viewed by 1137
Abstract
This paper presents a mixed-mode universal filter using differential difference current conveyor transconductance amplifiers (DDCCTA). Despite using a minimum number of MOS differential pairs, the proposed DDCCTA is a multiple-input, multiple-output device, that was achieved using the multiple-input bulk-driven MOS transistor (MIBD-MOST) technique, [...] Read more.
This paper presents a mixed-mode universal filter using differential difference current conveyor transconductance amplifiers (DDCCTA). Despite using a minimum number of MOS differential pairs, the proposed DDCCTA is a multiple-input, multiple-output device, that was achieved using the multiple-input bulk-driven MOS transistor (MIBD-MOST) technique, multiple-output current followers and transconductance gains. A subthreshold technique is used to achieve minimum power consumption of the DDCCTA. Thanks to the multiple-input and multiple-output of DDCCTA, the mixed-mode universal filter based on the proposed element can realize five standard filter responses, i.e., low-pass, high-pass, band-pass, band-stop, and all-pass responses, of four modes, i.e., voltage-mode, current-mode, transadmittance-mode, and transimpedance-mode, thus providing 194 filter responses from a single circuit. The natural frequency and quality factor of the filter response can be controlled electronically and orthogonally. The proposed DDCCTA and mixed-mode universal filter are simulated and designed using 0.18 μm CMOS technology to confirm the functionality of the new circuit. The mixed-mode universal filter uses ±0.5 V of supply voltage and consumes 0.374 mW of power when operating at a natural frequency of 10 kHz. Full article
Show Figures

Figure 1

13 pages, 3125 KiB  
Article
Optically Transparent Frequency Selective Surfaces with Wideband Capability for IoT Applications: A Polarization-Independent Double-Layer Design
by Omer Faruk Gunaydin and Sultan Can
Sensors 2024, 24(14), 4724; https://doi.org/10.3390/s24144724 - 21 Jul 2024
Cited by 1 | Viewed by 1284
Abstract
This study proposes wide-band frequency selective surfaces (FSS) with polarization-independent characteristics that are tailored for IoT applications. The design consists of two different layers with band-stop characteristics that target key frequency bands in sub-6 GHz: 3.7 GHz (n77) and 4.5 GHz (n79), offering [...] Read more.
This study proposes wide-band frequency selective surfaces (FSS) with polarization-independent characteristics that are tailored for IoT applications. The design consists of two different layers with band-stop characteristics that target key frequency bands in sub-6 GHz: 3.7 GHz (n77) and 4.5 GHz (n79), offering a 1.39 GHz bandwidth spanning from 3.61 GHz to 5.0 GHz. This study also presents a double-layer structure with a WB property with a fractional bandwidth of 32%. Simulations have been conducted to observe variations in insertion loss across incident and polarization angles ranging from 0 to 60 degrees for both TE and TM modes in the suggested FSS structures. These simulations demonstrate the design’s polarization independence. Transparent polyvinyl chloride with a dielectric constant of 2.77 and a thickness of 1.48 mm has been utilized as the substrate material. The optical transmittance is calculated to be 96.7% for Layer 1, 95.7% for Layer 2, and 92.4% for the double-layer structure, and these calculated optical transmittance values were found to be higher compared to the studies in the literature. The proposed design is well-suited for sub-6 GHz IoT applications due to their high transparency, cost-effectiveness, robust high-performance capabilities in suppression, and polarization-independent features. The results of 3D full-wave simulations were compared with measurement and the equivalent circuit model outcomes, and a good agreement between the results was observed. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

17 pages, 2138 KiB  
Article
Band-Stop Frequency-Selective Surface (FSS) with Elliptic Response Designed by the Extracted Pole Technique
by José R. Montejo-Garai, Juan E. Page, Gerardo Perez-Palomino and Robert Guirado
Sensors 2024, 24(14), 4452; https://doi.org/10.3390/s24144452 - 10 Jul 2024
Cited by 1 | Viewed by 1953
Abstract
This paper describes and validates an advanced synthesis design process of Frequency-Selective Surfaces (FSSs) with elliptic band-stop responses. A systematic procedure based on the Generalized Chebyshev Function and the extracted pole technique enables control of the position of the transmission zeros and the [...] Read more.
This paper describes and validates an advanced synthesis design process of Frequency-Selective Surfaces (FSSs) with elliptic band-stop responses. A systematic procedure based on the Generalized Chebyshev Function and the extracted pole technique enables control of the position of the transmission zeros and the attenuation level to obtain an equiripple rejection response. A systematic process is followed to obtain the lumped LC values of the resonator circuits extracted as poles and the impedance inverters. Then, equivalent dipoles and transmission lines are obtained to carry out the electromagnetic design at normal incidence for a linearly polarized field. The impact of the higher-order modes of the periodic structure on the electrical response of the FSS, which can be relevant due to the stringent selected specifications, has been also analyzed. A fourth-order band-stop filter with a 3 GHz bandwidth centered at 30 GHz and its attenuation at 50 dB has been designed considering three different implementations: two filters using a vacuum as a transmission line with different connection lengths and a third one using a dielectric substrate to enable its manufacturing. In order to verify the design procedure using experimental results, the third filter with printed dipoles in the dielectric substrate has been manufactured and measured, thus validating the developed process. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 7031 KiB  
Article
A Reconfigurable Single-/Dual-Bandstop Filter with Controllable Equal-Ripple Performance
by Yuhang Gu, Shanshan Xue, Wenzhong Sun, Taiyang Xie, Xiaolong Wang and Chun-Ping Chen
Appl. Sci. 2024, 14(13), 5837; https://doi.org/10.3390/app14135837 - 3 Jul 2024
Viewed by 1574
Abstract
Bandstop filters (BSFs) have many applications in suppressing interference signals and shielding specific bands. Among them, reconfigurable BSFs that cover more frequency bands by switching modes have great research value. In this paper, a novel synthesis approach for compact reconfigurable BSFs with controllable [...] Read more.
Bandstop filters (BSFs) have many applications in suppressing interference signals and shielding specific bands. Among them, reconfigurable BSFs that cover more frequency bands by switching modes have great research value. In this paper, a novel synthesis approach for compact reconfigurable BSFs with controllable equal-ripple performance is proposed. By switching the ON/OFF state of the positive intrinsic negative (PIN) diode, the proposed reconfigurable BSF can be switched between single-BSF (S-BSF) and dual-BSF (D-BSF). Based on the synthesis approach, the equal-ripple levels of stopband and passband for S-BSF and D-BSF can be independently controlled. To verify, the equal-ripple levels of stopband and passband for S-BSF state and D-BSF state are independently controlled in four groups of examples. Finally, a reconfigurable BSF with a miniaturized size is designed and fabricated. The fabricated reconfigurable BSF behaves with 15 dB and 10 dB return loss (RL) in two different passbands of the D-BSF state, and 25 dB bandpass RL and controllable stopband rejection (SR) for the S-BSF state. The measured results are in good agreement with the electromagnetic (EM) simulation results. Full article
Show Figures

Figure 1

18 pages, 7013 KiB  
Article
Current-Mode Active Filter Using EX-CCCII
by Montree Kumngern, Fabian Khateb, Tomasz Kulej and Siraphop Tooprakai
Electronics 2024, 13(11), 2059; https://doi.org/10.3390/electronics13112059 - 25 May 2024
Cited by 1 | Viewed by 1341
Abstract
This paper presents a novel multiple-input and multiple-output current-mode universal analog filter with electronic tuning capability. The proposed circuit uses a single second-generation current-controlled current conveyor with extra-X terminals (EX-CCCII) and two grounded capacitors. The filter can offer five standard filtering functions, namely [...] Read more.
This paper presents a novel multiple-input and multiple-output current-mode universal analog filter with electronic tuning capability. The proposed circuit uses a single second-generation current-controlled current conveyor with extra-X terminals (EX-CCCII) and two grounded capacitors. The filter can offer five standard filtering functions, namely low-pass, high-pass, band-pass, band-stop, all-pass responses, in the same circuit without changing the internal configuration of the filter by selecting appropriate input and output signals. To obtain the five standard filtering functions, inverted input signal and input matching conditions are absent. The natural frequency of all filter responses can be electronically controlled. The proposed circuit was simulated by SPICE using 0.18 μm CMOS process from Taiwan Semiconductor Manufacturing Company (TSMC). The results of experiments using the integrated circuit operational amplifier AD844 confirm the functionality of the new filter. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

16 pages, 8424 KiB  
Article
1 V Tunable High-Quality Universal Filter Using Multiple-Input Operational Transconductance Amplifiers
by Montree Kumngern, Fabian Khateb, Tomasz Kulej and Boonying Knobnob
Sensors 2024, 24(10), 3013; https://doi.org/10.3390/s24103013 - 9 May 2024
Cited by 4 | Viewed by 1426
Abstract
This paper presents a new multiple-input single-output voltage-mode universal filter employing four multiple-input operational transconductance amplifiers (MI-OTAs) and three grounded capacitors suitable for low-voltage low-frequency applications. The quality factor (Q) of the filter functions can be tuned by both the capacitance [...] Read more.
This paper presents a new multiple-input single-output voltage-mode universal filter employing four multiple-input operational transconductance amplifiers (MI-OTAs) and three grounded capacitors suitable for low-voltage low-frequency applications. The quality factor (Q) of the filter functions can be tuned by both the capacitance ratio and the transconductance ratio. The multiple inputs of the OTA are realized using the bulk-driven multiple-input MOS transistor technique. The MI-OTA-based filter can also offer many filtering functions without additional circuitry requirements, such as an inverting amplifier to generate an inverted input signal. The proposed filter can simultaneously realize low-pass, high-pass, band-pass, band-stop, and all-pass responses, covering both non-inverting and inverting transfer functions in a single topology. The natural frequency and the quality factors of all the filtering functions can be controlled independently. The natural frequency can also be electronically controlled by tuning the transconductances of the OTAs. The proposed filter uses a 1 V supply voltage, consumes 120 μW of power for a 5 μA setting current, offers 40 dB of dynamic range and has a third intermodulation distortion of −43.6 dB. The performances of the proposed circuit were simulated using a 0.18 μm TSMC CMOS process in the Cadence Virtuoso System Design Platform to confirm the performance of the topology. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

23 pages, 7408 KiB  
Article
Current-Mode Shadow Filter with Single-Input Multiple-Output Using Current-Controlled Current Conveyors with Controlled Current Gain
by Montree Kumngern, Fabian Khateb, Tomasz Kulej, Martin Kyselak, Somkiat Lerkvaranyu and Boonying Knobnob
Sensors 2024, 24(2), 460; https://doi.org/10.3390/s24020460 - 11 Jan 2024
Cited by 5 | Viewed by 1548
Abstract
In this paper, a novel current-mode shadow filter employing current-controlled current conveyors (CCCIIs) with controlled current gains is presented. The CCCII-based current-mode shadow filters are resistorless and can offer a number of advantages such as circuit simplicity and electronic tuning capability. The proposed [...] Read more.
In this paper, a novel current-mode shadow filter employing current-controlled current conveyors (CCCIIs) with controlled current gains is presented. The CCCII-based current-mode shadow filters are resistorless and can offer a number of advantages such as circuit simplicity and electronic tuning capability. The proposed shadow filters offer five filtering functions, i.e., low-pass, high-pass, band-pass, band-stop, and all-pass functions, in the same topology. Furthermore, no component matching condition is required to realize all the transfer functions. The natural frequency and quality factor adjustment is possible by using the CCCII current gains without the need to use external amplifiers, all capacitors are grounded, and the filter terminals offer low-input and high-output impedance. To verify the functionality and feasibility of the new topologies, the proposed circuits were simulated using SPICE and the transistor model process parameters NR100N (NPN) and PR100N (PNP) from AT&T’s bipolar arrays ALA400-CBIC-R. The simulation results are consistent with the theory. The CCCII experimental setup was designed using commercially available 2N3904 (NPN) and 2N3906 (PNP) transistors with a supply voltage of ±2.5 V. The measurement results confirm the performance of the designed filters. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 7405 KiB  
Article
0.5-V 281-nW Versatile Mixed-Mode Filter Using Multiple-Input/Output Differential Difference Transconductance Amplifiers
by Fabian Khateb, Montree Kumngern and Tomasz Kulej
Sensors 2024, 24(1), 32; https://doi.org/10.3390/s24010032 - 20 Dec 2023
Cited by 8 | Viewed by 1647
Abstract
This paper presents a new low-voltage versatile mixed-mode filter which uses a multiple-input/output differential difference transconductance amplifier (MIMO-DDTA). The multiple-input of the DDTA is realized using a multiple-input bulk-driven MOS transistor (MI-BD-MOST) technique to maintain a single differential pair, thereby achieving simple structure [...] Read more.
This paper presents a new low-voltage versatile mixed-mode filter which uses a multiple-input/output differential difference transconductance amplifier (MIMO-DDTA). The multiple-input of the DDTA is realized using a multiple-input bulk-driven MOS transistor (MI-BD-MOST) technique to maintain a single differential pair, thereby achieving simple structure with minimal power consumption. In a single topology, the proposed filter can provide five standard filtering functions (low-pass, high-pass, band-pass, band-stop, and all-pass) in four modes: voltage (VM), current (CM), transadmittance (TAM), and transimpedance (TIM). This provides the full capability of a mixed-mode filter (i.e., twenty filter functions). Moreover, the VM filter offers high-input and low-output impedances and the CM filter offers high-output impedance; therefore, no buffer circuit is needed. The natural frequency of all filtering functions can be electronically controlled by a setting current. The voltage supply is 0.5 V and for a 4 nA setting current, the power consumption of the filter was 281 nW. The filter is suitable for low-frequency biomedical and sensor applications that require extremely low supply voltages and nano-watt power consumption. For the VM low-pass filter, the dynamic range was 58.23 dB @ 1% total harmonic distortion. The proposed filter was designed and simulated in the Cadence Virtuoso System Design Platform using the 0.18 µm TSMC CMOS technology. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

11 pages, 6543 KiB  
Article
Design of a Common-Mode Rejection Filter Using Dumbbell-Shaped Defected Ground Structures Based on Equivalent Circuit Models
by Jeong-Sik Choi, Byung-Cheol Min, Mun-Ju Kim, Sachin Kumar, Hyun-Chul Choi and Kang-Wook Kim
Electronics 2023, 12(15), 3230; https://doi.org/10.3390/electronics12153230 - 26 Jul 2023
Cited by 2 | Viewed by 1956
Abstract
An efficient design method is proposed for a compact common-mode rejection (CMR) filter utilizing dumbbell-shaped defected ground (DS-DG) structures and gap-coupled stub (GCS) resonators. A CMR filter for differential lines helps to improve the signal integrity of high-speed digital signals on printed circuit [...] Read more.
An efficient design method is proposed for a compact common-mode rejection (CMR) filter utilizing dumbbell-shaped defected ground (DS-DG) structures and gap-coupled stub (GCS) resonators. A CMR filter for differential lines helps to improve the signal integrity of high-speed digital signals on printed circuit boards. The proposed CMR filter design is based on the equivalent circuit models, while the previous designs depended heavily on the DS-DG structure optimization using the EM simulations. The proposed CMR filter effectively rejects the common-mode components while minimally affecting the differential signals. To prove the simplified design approach, a fifth-order Chebyshev band-stop filter is designed with three DS-DG structures and two GCS resonators. From the simulated and measured results, it is found that the proposed CMR filter provides ~90% fractional frequency bandwidth with more than 20 dB of common-mode rejection ratio and less than 0.6 dB of insertion loss of the differential signal. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

12 pages, 9840 KiB  
Article
Microwave Common-Frequency Absorption/Transmission Mode Conversion Based on Active Components
by Yisen Luo, Wenning Wang, Chong-Zhi Han and Tongyu Ding
Electronics 2023, 12(13), 2876; https://doi.org/10.3390/electronics12132876 - 29 Jun 2023
Cited by 1 | Viewed by 1747
Abstract
To overcome the limitations of traditional frequency selective surfaces in flexible state switching at the same frequency, this paper proposes a novel active frequency selective surface (AFSS) that simultaneously exhibits conversion between absorption and transmission modes at the same frequency band. By welding [...] Read more.
To overcome the limitations of traditional frequency selective surfaces in flexible state switching at the same frequency, this paper proposes a novel active frequency selective surface (AFSS) that simultaneously exhibits conversion between absorption and transmission modes at the same frequency band. By welding PIN diodes on the bottom structure of the AFSS, the conversion between band-pass (transmission) and band-stop (absorption) filters can be controlled electronically. In the common-frequency switch between absorption and transmission modes, the impedance matching of the AFSS is attained by altering the capacitance value of the varactors embedded on the top structure of the AFSS. The functionalities of the proposed AFSS design are investigated by full-wave simulations (in HFSS software) at 11.4 GHz. Furthermore, the operating principle is analyzed using an equivalent circuit model (in AWR software). To verify the concept, a prototype is manufactured, and the responses of mode switching are measured by adjusting the bias voltage. The measurement result is consistent with the simulation analysis. Owing to the tunability of the varactors, the structural asymmetry is compensated to achieve 80% absorptivity and transmissivity within a field of view of ±35°. The developed AFSS structure is highly valuable to be used in scenarios such as antenna domes, etc. Full article
Show Figures

Figure 1

Back to TopTop