Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = bacteria surviving sanitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1579 KiB  
Article
Plasma-Treated Water Effect on Sporulating Bacillus cereus vs. Non-Sporulating Listeria monocytogenes Biofilm Cell Vitality
by Samantha Nestel, Robert Wagner, Mareike Meister, Thomas Weihe and Uta Schnabel
Appl. Microbiol. 2025, 5(3), 80; https://doi.org/10.3390/applmicrobiol5030080 - 5 Aug 2025
Abstract
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have [...] Read more.
Foodborne illness caused by bacterial pathogens is a global health concern and results in millions of infections annually. Therefore, food products typically undergo several processing stages, including sanitation steps, before being distributed in an attempt to remove pathogens. However, many sanitation methods have compounding effects on the color, texture, flavor, and nutritional quality of the product or do not effectively reduce the pathogens that food can be exposed to. Some bacterial pathogens particularly possess traits and tactics that make them even more difficult to mitigate such as biofilm formation. Non-thermal plasma sanitation techniques, including plasma-treated water (PTW), have proven to be promising methods that significantly reduce pathogenic bacteria that food is exposed to. Published work reveals that PTW can effectively mitigate both gram-positive and gram-negative bacterial biofilms. This study presents a novel analysis of the differences in antimicrobial effects of PTW treatment between biofilm-forming gram-positive bacteria, commonly associated with foodborne illness, that are sporulating (Bacillus cereus) and non-sporulating (Listeria monocytogenes). After treatment with PTW, the results suggest the following hypotheses: (1) that the non-sporulating species experiences less membrane damage but a greater reduction in metabolic activity, leading to a possible viable but non-culturable (VBNC) state, and (2) that the sporulating species undergoes spore formation, which may subsequently convert into vegetative cells over time. PTW treatment on gram-positive bacterial biofilms that persist in food processing environments proves to be effective in reducing the proliferating abilities of the bacteria. However, the variance in PTW’s effects on metabolic activity and cell vitality between sporulating and non-sporulating species suggest that other survival tactics might be induced. This analysis further informs the application of PTW in food processing as an effective sanitation method. Full article
Show Figures

Graphical abstract

10 pages, 798 KiB  
Article
The Determination of the Rapid and Effective Activity of an Air Sanitizer against Aerosolized Bacteria Using a Room-Sized Aerobiology Chamber
by Bahram Zargar, M. Khalid Ijaz, Anthony Kevek, Mark Miller, Julie McKinney and Syed A. Sattar
Microorganisms 2024, 12(10), 2072; https://doi.org/10.3390/microorganisms12102072 - 16 Oct 2024
Cited by 2 | Viewed by 1470
Abstract
Air sanitization is an important non-pharmaceutical intervention for mitigating the risk of indoor pathogen spreading. A dipropylene glycol-containing air sanitizer was tested against aerosolized Staphylococcus aureus and Klebsiella pneumoniae. The bacteria, suspended in a soil load, were aerosolized using a six-jet Collison [...] Read more.
Air sanitization is an important non-pharmaceutical intervention for mitigating the risk of indoor pathogen spreading. A dipropylene glycol-containing air sanitizer was tested against aerosolized Staphylococcus aureus and Klebsiella pneumoniae. The bacteria, suspended in a soil load, were aerosolized using a six-jet Collison nebulizer with pressurized air. The 25-m3 (~900 ft3) aerobiology chamber was maintained at 22 ± 2 °C and 50 ± 5% relative humidity per the U.S. Environmental Protection Agency’s 2012 Guidelines on air sanitizers. An initial 2-min air sample was collected from the chamber using a slit-to-agar sampler containing 150-mm Petri plates, with Trypticase soy agar (TSA) containing neutralizers to quench the microbicidal activity of the air sanitizer, to determine the initial bacterial challenge in the air. The air sanitizer was sprayed into the chamber from pressurized cans. Additional air samples were collected from the chamber over 10 min to detect surviving bacteria. The TSA plates were then incubated aerobically at 36 ± 1 °C for 90 ± 4 h and scored for bacterial colony-forming units. A 30-s spray of the air sanitizer reduced infectious S. aureus and K. pneumoniae titers by 3.0 log10 (99.9%) in 3.2 ± 0.3 min and 1.2 ± 0.0 min, respectively. Based on these findings, the EPA granted registration of the air sanitizer as the first product of its kind for indoor air sanitization. Full article
(This article belongs to the Special Issue Disinfection and Sterilization of Microorganisms (2nd Edition))
Show Figures

Figure 1

16 pages, 1565 KiB  
Article
Berry Pomace Extracts as a Natural Washing Aid to Mitigate Enterohaemorrhagic E. coli in Fresh Produce
by Kanchan Thapa, Dita Julianingsih, Chuan-Wei Tung, Anna Phan, Muhammad Abrar Hashmi, Kayla Bleich and Debabrata Biswas
Foods 2024, 13(17), 2746; https://doi.org/10.3390/foods13172746 - 29 Aug 2024
Cited by 2 | Viewed by 1159
Abstract
Enterohemorrhagic Escherichia coli (EHEC) outbreaks have been frequently linked to the consumption of produce. Furthermore, produce grown on organic farms possess a higher risk, as the farmers avoid antibiotics and chemicals. This study sets out to evaluate the effectiveness of advanced postharvest disinfection [...] Read more.
Enterohemorrhagic Escherichia coli (EHEC) outbreaks have been frequently linked to the consumption of produce. Furthermore, produce grown on organic farms possess a higher risk, as the farmers avoid antibiotics and chemicals. This study sets out to evaluate the effectiveness of advanced postharvest disinfection processes using berry pomace extracts (BPEs) in reducing EHEC load in two common leafy greens, spinach and lettuce. Spinach and lettuce were inoculated with ~5 log CFU/leaf EHEC EDL-933 and then treated with three different concentrations of BPE (1, 1.5, and 2 gallic acid equivalent, GAE mg/mL) for increasing periods of time. After the wash, the bacteria were quantified. Changes in the relative expression of virulence genes and the genes involved in cell division and replication and response against stress/antibiotics were studied. We observed a significant reduction in EHEC EDL933, ranging from 0.5 to 1.6 log CFU/spinach leaf (p < 0.05) washed with BPE water. A similar trend of reduction, ranging from 0.3 to 1.3 log CFU/mL, was observed in pre-inoculated lettuce washed with BPE water. We also quantified the remaining bacterial population in the residual treatment solutions and found the survived bacterial cells (~3 log CFU/mL) were low despite repeated washing with the same solution. In addition, we evaluated the phenolic concentration in leftover BPE, which did not change significantly, even after multiple uses. Alterations in gene expression levels were observed, with downregulation ranging from 1 to 3 log folds in the genes responsible for the adhesion and virulence of EHEC EDL933 and significant upregulation of genes responsible for survival against stress. All other genes were upregulated, ranging from 2 to 7 log folds, with a dose-dependent decrease in expression. This finding shows the potential of BPE to be used for sanitation of fresh produce as a natural and sustainable approach. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

18 pages, 3496 KiB  
Article
Deep Impact: Shifts of Native Cultivable Microbial Communities on Fresh Lettuce after Treatment with Plasma-Treated Water
by Hauke Winter, Robert Wagner, Jörg Ehlbeck, Tim Urich and Uta Schnabel
Foods 2024, 13(2), 282; https://doi.org/10.3390/foods13020282 - 16 Jan 2024
Cited by 1 | Viewed by 1740
Abstract
Foods consumed raw, such as lettuce, can host food-borne human-pathogenic bacteria. In the worst-case, these diseases cause to death. To limit illness and industrial losses, one innovative sanitation method is non-thermal plasma, which offers an extremely efficient reduction of living microbial biomass. Unfortunately, [...] Read more.
Foods consumed raw, such as lettuce, can host food-borne human-pathogenic bacteria. In the worst-case, these diseases cause to death. To limit illness and industrial losses, one innovative sanitation method is non-thermal plasma, which offers an extremely efficient reduction of living microbial biomass. Unfortunately, the total viable count (TVC), one of the most common methods for quantifying antimicrobial effects, provides no detailed insights into the composition of the surviving microbial community after treatment. To address this information gap, different special agars were used to investigate the reduction efficiency of plasma-treated water (PTW) on different native cultivable microorganisms. All tested cultivable microbial groups were reduced using PTW. Gram-negative bacteria showed a reduction of 3.81 log10, and Gram-positive bacteria showed a reduction of 3.49 log10. Fungi were reduced by 3.89 log10. These results were further validated using a live/dead assay. MALDI-ToF (matrix-assisted laser-desorption-ionization time-of-flight)-based determination was used for a diversified overview. The results demonstrated that Gram-negative bacteria were strongly reduced. Interestingly, Gram-positive bacteria and fungi were reduced by nearly equal amounts, but could still recover from PTW treatment. MALDI-ToF mainly identified Pseudomonas spp. and groups of Bacillus on the tested lettuce. These results indicate that the PTW treatment could efficiently achieve a ubiquitous, spectrum-wide reduction of microbial life. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

16 pages, 1116 KiB  
Review
From Stress Tolerance to Virulence: Recognizing the Roles of Csps in Pathogenicity and Food Contamination
by Evieann Cardoza and Harinder Singh
Pathogens 2024, 13(1), 69; https://doi.org/10.3390/pathogens13010069 - 11 Jan 2024
Cited by 5 | Viewed by 2440
Abstract
Be it for lab studies or real-life situations, bacteria are constantly exposed to a myriad of physical or chemical stresses that selectively allow the tolerant to survive and thrive. In response to environmental fluctuations, the expression of cold shock domain family proteins (Csps) [...] Read more.
Be it for lab studies or real-life situations, bacteria are constantly exposed to a myriad of physical or chemical stresses that selectively allow the tolerant to survive and thrive. In response to environmental fluctuations, the expression of cold shock domain family proteins (Csps) significantly increases to counteract and help cells deal with the harmful effects of stresses. Csps are, therefore, considered stress adaptation proteins. The primary functions of Csps include chaperoning nucleic acids and regulating global gene expression. In this review, we focus on the phenotypic effects of Csps in pathogenic bacteria and explore their involvement in bacterial pathogenesis. Current studies of csp deletions among pathogenic strains indicate their involvement in motility, host invasion and stress tolerance, proliferation, cell adhesion, and biofilm formation. Through their RNA chaperone activity, Csps regulate virulence-associated genes and thereby contribute to bacterial pathogenicity. Additionally, we outline their involvement in food contamination and discuss how foodborne pathogens utilize the stress tolerance roles of Csps against preservation and sanitation strategies. Furthermore, we highlight how Csps positively and negatively impact pathogens and the host. Overall, Csps are involved in regulatory networks that influence the expression of genes central to stress tolerance and virulence. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

20 pages, 4423 KiB  
Article
Customizing Sanitization Protocols for Food-Borne Pathogens Based on Biofilm Formation, Surfaces and Disinfectants—Their Two- and Three-Way Interactions
by Manju Kundu, Amin Omar, Brenton Buziak, Nick Allan, Lyriam Marques, Merle Olson, Ronald Howard and Michael W. Harding
Appl. Microbiol. 2024, 4(1), 27-46; https://doi.org/10.3390/applmicrobiol4010003 - 23 Dec 2023
Cited by 2 | Viewed by 2761
Abstract
Food-borne pathogens are a serious challenge in food handling, processing, and packaging systems. The growth of microbial biofilms on food handling surfaces further complicates the management of the microbial contamination of food. Microorganisms within biofilms are difficult to eradicate with chemical disinfectants, with [...] Read more.
Food-borne pathogens are a serious challenge in food handling, processing, and packaging systems. The growth of microbial biofilms on food handling surfaces further complicates the management of the microbial contamination of food. Microorganisms within biofilms are difficult to eradicate with chemical disinfectants, with an increased likelihood of survival and the subsequent contamination of food. Therefore, a biofilm approach is needed in food safety and hygiene studies. Since many factors, such as strain, cell density, surface type and texture, environmental stress, and so forth, can affect biofilm formation and disinfectant efficacy, we evaluated the responses of biofilms formed by three food-borne bacterial pathogens on eight hard surfaces to seven chemical disinfectants. The three bacteria showed different capacities to colonize the surfaces. Similarly, chemical disinfectants also varied in efficacy, on surfaces and with pathogen species. One-, two-, and three-way interactions of strain, surface, and disinfectant were observed. The results generated demonstrate that the fine-tuning of sanitization strategies along the food production, processing, and packaging chain can be achieved in specific scenarios by accounting for two- and three-way interactions among bacteria, surface, and disinfectant. Full article
Show Figures

Figure 1

17 pages, 4048 KiB  
Article
Pathogen Eradication in Garlic in the Phytobiome Context: Should We Aim for Complete Cleaning?
by Itay Yarmus, Dana Gelbart, Einat Shemesh-Mayer, Doron Dov Teper, Dana Ment, Adi Faigenboim, Ross Peters and Rina Kamenetsky-Goldstein
Plants 2023, 12(24), 4125; https://doi.org/10.3390/plants12244125 - 10 Dec 2023
Cited by 2 | Viewed by 2509
Abstract
Global food production is challenged by plant pathogens that cause significant crop losses. Fungi, bacteria, and viruses have long threatened sustainable and profitable agriculture. The danger is even higher in vegetatively propagated horticultural crops, such as garlic. Currently, quarantine, rouging infected plants, and [...] Read more.
Global food production is challenged by plant pathogens that cause significant crop losses. Fungi, bacteria, and viruses have long threatened sustainable and profitable agriculture. The danger is even higher in vegetatively propagated horticultural crops, such as garlic. Currently, quarantine, rouging infected plants, and control of natural vectors are used as the main means of disease and pest control in garlic crops. Agricultural biotechnology, meristem-tip culture, and cryotherapy offer solutions for virus eradication and for the multiplication of ‘clean stocks’, but at the same time, impact the symbiotic and beneficial components of the garlic microbiome. Our research involves the first metatranscriptomic analysis of the microbiome of garlic bulb tissue, PCR analyses, and a biological assay of endophytes and pathogens. We have demonstrated that in vitro sanitation methods, such as shoot tip culture or cryotherapy can alter the garlic microbiome. Shoot tip culture proved ineffective in virus elimination, but reduced bacterial load and eliminated fungal infections. Conversely, cryotherapy was efficient in virus eradication but demolished other components of the garlic microbiome. Garlic plants sanitized by cryotherapy exhibited a lower survival rate, and a longer in vitro regeneration period. The question arises whether total eradication of viruses, at the expense of other microflora, is necessary, or if a partial reduction in the pathogenic load would suffice for sanitized garlic production. We explore this question from both scientific and commercial perspectives. Full article
(This article belongs to the Special Issue Species from the Allium Genus: Cultivation and Food Chemistry)
Show Figures

Figure 1

15 pages, 2738 KiB  
Article
Synthesis and Characterization of Antimicrobial Hydrophobic Polyurethane
by Autumn M. Rudlong, Elizabet Moreno Reyes and Julie M. Goddard
Materials 2023, 16(12), 4446; https://doi.org/10.3390/ma16124446 - 17 Jun 2023
Cited by 3 | Viewed by 2537
Abstract
Food borne illness remains a major threat to public health despite new governmental guidelines and industry standards. Cross-contamination of both pathogenic and spoilage bacteria from the manufacturing environment can promote consumer illness and food spoilage. While there is guidance in cleaning and sanitation [...] Read more.
Food borne illness remains a major threat to public health despite new governmental guidelines and industry standards. Cross-contamination of both pathogenic and spoilage bacteria from the manufacturing environment can promote consumer illness and food spoilage. While there is guidance in cleaning and sanitation procedures, manufacturing facilities can develop bacterial harborage sites in hard-to-reach areas. New technologies to eliminate these harborage sites include chemically modified coatings that can improve surface characteristics or incorporate embedded antibacterial compounds. In this article we synthesize a 16 carbon length quaternary ammonium bromide (C16QAB) modified polyurethane and perfluoropolyether (PFPE) copolymer coating with low surface energy and bactericidal properties. The introduction of PFPE to the polyurethane coatings lowered the critical surface tension from 18.07 mN m−1 in unmodified polyurethane to 13.14 mN m−1 in modified polyurethane. C16QAB + PFPE polyurethane was bactericidal against Listeria monocytogenes (>6 log reduction) and Salmonella enterica (>3 log reduction) after just eight hours of contact. The combination of low surface tension from the perfluoropolyether and antimicrobial from the quaternary ammonium bromide produced a multifunctional polyurethane coating suitable for coating on non-food contact food production surfaces to prevent survival and persistence of pathogenic and spoilage organisms. Full article
(This article belongs to the Special Issue Prevention, Treatment and Detection of Biofilms on Implants)
Show Figures

Figure 1

16 pages, 3558 KiB  
Article
Microbial Dynamics in Mixed-Culture Biofilms of Salmonella Typhimurium and Escherichia coli O157:H7 and Bacteria Surviving Sanitation of Conveyor Belts of Meat Processing Plants
by Xianqin Yang, Hui Wang, Scott Hrycauk, Devin B. Holman and Tim C. Ells
Microorganisms 2023, 11(2), 421; https://doi.org/10.3390/microorganisms11020421 - 7 Feb 2023
Cited by 13 | Viewed by 2852
Abstract
Biofilm formation can lead to the persistence of Salmonella Typhimurium (ST) and E. coli O157:H7 (O157). This study investigated the impact of meat processing surface bacteria (MPB) on biofilm formation by O157 (non-biofilm former; NF) and ST (strong biofilm former; BF). MPB were [...] Read more.
Biofilm formation can lead to the persistence of Salmonella Typhimurium (ST) and E. coli O157:H7 (O157). This study investigated the impact of meat processing surface bacteria (MPB) on biofilm formation by O157 (non-biofilm former; NF) and ST (strong biofilm former; BF). MPB were recovered from the contacting surfaces (CS), non-contacting surfaces (NCS), and roller surfaces (RS) of a beef plant conveyor belt after sanitation. O157 and ST were co-inoculated with MPB (CO), or after a delay of 48 h (IS), into biofilm reactors containing stainless steel coupons and incubated at 15 °C for up to 144 h. Coupons were withdrawn at various intervals and analyzed by conventional plating and 16S rRNA gene amplicon sequencing. The total bacterial counts in biofilms reached approximately 6.5 log CFU/cm2, regardless of MPB type or development mode. The mean counts for O157 and ST under equivalent conditions mostly did not differ (p > 0.05), except for the IS set at 50 h, where no O157 was recovered. O157 and ST were 1.6 ± 2.1% and 4.7 ± 5.0% (CO) and 1.1 ± 2.2% and 2.0 ± 2.8% (IS) of the final population. Pseudomonas dominated the MPB inocula and biofilms, regardless of MPB type or development mode. Whether or not a pathogen is deemed BF or NF in monoculture, its successful integration into complex multi-species biofilms ultimately depends on the presence of certain other residents within the biofilm. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Biofilm Formation)
Show Figures

Figure 1

16 pages, 4136 KiB  
Article
An Assessment of the Bactericidal and Virucidal Properties of ZrN-Cu Nanostructured Coatings Deposited by an Industrial PVD System
by Sahand Behrangi, Ivo Sedláček, Ján Štěrba, Gabriela Suková, Zsolt Czigány, Vilma Buršíková, Pavel Souček, Vjačeslav Sochora, Katalin Balázsi and Petr Vašina
Coatings 2022, 12(9), 1330; https://doi.org/10.3390/coatings12091330 - 12 Sep 2022
Cited by 4 | Viewed by 2488
Abstract
Pathogenic microbes, such as bacteria and viruses, can spread quickly via contaminated surfaces. Most of these pathogenic microorganisms can survive on surfaces for a long time. Touching these surfaces can lead to the transmission of the microorganisms to the human body and cause [...] Read more.
Pathogenic microbes, such as bacteria and viruses, can spread quickly via contaminated surfaces. Most of these pathogenic microorganisms can survive on surfaces for a long time. Touching these surfaces can lead to the transmission of the microorganisms to the human body and cause serious illnesses. ZrN-Cu coatings containing different amounts of Cu were deposited using an industrial PVD system, and their ability to inhibit bacteria and inactivate the SARS-CoV-2 virus was tested. Microstructural studies showed the formation of two distinct ZrN and Cu phases when Cu content was sufficiently high. Hardness and elastic modulus were inversely proportional to the Cu content. The coatings showed outstanding bactericidal properties against Escherichia coli and Pseudomonas aeruginosa, especially when Cu content was more than 12 at.% and exposure time was longer than 40 min. The coatings, however, did not exhibit any significant virucidal properties. Good mechanical properties, along with excellent antibacterial effects, make these coatings suitable for use as self-sanitizing surfaces on objects that people regularly touch and that are prone to bacterial contamination. Their use would thus allow for only minimal transmission or multiplication of bacteria, and the treated surface would not serve as another source of infection. Full article
Show Figures

Figure 1

14 pages, 4144 KiB  
Article
Co-Occurrence of L. monocytogenes with Other Bacterial Genera and Bacterial Diversity on Cleaned Conveyor Surfaces in a Swine Slaughterhouse
by Tamazight Cherifi, Julie Arsenault, Sylvain Quessy and Philippe Fravalo
Microorganisms 2022, 10(3), 613; https://doi.org/10.3390/microorganisms10030613 - 14 Mar 2022
Cited by 10 | Viewed by 2626
Abstract
Bacterial pathogens, such as Listeria monocytogenes, can show resistance to disinfection and persistence on working surfaces, permitting them to survive and contaminate food products. Persistence—a complex phenomenon involving interactions between many bacteria within a biofilm—is modulated by in situ characteristics. This study [...] Read more.
Bacterial pathogens, such as Listeria monocytogenes, can show resistance to disinfection and persistence on working surfaces, permitting them to survive and contaminate food products. Persistence—a complex phenomenon involving interactions between many bacteria within a biofilm—is modulated by in situ characteristics. This study aimed to describe, in silico, the microbiota identified in a swine slaughterhouse after sanitation procedures to better understand the presence of L. monocytogenes on these surfaces. Molecular tools for characterization of microbial communities were used to assess the relative contribution of different bacteria resulting from this phenomenon, and the 16S rRNA sequencing method was used on samples from meat conveyor belt surfaces collected on four sampling visits to study the co-occurrence between L. monocytogenes and other bacteria. From the background microbiota, a total of six genera were found to be negatively correlated with Listeria spp., suggesting Listeria growth inhibition, competition, or at least an absence of shared habitats. Based on these results, a complete scenario of interactions of Listeria with components of background microbiota was established. This work contributes to identifying avenues that could prevent the growth and persistence of L. monocytogenes on food-processing surfaces. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 1356 KiB  
Article
Fate of Salmonella Typhimurium and Listeria monocytogenes on Whole Papaya during Storage and Antimicrobial Efficiency of Aqueous Chlorine Dioxide Generated with HCl, Malic Acid or Lactic Acid on Whole Papaya
by Lianger Dong and Yong Li
Foods 2021, 10(8), 1871; https://doi.org/10.3390/foods10081871 - 12 Aug 2021
Cited by 5 | Viewed by 3906
Abstract
Papaya-associated foodborne illness outbreaks have been frequently reported worldwide. The goal of this study was to evaluate the behavior of Salmonella Typhimurium and Listeria monocytogenes on whole papaya during storage and sanitizing process. Fresh green papayas were inoculated with approximately 7 log CFU [...] Read more.
Papaya-associated foodborne illness outbreaks have been frequently reported worldwide. The goal of this study was to evaluate the behavior of Salmonella Typhimurium and Listeria monocytogenes on whole papaya during storage and sanitizing process. Fresh green papayas were inoculated with approximately 7 log CFU of S. Typhimurium and L. monocytogenes and stored at 21 or 7 °C for 14 days. Bacteria counts were determined on day 0, 1, 7, 10 and 14. Fresh green papayas inoculated with approximately 8 log CFU of the bacteria were treated for 5 min with 2.5, 5 and 10 ppm aqueous chlorine dioxide (ClO2). The ClO2 solutions were generated by mixing sodium chlorite with an acid, which was HCl, lactic acid or malic acid. The detection limit of the enumeration method was 2.40 log CFU per papaya. At the end of storage period, S. Typhimurium and L. monocytogenes grew by 1.88 and 1.24 log CFU on papayas at 21 °C, respectively. Both bacteria maintained their initial population at inoculation on papayas stored at 7 °C. Higher concentrations of ClO2 reduced more bacteria on papaya. 10 ppm ClO2, regardless the acid used to generate the solutions, inactivated S. Typhimurium to undetectable level on papaya. 10 ppm ClO2 generated with HCl, lactic acid and malic acid reduced L. monocytogenes by 4.40, 6.54 and 8.04 log CFU on papaya, respectively. Overall, ClO2 generated with malic acid showed significantly higher bacterial reduction than ClO2 generated with HCl or lactic acid. These results indicate there is a risk of survival and growth for S. Typhimurium and L. monocytogenes on papaya at commercial storage conditions. Aqueous ClO2 generated with malic acid shows effectiveness in inactivating the pathogenic bacteria on papaya. Full article
(This article belongs to the Special Issue Foodborne Pathogens and Food Safety)
Show Figures

Graphical abstract

29 pages, 6081 KiB  
Review
Back to Basics: Choosing the Appropriate Surface Disinfectant
by Angelica Artasensi, Sarah Mazzotta and Laura Fumagalli
Antibiotics 2021, 10(6), 613; https://doi.org/10.3390/antibiotics10060613 - 21 May 2021
Cited by 39 | Viewed by 13960
Abstract
From viruses to bacteria, our lives are filled with exposure to germs. In built environments, exposure to infectious microorganisms and their byproducts is clearly linked to human health. In the last year, public health emergency surrounding the COVID-19 pandemic stressed the importance of [...] Read more.
From viruses to bacteria, our lives are filled with exposure to germs. In built environments, exposure to infectious microorganisms and their byproducts is clearly linked to human health. In the last year, public health emergency surrounding the COVID-19 pandemic stressed the importance of having good biosafety measures and practices. To prevent infection from spreading and to maintain the barrier, disinfection and hygiene habits are crucial, especially when the microorganism can persist and survive on surfaces. Contaminated surfaces are called fomites and on them, microorganisms can survive even for months. As a consequence, fomites serve as a second reservoir and transfer pathogens between hosts. The knowledge of microorganisms, type of surface, and antimicrobial agent is fundamental to develop the best approach to sanitize fomites and to obtain good disinfection levels. Hence, this review has the purpose to briefly describe the organisms, the kind of risk associated with them, and the main classes of antimicrobials for surfaces, to help choose the right approach to prevent exposure to pathogens. Full article
(This article belongs to the Special Issue Novel Antimicrobials for Surfaces to Prevent Exposure to Pathogens)
Show Figures

Graphical abstract

20 pages, 4477 KiB  
Article
Analysis of Biofilm Formation on the Surface of Organic Mung Bean Seeds, Sprouts and in the Germination Environment
by Marcin Kruk and Monika Trząskowska
Foods 2021, 10(3), 542; https://doi.org/10.3390/foods10030542 - 5 Mar 2021
Cited by 6 | Viewed by 3694
Abstract
This study aimed to analyse the impact of sanitation methods on the formation of bacterial biofilms after disinfection and during the germination process of mung bean on seeds and in the germination environment. Moreover, the influence of Lactobacillus plantarum 299v on the growth [...] Read more.
This study aimed to analyse the impact of sanitation methods on the formation of bacterial biofilms after disinfection and during the germination process of mung bean on seeds and in the germination environment. Moreover, the influence of Lactobacillus plantarum 299v on the growth of the tested pathogenic bacteria was evaluated. Three strains of Salmonella and E. coli were used for the study. The colony forming units (CFU), the crystal violet (CV), the LIVE/DEAD and the gram fluorescent staining, the light and the scanning electron microscopy (SEM) methods were used. The tested microorganisms survive in a small number. During germination after disinfection D2 (20 min H2O at 60 °C, then 15 min in a disinfecting mixture consisting of H2O, H2O2 and CH₃COOH), the biofilms grew most after day 2, but with the DP2 method (D2 + L. plantarum 299v during germination) after the fourth day. Depending on the method used, the second or fourth day could be a time for the introduction of an additional growth-limiting factor. Moreover, despite the use of seed disinfection, their germination environment could be favourable for the development of bacteria and, consequently, the formation of biofilms. The appropriate combination of seed disinfection methods and growth inhibition methods at the germination stage will lead to the complete elimination of the development of unwanted microflora and their biofilms. Full article
(This article belongs to the Special Issue Pathogens on Fresh Produce: Detection and Reduction)
Show Figures

Figure 1

Back to TopTop