Effects of Water Management Practices on Rice Grain Quality and Pest-Disease Incidence in Environmentally Friendly Cultivation Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Cultivation Methods
2.2. Water Management Methods and Treatment
2.3. Survey Method
2.3.1. Rice Quality
2.3.2. Brown Rice Crude Protein Analysis
2.3.3. Pest and Disease Occurrence Patterns
2.3.4. Rice Yield
2.3.5. Soil Chemistry and Moisture Content
2.4. Statistical Analysis
3. Results and Discussion
3.1. Climate Conditions During the Experimental Period
3.2. Soil Chemical Properties and Soil Moisture Content
3.3. Yield Variation by Water Management
3.4. Rice Quality Evaluation by Water Management
3.5. Protein Content of Brown Rice by Water Management
3.6. Pest and Disease Incidence Under Different Water Management Practices
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anwar, M.R.; O’leary, G.; McNeil, D.; Hossain, H.; Nelson, R. Climate change impact on rainfed wheat in south-eastern Australia. Field Crop. Res. 2007, 104, 139–147. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Summary for policymakers. In Climate change 2023: Synthesis report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergov-ernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Akinbile, C.; El-Lat, K.A.; Abdullah, R.; Yusoff, M. Rice Production and Water use Efficiency for Self-Sufficiency in Malaysia: A Review. Trends Appl. Sci. Res. 2011, 6, 1127–1140. [Google Scholar] [CrossRef]
- Peng, S.; Tang, Q.; Zou, Y. Current Status and Challenges of Rice Production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef]
- Sariam, O.; Anuar, A.R. Effects of irrigation regime on irrigated rice. J. Trop. Agric. Food Sci. 2010, 38, 1–9. [Google Scholar]
- Korea Statistical Information Service (KOSIS). 2024. Agricultural Land Area Survey. Available online: http://kosis.kr/index/index.do (accessed on 27 August 2024).
- Choi, J.S.; Choi, J.S.; Won, J.G.; Won, J.G.; Ahn, D.J.; Park, S.G.; Lee, S.P. Growth and Yield of Rice by Field Water Management for Water-Saving Irrigation. Korean J. Crop Sci. 2004, 49, 441–446. [Google Scholar]
- Dong, N.M.; Brandt, K.K.; Sørensen, J.; Hung, N.N.; Van Hach, C.; Tan, P.S.; Dalsgaard, T. Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam. Soil Biol. Biochem. 2012, 47, 166–174. [Google Scholar] [CrossRef]
- Hong, E.; Choi, J.; Nam, W.; Kim, J. Decision Support System for the Real-Time Operation and Management of an Agricultural Water Supply. Irrig. Drain. 2015, 65, 197–209. [Google Scholar] [CrossRef]
- Kim, G.Y.; Lee, S.B.; Lee, J.S.; Choi, E.J.; Ryu, J.H.; Park, W.J.; Choi, J.D. Mitigation of Greenhouse Gases by Water Management of SRI (System of Rice Intensification) in Rice Paddy Fields. Korean J. Soil Sci. Fertil. 2012, 45, 1173–1178. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Choi, M.-Y.; Kim, B.-Y.; Lee, J.-S.; Song, J.; Kim, G.-Y.; Weon, H.-Y. Effects of Water-Saving Irrigation on Emissions of Greenhouse Gases and Prokaryotic Communities in Rice Paddy Soil. Microb. Ecol. 2014, 68, 271–283. [Google Scholar] [CrossRef]
- Wopereis, M.; Kropff, M.; Maligaya, A.; Tuong, T. Drought-stress responses of two lowland rice cultivars to soil water status. Field Crop. Res. 1996, 46, 21–39. [Google Scholar] [CrossRef]
- Choi, W.Y.; Park, H.G.; Moon, S.H.; Choi, M.G.; Kim, S.S.; Kim, C.K. Grain Yield and Seed Quality of Rice Plants as Affected by Water-saving Irrigation. Korean J. Agric. For. Meteorol. 2006, 8, 141–144. [Google Scholar]
- Sujono, J.; Matsuo, N.; Hiramatsu, K.; Mochizuki, T. Improving the water productivity of paddy rice (Oryza sativa L.) cultivation through water saving irrigation treatments. Agric. Sci. 2011, 2, 511–517. [Google Scholar] [CrossRef]
- Hwang, K.-C.; Ahn, S.-H.; Chung, N.-J. Midsummer Drainage Effects on Rice Growth and Golden Apple Snails in Environment-friendly Rice Cultivation. Korean J. Org. Agric. 2013, 21, 403–411. [Google Scholar] [CrossRef]
- Jouzi, Z.; Azadi, H.; Taheri, F.; Zarafshani, K.; Gebrehiwot, K.; Van Passel, S.; Lebailly, P. Organic Farming and Small-Scale Farmers: Main Opportunities and Challenges. Ecol. Econ. 2017, 132, 144–154. [Google Scholar] [CrossRef]
- Morshedi, L.; Lashgarara, F.; Hosseini, S.J.F.; Najafabadi, M.O. The Role of Organic Farming for Improving Food Security from the Perspective of Fars Farmers. Sustainability 2017, 9, 2086. [Google Scholar] [CrossRef]
- Ryu, I.S.; Lee, J.H.; Kwon, Y.W. Improvement in rice cultural techniques against unfavorable weather condition. Korean J. Crop Sci. 1982, 27, 385–397. [Google Scholar]
- Choi, W.Y.; Park, H.K.; Kang, S.Y.; Kim, S.S.; Choi, S.Y. Effects of water stress on physiological traits at various growth stages of rice. Korean J. Crop Sci. 1999, 44, 282–287. [Google Scholar]
- Zang, Y.; Wu, G.; Li, Q.; Xu, Y.; Xue, M.; Chen, X.; Wei, H.; Zhang, W.; Zhang, H.; Liu, L.; et al. Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolism. J. Integr. Agric. 2023, 23, 1507–1522. [Google Scholar] [CrossRef]
- Rahman, M.S.; Yoshida, S. Effect of Water Stress on Grain Filling in Rice. Soil Sci. Plant Nutr. 1985, 31, 497–511. [Google Scholar] [CrossRef]
- Tsuchiya, M.; Munandar; Ogo, T. Growth Response of Rice (Oryza sativa L.) to Drought. II. Varietal difference in transpiration under water stress and its related plant characteristics. Jpn. J. Crop. Sci. 1992, 61, 676–682. [Google Scholar] [CrossRef]
- Choi, K.J.; Park, T.S.; Lee, C.K.; Kim, J.T.; Kim, J.H.; Ha, K.Y.; Yang, W.H.; Lee, C.K.; Kwak, K.S.; Park, H.K.; et al. Effect of Temperature During Grain Filling Stage on Grain Quality and Taste of Cooked Rice in Mid-late Maturing Rice Varieties. Korean J. Crop Sci. 2011, 56, 404–412. [Google Scholar] [CrossRef]
- Jeong, H.-K.; Kim, C.-G.; Moon, D.-H. An Analysis of Impacts of Climate Change on Rice Damage Occurrence by Insect Pests and Disease. Korean J. Environ. Agric. 2014, 33, 52–56. [Google Scholar] [CrossRef]
- Karuppaiah, V.; Sujayanad, G.K. Impact of climate change on population dynamics of insect pests. World J. Agric. Sci. 2012, 8, 240–246. [Google Scholar]
- Porter, J.; Parry, M.; Carter, T. The potential effects of climatic change on agricultural insect pests. Agric. For. Meteorol. 1991, 57, 221–240. [Google Scholar] [CrossRef]
- Kiritani, K. Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul. Ecol. 2005, 48, 5–12. [Google Scholar] [CrossRef]
- Aukema, B.H.; Carroll, A.L.; Zheng, Y.; Zhu, J.; Raffa, K.F.; Moore, R.D.; Stahl, K.; Taylor, S.W. Movement of outbreak populations of mountain pine beetle: Influences of spatiotemporal patterns and climate. Ecography 2008, 31, 348–358. [Google Scholar] [CrossRef]
- Tobin, P.C.; Nagarkatti, S.; Loeb, G.; Saunders, M.C. Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Glob. Chang. Biol. 2008, 14, 951–957. [Google Scholar] [CrossRef]
- RDA. Development of Emission Factors and Assessment of Emission for Methane at Cropland in Korea; Rural Development of Administration: Jeonju, Republic of Korea, 2012; Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201300014001 (accessed on 18 September 2025).
- Amagliani, L.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. Composition and protein profile analysis of rice protein ingredients. J. Food Compos. Anal. 2017, 59, 18–26. [Google Scholar] [CrossRef]
- National Academy of Agricultural Sciences (NAAS). Soil and Plant Analysis Methods; Rural Development of Administration: Jeonju, Republic of Korea, 2000. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. Available online: https://cran.r-project.org/ (accessed on 18 September 2025).
- Zhang, Y.; Liu, G.; Huang, W.; Xu, J.; Cheng, Y.; Wang, C.; Zhu, T.; Yang, J. Effects of irrigation regimes on yield and quality of upland rice and paddy rice and their interaction with nitrogen rates. Agric. Water Manag. 2020, 241, 106344. [Google Scholar] [CrossRef]
- You, X.T.; Jing, Q.; Jiang, D.; Dai, T.B.; Zhou, D.Q.; Cao, W.X. Effects of nitrogen application on nitrogen utilization and grain yield and quality in rice under water-saving irrigation. Chin. J. Rice Sci. 2006, 20, 199–204. [Google Scholar]
- Choi, H.C.; Cho, S.Y.; Kim, K.H. Varietal difference and environmental variation in protein content and/or amino acid composition of rice seed. Korean J. Crop Sci. 1990, 35, 379–386. [Google Scholar]
- Matsunami, T.; Kodama, T.; Sano, H.; Kon, K. Agronomic Approaches to Maximize the Palatability of Rice. Jpn. J. Crop. Sci. 2016, 85, 231–240. [Google Scholar] [CrossRef]
- Yun, S.H.; Lee, J.T. Climate change impacts on optimum ripening periods of rice plant and its countermeasure in rice cultivation. Korean Soc. Agric. Forest Meteorol. 2001, 3, 55–70. [Google Scholar]
- Choi, W.Y.; Nam, J.K.; Kim, S.S.; Lee, J.H.; Kim, J.H.; Park, H.K.; Back, N.H.; Choi, M.G.; Kim, C.K.; Jung, K.Y. Optimum transplanting date for production of quality rice in Honam plain area. Korean J. Crop Sci. 2005, 50, 435–441. [Google Scholar]
- Kim, J.I.; Choi, H.C.; Kim, K.H.; Ahn, J.K.; Park, N.B.; Park, D.S.; Kim, C.S.; Lee, J.Y.; Kim, J.K. Varietal response to quality and palatability of cooked rice influenced by different nitrogen applications. Korean J. Crop Sci. 2009, 54, 13–23. [Google Scholar]
- An, K.N.; Lee, I.; Shin, S.H.; Min, H.K.; Kwon, O.D.; Park, H.G.; Shin, H.R.; Kim, H.Y. Characterization of Seasonal and Annual Variations in Quality of Rice Brands Distributed in Jeonnam Province. Korean J. Crop. Sci. 2017, 62, 79–86. [Google Scholar] [CrossRef]
- Seong, D.-G.; Kim, Y.-G.; Yun, S.-M.; Kim, H.-C.; Lee, J.J.; Kim, C.S.; Chung, J.-S. Studies on How Changing the Transplanting Time Affects Rice Quality and Yield. Korean J. Breed. Sci. 2022, 54, 177–183. [Google Scholar] [CrossRef]











| Treatment ‡ | pH | EC † | T-N | T-C | OM | Av. P2O5 | Av. SiO2 | Ex. Cation | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| K+ | Ca2+ | Mg2+ | Na+ | |||||||||
| Before | (1:5) | (dS m−1) | (g kg−1) | (mg kg−1) | (cmol kg−1) | |||||||
| CF | 5.06 | 0.75 | 2.76 | 18.0 | 28.9 | 261 | 69 | 0.10 | 3.75 | 0.40 | 0.46 | |
| 2MD-1 | 5.22 | 0.90 | 2.90 | 20.9 | 26.4 | 319 | 64 | 0.20 | 5.10 | 0.75 | 0.53 | |
| 2MD-2 | 5.24 | 0.85 | 2.60 | 17.4 | 26.1 | 280 | 73 | 0.10 | 5.35 | 0.65 | 0.49 | |
| 3MD-1 | 5.24 | 0.50 | 2.98 | 19.8 | 20.9 | 234 | 76 | 0.10 | 5.00 | 0.55 | 0.47 | |
| 4MD-1 | 5.18 | 1.15 | 2.75 | 16.7 | 24.4 | 245 | 87 | 0.20 | 4.65 | 0.55 | 0.54 | |
| 4MD-2 | 5.22 | 0.60 | 2.71 | 19.4 | 24.5 | 117 | 84 | 0.10 | 6.20 | 1.05 | 0.36 | |
| After | CF | 5.23 | 0.50 | 2.73 | 15.2 | 23.5 | 314 | 74 | 0.20 | 4.33 | 1.17 | 0.50 |
| 2MD-1 | 5.90 | 0.60 | 2.70 | 17.9 | 24.4 | 337 | 102 | 0.20 | 5.70 | 1.53 | 0.67 | |
| 2MD-2 | 5.30 | 0.60 | 2.83 | 18.0 | 24.2 | 281 | 90 | 0.20 | 5.67 | 1.47 | 0.49 | |
| 3MD-1 | 5.33 | 0.20 | 2.52 | 16.5 | 25.5 | 224 | 88 | 0.10 | 5.53 | 0.80 | 0.47 | |
| 4MD-1 | 5.03 | 0.47 | 3.22 | 21.1 | 29.0 | 246 | 84 | 0.20 | 3.80 | 0.53 | 0.48 | |
| 4MD-2 | 5.33 | 0.30 | 2.97 | 18.3 | 25.1 | 236 | 100 | 0.20 | 7.17 | 1.70 | 0.67 | |
| Treatment † | 2022 | 2023 | 2024 | |||
|---|---|---|---|---|---|---|
| Drainage | Irrigation | Drainage | Irrigation | Drainage | Irrigation | |
| CF | - | - | - | - | - | - |
| 2MD-1 | 13 July | 27 July | 13 July | 27 July | 8 July | 22 July |
| 2MD-2 | 13 July | 27 July | 13 July | 27 July | 8 July | 22 July |
| 3MD-1 | 13 July | 3 August | 13 July | 3 August | 8 July | 29 July |
| 3MD-2 | - | - | 13 July | 3 August | 8 July | 29 July |
| 4MD-1 | 13 July | 10 August | 13 July | 10 August | - | - |
| 4MD-2 | 13 July | 10 August | - | - | - | - |
| Treatment ‡ | pH | EC † | T-N | T-C | OM | Av. P2O5 | Av. SiO2 | Ex. Cation | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| K+ | Ca2+ | Mg2+ | Na+ | |||||||||
| Before | (1:5) | (dS m−1) | (g kg−1 | (mg kg−1) | (cmol kg−1) | |||||||
| CF | 5.35 | 0.17 | 1.90 | 12.9 | 28.5 | 332 | 102 | 0.12 | 4.90 | 1.23 | 0.41 | |
| 2MD-1 | 5.40 | 0.11 | 2.55 | 18.0 | 30.0 | 314 | 143 | 0.12 | 5.63 | 1.43 | 0.37 | |
| 2MD-2 | 5.40 | 0.16 | 2.77 | 22.8 | 30.0 | 314 | 143 | 0.12 | 5.63 | 1.43 | 0.36 | |
| 3MD-1 | 5.30 | 0.22 | 2.26 | 17.9 | 25.7 | 214 | 180 | 0.10 | 5.77 | 0.87 | 0.34 | |
| 3MD-2 | 5.27 | 0.27 | 2.52 | 18.1 | 28.0 | 262 | 107 | 0.11 | 4.90 | 0.83 | 0.37 | |
| 4MD-1 | 5.20 | 0.50 | 2.50 | 18.0 | 33.1 | 280 | 109 | 0.17 | 4.57 | 0.70 | 0.31 | |
| After | CF | 5.35 | 0.53 | 2.43 | 19.8 | 24.7 | 257 | 69 | 0.10 | 4.65 | 0.67 | 0.25 |
| 2MD-1 | 5.40 | 0.57 | 2.20 | 19.3 | 27.3 | 257 | 104 | 0.20 | 6.23 | 0.90 | 0.21 | |
| 2MD-2 | 5.40 | 0.57 | 2.23 | 19.8 | 25.9 | 202 | 69 | 0.10 | 5.90 | 0.93 | 0.27 | |
| 3MD-1 | 5.30 | 0.33 | 2.30 | 19.8 | 24.7 | 231 | 66 | 0.20 | 4.83 | 0.73 | 0.30 | |
| 3MD-2 | 5.27 | 0.33 | 2.37 | 19.9 | 27.3 | 244 | 78 | 0.17 | 5.43 | 0.80 | 0.27 | |
| 4MD-1 | 5.03 | 0.83 | 2.28 | 19.2 | 29.0 | 246 | 54 | 0.2 | 3.80 | 0.53 | 0.21 | |
| Treatment ‡ | pH | EC † | T-N | T-C | OM | Av. P2O5 | Av. SiO2 | Ex. Cation | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| K+ | Ca2+ | Mg2+ | Na+ | |||||||||
| (1:5) | (dS m−1) | (g kg−1) | (mg kg−1) | (cmol kg−1) | ||||||||
| Before | CF | 5.40 | 0.15 | 2.27 | 20.1 | 27.7 | 359 | 65.4 | 0.10 | 4.10 | 0.73 | 0.44 |
| 2MD-1 | 5.40 | 0.20 | 2.39 | 21.5 | 30.6 | 330 | 52.9 | 0.10 | 4.80 | 1.00 | 0.41 | |
| 2MD-2 | 5.43 | 0.20 | 2.08 | 20.5 | 25.9 | 323 | 63.4 | 0.10 | 4.73 | 1.07 | 0.42 | |
| 3MD-1 | 5.37 | 0.15 | 2.12 | 17.1 | 25.2 | 309 | 72.8 | 0.10 | 4.53 | 0.67 | 0.43 | |
| 3MD-2 | 5.37 | 0.17 | 2.19 | 19.1 | 27.3 | 344 | 93.0 | 0.10 | 5.23 | 0.73 | 0.45 | |
| After | CF | 5.65 | 0.15 | 2.39 | 16.9 | 26.6 | 301 | 32.5 | 0.10 | 4.60 | 0.68 | 0.34 |
| 2MD-1 | 5.57 | 0.17 | 2.64 | 18.3 | 30.0 | 257 | 53.7 | 0.10 | 5.00 | 0.83 | 0.36 | |
| 2MD-2 | 5.53 | 0.13 | 2.76 | 17.2 | 26.3 | 235 | 25.5 | 0.10 | 4.87 | 0.90 | 0.39 | |
| 3MD-1 | 5.40 | 0.13 | 2.59 | 16.4 | 25.8 | 262 | 45.7 | 0.10 | 4.53 | 0.67 | 0.34 | |
| 3MD-2 | 5.47 | 0.13 | 2.59 | 16.8 | 24.9 | 226 | 37.5 | 0.10 | 4.00 | 0.60 | 0.36 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.; Cho, Y.-S. Effects of Water Management Practices on Rice Grain Quality and Pest-Disease Incidence in Environmentally Friendly Cultivation Systems. Agriculture 2025, 15, 2244. https://doi.org/10.3390/agriculture15212244
Oh S, Cho Y-S. Effects of Water Management Practices on Rice Grain Quality and Pest-Disease Incidence in Environmentally Friendly Cultivation Systems. Agriculture. 2025; 15(21):2244. https://doi.org/10.3390/agriculture15212244
Chicago/Turabian StyleOh, SeungKa, and Young-Son Cho. 2025. "Effects of Water Management Practices on Rice Grain Quality and Pest-Disease Incidence in Environmentally Friendly Cultivation Systems" Agriculture 15, no. 21: 2244. https://doi.org/10.3390/agriculture15212244
APA StyleOh, S., & Cho, Y.-S. (2025). Effects of Water Management Practices on Rice Grain Quality and Pest-Disease Incidence in Environmentally Friendly Cultivation Systems. Agriculture, 15(21), 2244. https://doi.org/10.3390/agriculture15212244

