Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (171)

Search Parameters:
Keywords = bacterial blight resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1455 KB  
Article
Regional Disparities Call for Defining the Target Population of Environments (TPEs) and the Breeding Strategies for Sustainable Agriculture: A Case Study on Rice Improvement in Vietnam
by Huynh Quang Tin, Loi Huu Nguyen, Benjamin Kilian and Shivali Sharma
Sustainability 2026, 18(2), 1118; https://doi.org/10.3390/su18021118 - 21 Jan 2026
Viewed by 83
Abstract
This study examines the socio-demographic characteristics, rice production practices, and breeding preferences of farmers across three major rice-growing regions of Vietnam: the Mekong Delta, Central Vietnam, and North Vietnam. A survey of 109 rice farmers captured information on cultivation status, livelihood activities, and [...] Read more.
This study examines the socio-demographic characteristics, rice production practices, and breeding preferences of farmers across three major rice-growing regions of Vietnam: the Mekong Delta, Central Vietnam, and North Vietnam. A survey of 109 rice farmers captured information on cultivation status, livelihood activities, and preferred breeding traits for rice improvement. The results reveal clear regional differentiation in farm structure, production objectives, and varietal preferences. Rice farming in the Mekong Delta is predominantly commercially oriented, characterized by larger landholdings and greater male participation, whereas rice production in Central and Northern Vietnam is more subsistence-oriented, with higher female involvement. Farmers across regions consistently valued locally adapted rice varieties, but articulated region-specific trait priorities shaped by agro-ecological conditions. In the Mekong Delta, preferences emphasized soft grain quality and salinity tolerance, reflecting coastal production constraints. In Central Vietnam, farmers prioritized heat tolerance and resistance to pests and diseases, while in Northern Vietnam, cold tolerance and grain quality attributes, including aroma and harder texture, were most important. Major biotic stresses, particularly blast and bacterial blight, also showed significant regional variation in reported incidence. By linking these region-specific preferences to clearly defined Target Populations of Environments (TPEs), this study provides a practical framework for aligning breeding targets with real-world production conditions. The findings offer actionable guidance for participatory breeding and decentralized varietal evaluation under the Biodiversity for Opportunities, Livelihoods, and Development (BOLD) initiative, as well as other rice improvement programs. To our knowledge, this represents the first multi-region evidence from Vietnam that systematically integrates agro-ecological variation with a TPE-based breeding approach, supporting the development of climate-resilient, farmer-preferred rice varieties and more sustainable rice production systems. Full article
Show Figures

Figure 1

14 pages, 3873 KB  
Article
Pyramiding Pita, Pigm, Pi2, and Xa23 to Develop Hybrid Rice with Dual Resistance to Rice Blast and Bacterial Blight
by Siyuan Wu, Xuemei Qin, Jiali Liu, Ju Gao, Lijun Gao, Geng Zhou, Yang Zhou, Tianqi Bai, Chonglie Ma and Fang Liu
Plants 2026, 15(2), 323; https://doi.org/10.3390/plants15020323 - 21 Jan 2026
Viewed by 70
Abstract
Rice blast and bacterial blight cause severe harm to rice production, and the breeding of resistant varieties guarantees the safety of rice production. Meanwhile, multigene pyramiding breeding based on molecular marker-assisted selection is a crucial approach for rice breeding to combat multiple diseases. [...] Read more.
Rice blast and bacterial blight cause severe harm to rice production, and the breeding of resistant varieties guarantees the safety of rice production. Meanwhile, multigene pyramiding breeding based on molecular marker-assisted selection is a crucial approach for rice breeding to combat multiple diseases. This study aimed to develop accurate and efficient PARMS markers for rice blast resistance genes Pita, Pigm, and Pi2, and bacterial blight resistance gene Xa23. A systematic genotyping analysis of the resistant alleles of these 4 genes was performed on 384 major cultivated varieties in production. The results showed that only 5.21% of the varieties harbored more than two resistant alleles simultaneously. Using traditional breeding strategies in combination with the developed PARMS markers, the high-quality three-line male sterile line Ruanfeng A (pyramiding Pita and Pigm) and the strong restorer line Gui 610 (pyramiding Pi2 and Xa23) were bred. Crossing these lines produced a new hybrid rice variety, Ruanfengyou 610. Ruanfengyou 610 pyramids 4 resistance genes (Pita/Pigm/Pi2/Xa23), exhibits resistance to both rice blast and bacterial blight, has prominent heterosis and excellent grain quality, and has strong application potential, which is of great significance for ensuring the safety of rice production. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

15 pages, 6645 KB  
Article
Multiplex Editing of OsMads26, OsBsr-d1, OsELF3-2 and OsERF922 with CRISPR/Cas9 Confers Enhanced Resistance to Pathogens and Abiotic Stresses and Boosts Grain Yield in Rice (Oryza sativa)
by Hailing Luo, Hengwei Zou, Shengli Lin, Jiali Liu, Geng Zhou, Lijun Gao, Jieyi Huang, Jiaxuan Li, Ju Gao and Chonglie Ma
Int. J. Mol. Sci. 2026, 27(2), 781; https://doi.org/10.3390/ijms27020781 - 13 Jan 2026
Viewed by 188
Abstract
Rice (Oryza sativa) is one of the world’s major staple foods. However, stable rice production is constrained by various biotic and abiotic and stresses. Breeding and cultivation of rice varieties with resistance to multiple pathogens and environmental stresses is the most [...] Read more.
Rice (Oryza sativa) is one of the world’s major staple foods. However, stable rice production is constrained by various biotic and abiotic and stresses. Breeding and cultivation of rice varieties with resistance to multiple pathogens and environmental stresses is the most effective strategy to mitigate the adverse effect of pathogen attacks and abiotic stresses. Recently, researchers have focused on the exploitation of CRISPR/Cas9 technology to manipulate some negative defense-regulator genes to generate rice varieties with broad-spectrum resistance against rice pathogens. In this study, four negative regulator genes of rice blast, OsMads26, OsBsr-1, OsELF3-2 and OsERF922, were selected as CRISPR/Cas9 targets. By simultaneously knocking out all four genes via CRISPR/Cas9 technology, we created three mads26/bsr-1/elf3-2/erf922 quadruple knockout mutants. Our results demonstrated that all quadruple mutants exhibited much higher resistance not only to rice blast and bacterial blight but also to drought and salt stresses than the wildtype. Interestingly, grain yield of all three quadruple mutants was also drastically increased by 17.35% to 21.95%. Therefore, this study provides a novel strategy to rapidly improve rice varieties with broad-spectrum resistance to pathogens, elevated tolerance to abiotic stresses and enhanced yield potential. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

21 pages, 1558 KB  
Article
Comparative Metabolomic Profiling of Resistant and Susceptible Coffea arabica Accessions to Bacterial Pathogen Infection
by Salim Makni, Adrian Heckart, Jean-Christophe Cocuron, Lucas Mateus Rivero Rodrigues, Suzete Aparecida Lanza Destéfano, Masako Toma Braghini, Oliveiro Guerreiro Filho and Ana Paula Alonso
Plants 2026, 15(2), 216; https://doi.org/10.3390/plants15020216 - 9 Jan 2026
Viewed by 357
Abstract
Coffea, a plant species of significant agricultural value used in coffee production, is a key commodity that supports the livelihoods of millions of people worldwide. However, coffee cultivation faces substantial threats from various pathogens, including Pseudomonas coronafaciens pv. garcae (Pcg), [...] Read more.
Coffea, a plant species of significant agricultural value used in coffee production, is a key commodity that supports the livelihoods of millions of people worldwide. However, coffee cultivation faces substantial threats from various pathogens, including Pseudomonas coronafaciens pv. garcae (Pcg), the causative agent of bacterial blight. This pathogen compromises coffee plant health, leading to reduced yields and plant death and impacting farmers and large-scale producers. Understanding the mechanisms underlying resistance to Pcg in the leaves of the resistant IAC 2211-6 Coffea arabica accession is crucial for developing effective control strategies. This study aimed to identify candidate biomarkers of resistance by comparing the leaf metabolome of (i) the resistant IAC 2211-6 and the susceptible IAC 125 RN Coffea arabica accessions and (ii) Pcg-infected and uninfected leaves. Untargeted metabolomics revealed distinct metabolic profiles between accessions. Flavonoids were more abundant in susceptible leaves. In contrast, resistant leaves showed increased levels of pipecolic acid ethyl ester, a structural derivative of a key systemic acquired resistance signal, and spiropreussione B, a compound associated with fungal endophytes. These findings highlight candidates potentially linked to resistance and suggest that systemic signaling and beneficial microbial interactions may contribute to resilience. Full article
Show Figures

Graphical abstract

17 pages, 798 KB  
Article
Transcriptome-Based Identification of Reference Genes for Expression Analysis in Cassava Under Xanthomonas phaseoli pv. manihotis Infection
by Jing Yang, Ciyun Li, Jie Chen, Dongying Lu, Qi Yang, Ruotong Li, Liyun Yang, Xiaofei Zhang, Yinhua Chen, Shousong Zhu and Xiaolei Niu
Plants 2025, 14(23), 3655; https://doi.org/10.3390/plants14233655 - 30 Nov 2025
Viewed by 416
Abstract
Reverse transcription quantitative PCR (RT-qPCR) is a powerful and widely used technique for quantifying alterations in gene expression. Cassava bacterial blight caused by Xanthomonas phaseoli pv. manihotis severely constraints cassava growth and yield. Accurate evaluation of the expression levels of genes following infection [...] Read more.
Reverse transcription quantitative PCR (RT-qPCR) is a powerful and widely used technique for quantifying alterations in gene expression. Cassava bacterial blight caused by Xanthomonas phaseoli pv. manihotis severely constraints cassava growth and yield. Accurate evaluation of the expression levels of genes following infection by X. phaseoli pv. manihotis is crucial for the identification of potential cassava resistance genes. In this study, thirty-two novel potential reference genes were screened from the cassava–X. phaseoli pv. manihotis transcriptome. Their expression, along with that of seven literature-reported cassava reference genes, was evaluated in two susceptible and two resistant cassava varieties at six time points post-inoculation by X. phaseoli pv. manihotis through RT-qPCR analysis. The stability of thirty-nine candidate reference genes was assessed by four algorithms: geNorm, NormFinder, Delta Ct, and RefFinder. The results demonstrated that serving as new reference genes, MehnRNPR and MePRPF38B consistently exhibited superior expression stability over seven established reference genes under X. phaseoli pv. manihotis infection, regardless of the susceptible or resistant cassava varieties. The reliability of the reference genes was validated by assessing the expression pattern of MeNAC35 and MeSWEET10a under X. phaseoli pv. manihotis infection. The findings of this study provide valuable insights for advancing the precision of the quantification of cassava candidate genes associated with disease resistance. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 569 KB  
Article
Genomic Confirmation of Resistance Genes for Blast, Bacterial Leaf Blight, Rice Tungro Spherical Virus, and Brown Planthopper in Tropically Adapted Temperate Japonica Rice Varieties
by Myrish Alvarez Pacleb, Seongkyeong Lee, Sherry Lou Hechanova, Thelma Padolina, Lenie Pautin, Jesson Del-Amen, Dong-Soo Park, Il-Ryong Choi, Sung-Ryul Kim, Dongjin Shin and Jung-Pil Suh
Agronomy 2025, 15(11), 2585; https://doi.org/10.3390/agronomy15112585 - 10 Nov 2025
Viewed by 611
Abstract
The Rural Development Administration (RDA) of the Republic of Korea, in collaboration with International Rice Research Institute (IRRI), developed six temperate japonica rice varieties—MS11, Japonica 1, 2, 6, 7, and Cordillera 4—which were officially approved for release in tropical environments. These varieties offer [...] Read more.
The Rural Development Administration (RDA) of the Republic of Korea, in collaboration with International Rice Research Institute (IRRI), developed six temperate japonica rice varieties—MS11, Japonica 1, 2, 6, 7, and Cordillera 4—which were officially approved for release in tropical environments. These varieties offer improved eating quality, enhanced lodging resistance, and increased market value. Although initial evaluations indicated that the varieties were resistant to moderately resistant to major biotic stresses, recent field trials revealed a gradual increase in susceptibility over time. To address this, we conducted comprehensive evaluations of these varieties against rice blast under both greenhouse and field conditions and assessed their responses to bacterial leaf blight (BLB), rice tungro spherical virus (RTSV), and brown planthopper (BPH) under controlled environments. Additionally, whole-genome sequencing was employed to confirm the presence of known resistance alleles. Our findings revealed variable resistance profiles across the six varieties. Japonica 1 exhibited the most stable resistance to blast, supported by the presence of the Pi5 allele. Japonica 7 showed strong resistance to key BLB isolates and moderate resistance to a broader range of Xoo races, supported by the resistant Xa25/OsSWEET13 haplotype. In addition, Japonica 7, along with Japonica 6, carried the tsv1 gene for RTSV resistance. However, none of the six varieties possessed other major resistance genes for BPH. These results highlight the urgent need to introgress durable resistance genes into tropical japonica rice to enhance resilience and broaden the spectrum of biotic stress resistance—critical traits for sustainable rice production in tropical environments. Full article
(This article belongs to the Topic Plant Breeding, Genetics and Genomics, 2nd Edition)
Show Figures

Figure 1

16 pages, 2906 KB  
Article
Functional Characterization of Rice Spotted-Leaf Mutant HM113 Reveals an Amino Acid Substitution in a Cysteine-Rich Receptor-like Kinase
by Ringki Kuinamei Sanglou, Marie Gorette Kampire, Xia Xu, Jian-Li Wu, Junyi Gong and Xiaobo Zhang
Plants 2025, 14(22), 3429; https://doi.org/10.3390/plants14223429 - 9 Nov 2025
Viewed by 615
Abstract
The spotted-leaf mutant, characterized by spontaneous lesion formation resembling pathogen-induced hypersensitive cell death, serves as an ideal model for studying the molecular mechanisms behind rice (Oryza sativa) disease resistance and programmed cell death, as these plants display hypersensitive responses that mimic [...] Read more.
The spotted-leaf mutant, characterized by spontaneous lesion formation resembling pathogen-induced hypersensitive cell death, serves as an ideal model for studying the molecular mechanisms behind rice (Oryza sativa) disease resistance and programmed cell death, as these plants display hypersensitive responses that mimic those triggered by pathogen infection. In this study, we generated a knockout line using CRISPR/Cas9 technology in homologous mutant HM113-induced calli. LOC_Os07g30510 encodes a cysteine-rich receptor kinase with a DUF26 domain, consisting of 688 amino acids. HM113 was localized to the cytosol and expressed in most rice tissues at various growth stages. A single nucleotide substitution from A to T was observed at the 847th base of LOC_Os07g30510, causing an amino acid change from serine to cysteine. Our results demonstrated that the A847T mutation was responsible for the spotted-leaf phenotype in the HM113 mutant through gene editing technology, as new frameshift mutations were introduced upstream of the A847T site in the HM113 gene. The mutation phenotype of HM113 was eliminated and resistance to bacterial blight was also lost, indicating that it is a gain-of-function gene. Full article
(This article belongs to the Special Issue Crop Functional Genomics and Biological Breeding—2nd Edition)
Show Figures

Figure 1

20 pages, 4442 KB  
Article
Functional Analysis of the NLR Gene YPR1 from Common Wild Rice (Oryza rufipogon) for Bacterial Blight Resistance
by Wang Kan, Zaiquan Cheng, Yun Zhang, Bo Wang, Li Liu, Jiaxin Xing, Fuyou Yin, Qiaofang Zhong, Jinlu Li, Dunyu Zhang, Suqin Xiao, Cong Jiang, Tengqiong Yu, Yunyue Wang and Ling Chen
Genes 2025, 16(11), 1321; https://doi.org/10.3390/genes16111321 - 2 Nov 2025
Viewed by 618
Abstract
Background/Objectives: Bacterial blight (BB) represents one of the most devastating diseases threatening global rice production. Exploring and characterizing disease resistance (R) genes provides an effective strategy for controlling BB and enhancing rice resilience. Common wild rice (Oryza rufipogon) serves as a [...] Read more.
Background/Objectives: Bacterial blight (BB) represents one of the most devastating diseases threatening global rice production. Exploring and characterizing disease resistance (R) genes provides an effective strategy for controlling BB and enhancing rice resilience. Common wild rice (Oryza rufipogon) serves as a valuable reservoir of genetic diversity and disease resistance resources. In this study, we identified and functionally characterized a novel NLR gene, YPR1, from common wild rice (Oryza rufipogon), which exhibited significant spatial, temporal, and tissue-specific expression patterns. Methods: Using a combination of conventional PCR, RT-PCR, bioinformatics, transgenic analysis, and CRISPR/Cas9 gene-editing approaches, the full-length YPR1 sequence was successfully cloned. Results: The gene spans 4689 bp with a coding sequence (CDS) of 2979 bp, encoding a 992-amino acid protein. Protein domain prediction revealed that YPR1 is a typical CNL-type NLR protein, comprising RX-CC_like, NB-ARC, and LRR domains. The predicted molecular weight of the protein is 112.43 kDa, and the theoretical isoelectric point (pI) is 8.36. The absence of both signal peptide and transmembrane domains suggests that YPR1 functions intracellularly. Furthermore, the presence of multiple phosphorylation sites across diverse residues implies a potential role for post-translational regulation in its signal transduction function. Sequence alignment showed that YPR1 shared 94.02% similarity with Os09g34160 and up to 96.47% identity with its closest homolog in the NCBI database, confirming that YPR1 is a previously unreported gene. To verify its role in disease resistance, an overexpression vector (Ubi–YPR1) was constructed and introduced into the BB-susceptible rice cultivar JG30 via Agrobacterium tumefaciens-mediated transformation. T1 transgenic lines were subsequently inoculated with 15 highly virulent Xanthomonas oryzae pv. oryzae (Xoo) strains. The transgenic plants exhibited strong resistance to eight strains (YM1, YM187, C1, C5, C6, T7147, PB, and HZhj19), demonstrating a broad-spectrum resistance pattern. Conversely, CRISPR/Cas9-mediated knockout of YPR1 in common wild rice resulted in increased susceptibility to most Xoo strains. Although the resistance of knockout lines to strains C7 and YM187 was comparable to that of the wild type (YPWT), the majority of knockout plants exhibited more severe symptoms and significantly lower YPR1 expression levels compared with YPWT. Conclusions: Collectively, these findings demonstrate that YPR1 plays a crucial role in bacterial blight resistance in common wild rice. As a novel CNL-type NLR gene conferring specific resistance to multiple Xoo strains, YPR1 provides a promising genetic resource for the molecular breeding of BB-resistant rice varieties. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

16 pages, 1833 KB  
Article
Effects of Water Management Practices on Rice Grain Quality and Pest-Disease Incidence in Environmentally Friendly Cultivation Systems
by SeungKa Oh and Young-Son Cho
Agriculture 2025, 15(21), 2244; https://doi.org/10.3390/agriculture15212244 - 28 Oct 2025
Viewed by 734
Abstract
This study investigated the effects of different water management practices on the growth, yield, and grain quality of rice grown under environmentally friendly farming methods in Apgok-Ri, Gungnyu-Myeon, Uiryeong-Gun, from 2022 to 2024. Treatments included mid-season drainage for 2, 3, or 4 weeks [...] Read more.
This study investigated the effects of different water management practices on the growth, yield, and grain quality of rice grown under environmentally friendly farming methods in Apgok-Ri, Gungnyu-Myeon, Uiryeong-Gun, from 2022 to 2024. Treatments included mid-season drainage for 2, 3, or 4 weeks (2MD, 3MD, 4MD), followed by either low-level water management (MD-1) or alternate wetting and drying (MD-2), with continuous flooding (CF) as the control. The rice variety was machine-transplanted on 9–10 June, and organic fertilizer (90 kg N/ha) was applied as a basal dressing. Water treatments were initiated in mid-July each year. The highest yield was consistently recorded in the 2MD-2 treatment, with 5.85, 5.74, and 5.38 tons/ha from 2022 to 2024, representing 15.0%, 14.5%, and 7.8% increases over CF, respectively. On average, alternate irrigation (MD-2) resulted in higher yields than low-level water management (MD-1) by 1.19–5.90%. Grain quality was also highest in 2MD-2, showing the greatest percentage of ripened grains each year, whereas CF had the highest proportion of immature and unripe grains. Crude protein content in brown rice was lowest in 3MD-2 (6.12%), followed by 2MD-2 (7.51%). Incidences of major diseases such as sheath blight, rice blast, panicle blight, and bacterial grain blight were highest in the CF treatment. Rice leaf blight was not significantly different in 2022, but was most prevalent in CF in 2023 and 2024. There were no major differences in brown planthopper and false smut incidence, although false smut peaked in CF in 2024. These findings suggest that 2-week mid-season drainage followed by alternate irrigation (2MD-2) is an effective strategy to improve yield, grain quality, and disease resistance in sustainable rice farming systems. Full article
Show Figures

Figure 1

30 pages, 9645 KB  
Review
Molecular Breeding for Fungal Resistance in Common Bean
by Luciana Lasry Benchimol-Reis, César Júnior Bueno, Ricardo Harakava, Alisson Fernando Chiorato and Sérgio Augusto Morais Carbonell
Int. J. Mol. Sci. 2025, 26(21), 10387; https://doi.org/10.3390/ijms262110387 - 25 Oct 2025
Cited by 1 | Viewed by 954
Abstract
Despite the recognized social and economic importance of common beans (Phaseolus vulgaris L.), the average grain yield is far below the productive potential of cultivars. This situation is explained by several factors, such as the large number of diseases and pests that [...] Read more.
Despite the recognized social and economic importance of common beans (Phaseolus vulgaris L.), the average grain yield is far below the productive potential of cultivars. This situation is explained by several factors, such as the large number of diseases and pests that affect the crop, some of which cause significant damage. It is estimated that approximately 200 diseases can significantly affect common beans. These can be bacterial, viral, fungal, and nematode-induced. The main bean fungal diseases include anthracnose, angular leaf spot, powdery mildew, gray mold, Fusarium wilt, dry root rot, Pythium root rot, southern blight, white mold, charcoal rot and rust. This review provides a comprehensive overview of eleven major fungal diseases affecting common bean, describing their associated damage, characteristic symptomatology, and the epidemiological factors that favor disease development. It further synthesizes current knowledge on host resistance mechanisms that can be exploited to develop molecularly informed resistant genotypes. The compilation includes characterized resistance genes and mapped quantitative trait loci (QTLs), with details on their chromosomal locations, genetic effects, and potential for use in breeding. Moreover, the review highlights successful applications of molecular breeding approaches targeting fungal resistance. Finally, it discusses conclusions and future perspectives for integrating advanced genetic improvement strategies—such as marker-assisted selection, genomic selection, gene editing, and pyramiding—to enhance durable resistance to fungal pathogens in common bean. This work serves as both a reference for forthcoming resistance-mapping studies and a guide for the strategic selection of resistance loci in breeding programs aimed at developing cultivars with stable and long-lasting fungal resistance. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
Show Figures

Figure 1

19 pages, 2206 KB  
Article
Sclerotia-Mediated Soil Microbiome Modulation in Rice–Rapeseed Cropping Systems
by Mirza Abid Mehmood, Jianguang Wang, Jiasen Cheng, Jiatao Xie, Daohong Jiang and Yanping Fu
J. Fungi 2025, 11(10), 755; https://doi.org/10.3390/jof11100755 - 21 Oct 2025
Viewed by 873
Abstract
Rhizoctonia solani (Rs) and Sclerotinia sclerotiorum (Ss) are devastating pathogens of rice and rapeseed, contributing 20–69% and 10–50% of yield losses, respectively. These pathogens develop resistant overwintering and/or oversummering sclerotia, which serve as inocula for infection in the subsequent season under favorable conditions. [...] Read more.
Rhizoctonia solani (Rs) and Sclerotinia sclerotiorum (Ss) are devastating pathogens of rice and rapeseed, contributing 20–69% and 10–50% of yield losses, respectively. These pathogens develop resistant overwintering and/or oversummering sclerotia, which serve as inocula for infection in the subsequent season under favorable conditions. The present study was designed to investigate the month-wise variation in microbial diversity by mixing Rs and Ss sclerotia separately in rice-rapeseed rotation field soil, thereby identifying key microbial players associated with specific sclerotia and their implications for subsequent crops. Therefore, we incubated 2.5 g of Rs and Ss sclerotia in 100 g of soil for 3 months to mimic the field conditions and subjected month-wise soil samples to 16S rRNA and ITS2 sequencing. Data analysis of bacterial communities revealed diversity, richness, and evenness in Ss treated soil samples compared to the control, while fungal communities exhibited less diversity. These results were also evident in PCoA and hierarchical clustering, where control and treated samples were scattered in 16S rRNA and ITS sequencing. Genus level diversity exhibited enrichment of bacterial genera with known beneficial potential, notably Acidibacter, Stenotrophobacter, Sphingomonas, Flavisolibacter, Gaiella, and Neobacillus in control. Beneficial bacterial genera such as Ramlibacter, Geomonas, Kofleria, Nitrospira, and Paraflavitalea were enriched in Ss treated soil samples. The addition of Ss and Rs sclerotia activated several beneficial fungi, notably Trichoderma, Talaromyces, Clonostachys in Ss treated samples, and Vermispora, Hyalorbilia, Mortierella, Lecanicillium in Rs treated samples. Additionally, Rs treated soil samples also activated pathogenic genera, including Typhula, Fusarium, and Rhizoctonia. Sclerotia in soil modulates the microbiome and activates beneficial and pathogenic microbes. During the off-season, the Sclerotinia inoculum pressure in the soil reduces, and it is safe to grow crops next season. Whereas, in the case of Rhizoctonia infected soil, it is suggested to avoid growing crops susceptible to wilt, root rot, and blight. However, field experiments to understand the pathogen–pathogen interactions around the sclerotiosphere require further exploration. Full article
(This article belongs to the Special Issue Utilizing Fungal Diversity for Sustainable Biotechnology)
Show Figures

Figure 1

14 pages, 1526 KB  
Article
Antibiotic and Copper Sensitivity in Erwinia amylovora Isolates from Northern Saudi Arabia, and the Induction of Fire Blight Suppression by Salicylic Acid
by Ali A. Al Masrahi, Abdurrehman M. Rafique, Abdullah F. Al Hashel, Mohammed A. Al Saleh and Yasser E. Ibrahim
Plants 2025, 14(20), 3192; https://doi.org/10.3390/plants14203192 - 17 Oct 2025
Viewed by 879
Abstract
Fire blight, caused by Erwinia amylovora, is a severe disease impacting pome fruit production worldwide, including in Saudi Arabia. This study evaluated antibiotic sensitivity and the potential of chemical and elicitor treatments to suppress E. amylovora isolates collected from various regions in [...] Read more.
Fire blight, caused by Erwinia amylovora, is a severe disease impacting pome fruit production worldwide, including in Saudi Arabia. This study evaluated antibiotic sensitivity and the potential of chemical and elicitor treatments to suppress E. amylovora isolates collected from various regions in Saudi Arabia. In the in vitro assays, at low antibiotic levels (10 µg/mL streptomycin and 25 µg/mL oxytetracycline), all Saudi Arabian strains exhibited minimal inhibition (zones ≤ 14 mm). Two isolates displayed partial tolerance at an intermediate oxytetracycline concentration (50 µg/mL). True sensitivity (zones > 18 mm) was mainly observed at the highest tested oxytetracycline dose (100 µg/mL). Regarding copper sulfate, all isolates showed no inhibition between 0.02 and 0.08 mM, while all isolates exhibited intermediate susceptibility at 0.16 mM. The second experimental phase examined in planta effects of streptomycin, salicylic acid (SA), and their combination on disease development in artificially inoculated apple (Malus domestica) shoots under greenhouse conditions. Both streptomycin and SA significantly reduced fire blight incidence (by 75%) and symptom severity, while the combined treatment yielded the greatest reduction in shoot necrosis and bacterial load. This is the first report demonstrating that SA, particularly when used in combination with streptomycin, can effectively suppress fire blight in Saudi Arabia. These results stress the importance of integrating resistance inducers into fire blight management strategies to counter the rise in antimicrobial resistance. Full article
(This article belongs to the Special Issue Occurrence and Control of Plant Bacterial Diseases)
Show Figures

Figure 1

15 pages, 6940 KB  
Article
Integrative Transcriptomic and Metabolomic Analyses Elucidate the Molecular Mechanisms Underlying Enhanced Yield and Bacterial Blight Resistance in the RXN2 Rice Cultivar
by Ji’an Bi, Jingqi Wang, Xuan Huang, Jiefeng Jiang, Xianbo Shi, Genliang Bao, Qiufeng Meng and Chengqi Yan
Plants 2025, 14(18), 2921; https://doi.org/10.3390/plants14182921 - 19 Sep 2025
Viewed by 685
Abstract
Achieving high yield while maintaining disease resistance is a crucial goal in rice breeding programs. In this research, two cultivated rice varieties, Jia58 and Runxiang3, were selected as parental lines. A new variety, designated as the new variety RXN2, was generated and identified [...] Read more.
Achieving high yield while maintaining disease resistance is a crucial goal in rice breeding programs. In this research, two cultivated rice varieties, Jia58 and Runxiang3, were selected as parental lines. A new variety, designated as the new variety RXN2, was generated and identified through a breeding process that involved hybridization of the parental lines followed by irradiation-induced mutagenesis of the offspring. Compared with its parental lines, RXN2 shows increased plant height, higher yield, and stronger resistance to bacterial blight. Comprehensive transcriptomic and metabolic analyses indicate that pathways associated with growth, such as gibberellin and auxin signaling, are upregulated in RXN2. Meanwhile, defense-related pathways, especially those involving jasmonic acid and peroxidase metabolism, are significantly enhanced. These results provide new insights into the trade-offs between growth and defense and elucidate the genetic and metabolic underpinnings of the simultaneous improvement in grain yield and disease resistance in rice. Full article
Show Figures

Figure 1

24 pages, 13762 KB  
Article
Isolation and Identification of Antagonistic Bacteria with Common Bacterial Blight of Common Bean and Their Mechanism as Biological Control
by Ming Liu, Jiarui Cui, Xin Wang and Yongxia Guo
Agronomy 2025, 15(9), 2176; https://doi.org/10.3390/agronomy15092176 - 12 Sep 2025
Viewed by 1039
Abstract
Common bacterial blight (CBB), caused by Xanthomonas axonopodis pv. phaseoli (Xap) and Xanthomonas fuscans subsp. fuscans (Xff), is a devastating disease threatening global common bean (Phaseolus vulgaris L.) production. Current reliance on copper-based chemicals has led to environmental toxicity and pathogen resistance, [...] Read more.
Common bacterial blight (CBB), caused by Xanthomonas axonopodis pv. phaseoli (Xap) and Xanthomonas fuscans subsp. fuscans (Xff), is a devastating disease threatening global common bean (Phaseolus vulgaris L.) production. Current reliance on copper-based chemicals has led to environmental toxicity and pathogen resistance, resulting in the need for sustainable alternatives. Here, we report the first biocontrol strain of Bacillus amyloliquefaciens (KY2) that is simultaneously effective against both Xap and Xff. Isolated from the rhizosphere of healthy common bean growing in a high-disease-incidence field, KY2 exhibited broad antagonism, with inhibition zones of 18.17 ± 0.58 mm and 24.00 ± 1.50 mm against Xap and Xff, respectively. Pot experiments revealed a 66.12% curative control efficacy against Xff, slightly lower than the chemical agent 12% Zhongshengmycin. Mechanistically, KY2 alleviated oxidative stress by enhancing antioxidant enzyme activity levels and reducing malondialdehyde accumulation. A transcriptome analysis further uncovered KY2-induced systemic resistance via phenylpropanoid biosynthesis and defense-related pathways. It also demonstrated adaptability to pH 4–8, 20–40 °C, and ≤6% NaCl. However, this study is limited to pot trials, necessitating future field validation to assess practical scalability. These findings establish KY2 as a novel, eco-friendly candidate for CBB management, advancing biocontrol strategies against CBB of bean. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

30 pages, 6830 KB  
Article
Genome-Wide Identification and Expression Analysis of the Growth Regulatory Factor (GRF) and Growth-Regulating Interacting Factor (GIF) Gene Families in Cassava
by Rou Xu, Tianyu Li, Linling Zheng, Yuhua Chen, Assane Hamidou Abdoulaye, Yating Feng, Wenlong Wen and Yinhua Chen
Horticulturae 2025, 11(9), 1046; https://doi.org/10.3390/horticulturae11091046 - 2 Sep 2025
Viewed by 1023
Abstract
Growth regulatory factors (GRFs) and growth-regulating interacting factors (GIFs) play significant roles in plant growth, development, and environmental stress responses. Previous studies have reported the functions of GRF and GIF genes in model plants such as Arabidopsis and rice. [...] Read more.
Growth regulatory factors (GRFs) and growth-regulating interacting factors (GIFs) play significant roles in plant growth, development, and environmental stress responses. Previous studies have reported the functions of GRF and GIF genes in model plants such as Arabidopsis and rice. Nevertheless, the GRF and GIF genes remained unexplored in cassava. Cassava (Manihot esculenta Crantz) is an important tropical economic crop. Its starchy storage roots serve as a major source of food and industrial raw materials, while its protein-rich leaves are widely consumed as leafy vegetables in Africa and other regions, offering high nutritional value and significant horticultural potential. This study identified 28 MeGRFs distributed on 13 chromosomes and 5 MeGIFs on 4 chromosomes through bioinformatic analysis and expression profiling. Promoter analysis uncovered cis-acting elements associated with growth, hormone signaling, and biotic stress responses. Under different tissues and biotic (e.g., cassava bacterial blight, CBB) and abiotic (e.g., drought, low temperature) stress conditions, GRF and GIF genes exhibited differential expression patterns. Real-time quantitative PCR analysis showed a significant expression for 11 MeGRFs and 3 MeGIFs under the Xanthomonas phaseoli pv. manihotis (Xpm) treatment. VIGS functional validation demonstrated that MeGRF28 and MeGIF4 could enhance cassava resistance to bacterial blight, and protein–protein interaction network analysis suggested that they may form a core GRF-GIF complex. This study provides a theoretical basis for understanding the functional evolution of the GRF and GIF gene families in cassava and their roles in horticultural trait development and stress resistance mechanisms. Full article
(This article belongs to the Special Issue Breeding by Design: Advances in Vegetables)
Show Figures

Figure 1

Back to TopTop