Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (401)

Search Parameters:
Keywords = azide-alkyne

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 383 KiB  
Article
Synthesis and Biological Activity of Novel Polyazaheterocyclic Derivatives of Quinine
by Gulim K. Mukusheva, Nurizat N. Toigambekova, Roza B. Seidakhmetova, Roza I. Jalmakhanbetova, Mukhlissa N. Babakhanova, Oralgazy A. Nurkenov, Ekaterina A. Akishina, Evgenij A. Dikusar, Irina A. Kolesnik, Hongwei Zhou and Vladimir I. Potkin
Molecules 2025, 30(15), 3301; https://doi.org/10.3390/molecules30153301 - 7 Aug 2025
Abstract
A synthetic methodology of the CuAAC “click” approach was exploited for the construction of 1,2-azolyltriazole quinine derivatives by the reaction of O-propargylquinine with azidomethyl-1,2-azoles in methanol. Quinine–piperidine and quinine–anabasine conjugates were obtained using a chloroacetate linker by reacting quinine chloroacetate with piperidine or [...] Read more.
A synthetic methodology of the CuAAC “click” approach was exploited for the construction of 1,2-azolyltriazole quinine derivatives by the reaction of O-propargylquinine with azidomethyl-1,2-azoles in methanol. Quinine–piperidine and quinine–anabasine conjugates were obtained using a chloroacetate linker by reacting quinine chloroacetate with piperidine or anabasine in a diethyl ether medium. Cinchophene ester was obtained by the acylation of quinine with cinchophen acid chloride in methylene chloride. The antibacterial, fungicidal, analgesic and cytotoxic properties of the obtained compounds were examined. Full article
Show Figures

Graphical abstract

18 pages, 6300 KiB  
Article
Clove as a Versatile Resource: CuO Nanoparticles and Their Catalytic Role in Eugenol-Based Triazole Synthesis
by Sarra Zouaoui, Brahim Djemoui, Miloud Mohamed Mazari, Margherita Miele, Vittorio Pace, Haroun Houicha, Sérine Madji, Choukry Kamel Bendeddouche, Mehdi Adjdir and Seif El Islam Lebouachera
Processes 2025, 13(8), 2378; https://doi.org/10.3390/pr13082378 - 26 Jul 2025
Viewed by 418
Abstract
As eco-friendly processes become central to modern organic synthesis, plant-based materials are emerging as attractive alternatives for both nanoparticle fabrication and catalysis. In this study, we explore the use of clove extract, a natural and renewable resource, for the green synthesis of copper [...] Read more.
As eco-friendly processes become central to modern organic synthesis, plant-based materials are emerging as attractive alternatives for both nanoparticle fabrication and catalysis. In this study, we explore the use of clove extract, a natural and renewable resource, for the green synthesis of copper oxide (CuO) nanoparticles and their subsequent application in organic transformations. Clove extract was employed to reduce copper chloride via a simple co-precipitation method under mild conditions, yielding CuO nanoparticles characterized by XRD, FTIR, and SEM-EDX techniques. These nanoparticles were then used as catalysts in the copper-catalyzed azide–alkyne cycloaddition (CuAAC) to afford eugenol-based 1,2,3-triazoles in excellent yields. This dual use of clove extract exemplifies a sustainable approach that merges natural product valorization with efficient catalysis for triazole synthesis. Full article
Show Figures

Figure 1

18 pages, 1829 KiB  
Article
The Red Shift in Estrogen Research: An Estrogen-Receptor Targeted aza-BODIPY–Estradiol Fluorescent Conjugate
by Tamás Hlogyik, Noémi Bózsity, Rita Börzsei, Benjámin Kovács, Péter Labos, Csaba Hetényi, Mónika Kiricsi, Ildikó Huliák, Zoltán Kele, Miklós Poór, János Erostyák, Attila Hunyadi, István Zupkó and Erzsébet Mernyák
Int. J. Mol. Sci. 2025, 26(15), 7075; https://doi.org/10.3390/ijms26157075 - 23 Jul 2025
Viewed by 230
Abstract
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It [...] Read more.
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It would be of particular interest to develop novel labeled estradiol derivatives with retained biological activity and improved optical properties. Due to their superior optical characteristics, aza-BODIPY dyes are frequently used labeling agents in biomedical applications. E2 was labeled with the aza-BODIPY dye at its phenolic hydroxy function via an alkyl linker and a triazole coupling moiety. The estrogenic activity of the newly synthesized fluorescent conjugate was evaluated via transcriptional luciferase assay. Docking calculations were performed for the classical and alternative binding sites (CBS and ABS) of human estrogen receptor α. The terminal alkyne function was introduced into the tetraphenyl aza-BODIPY core via selective formylation, oxidation, and subsequent amidation with propargyl amine. The conjugation was achieved via Cu(I)-catalyzed azide–alkyne click reaction of the aza-BODIPY-alkyne with the 3-O-(4-azidobut-1-yl) derivative of E2. The labeled estrogen induced a dose-dependent transcriptional activity of human estrogen receptor α with a submicromolar EC50 value. Docking calculations revealed that the steroid part has a perfect overlap with E2 in ABS. In CBS, however, a head-tail binding deviation was observed. A facile, fluorescent labeling methodology has been elaborated for the development of a novel red-emitting E2 conjugate with substantial estrogenic activity. Docking experiments uncovered the binding mode of the conjugate in both ABS and CBS. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 2171 KiB  
Review
Mechanochemical and Transition-Metal-Catalyzed Reactions of Alkynes
by Lifen Peng, Zhiling Zou, Ting Wang, Xirong Liu, Hui Li, Zhiwen Yuan, Chunling Zeng, Xinhua Xu, Zilong Tang and Guofang Jiang
Catalysts 2025, 15(7), 690; https://doi.org/10.3390/catal15070690 - 17 Jul 2025
Viewed by 737
Abstract
Mechanochemical and transition-metal-catalyzed reactions of alkynes, exhibiting significant advantages like short reaction time, solvent-free, high yield and good selectivity, were considered to be green and sustainable pathways to access functionalized molecules and obtained increasing attention due to the superiorities of mechanochemical processes and [...] Read more.
Mechanochemical and transition-metal-catalyzed reactions of alkynes, exhibiting significant advantages like short reaction time, solvent-free, high yield and good selectivity, were considered to be green and sustainable pathways to access functionalized molecules and obtained increasing attention due to the superiorities of mechanochemical processes and the reactivities of alkynes. The ball milling and CuI-catalyzed Sonogashira coupling of alkyne and aryl iodide avoided the use of common palladium catalysts. The mechanochemical Rh(III)- and Au(I)-catalyzed C–H alkynylations of indoles formed the 2-alkynylated and 3-alkynylated indoles selectively. The mechanochemical and copper-catalyzed azide-alkyne cycloaddition (CuAAC) between alkynes and azides were developed to synthesize 1,2,3-triazoles. Isoxazole could be formed through ball-milling-enabled and Ru-promoted cycloaddition of alkyne and hydroxyimidel chloride. In this review, the generation of mechanochemical and transition-metal-catalyzed reactions of alkynes was highlighted. Firstly, the superiority and application of transition-metal-catalyzed reactions of alkynes were briefly introduced. After presenting the usefulness of green chemistry and mechanochemical reactions, mechanochemical and transition-metal-catalyzed reactions of alkynes were classified and demonstrated in detail. Based on different kinds of reactions of alkynes, mechanochemical and transition-metal-catalyzed coupling, cycloaddition and alkenylation reactions were summarized and the proposed reaction mechanisms were disclosed if available. Full article
(This article belongs to the Special Issue Advances in Transition Metal Catalysis, 2nd Edition)
Show Figures

Scheme 1

15 pages, 1414 KiB  
Article
Metal-Free A2/B2-Type Azide–Alkyne Polyaddition: Effect of Azides Structure on Their Reactivity and Properties of Polymerization Products
by Andrey Galukhin, Roman Aleshin, Alexander Gerasimov, Alexander Klimovitskii, Roman Nosov, Liana Zubaidullina and Sergey Vyazovkin
Polymers 2025, 17(14), 1909; https://doi.org/10.3390/polym17141909 - 10 Jul 2025
Viewed by 328
Abstract
Non-isothermal calorimetry is performed to study the kinetics of metal-free A2/B2-type azide–alkyne polyaddition between the dipropargyl ether of bisphenol A with different organic diazides. The diazide structure is varied to probe the effect of the nature of a hydrocarbon [...] Read more.
Non-isothermal calorimetry is performed to study the kinetics of metal-free A2/B2-type azide–alkyne polyaddition between the dipropargyl ether of bisphenol A with different organic diazides. The diazide structure is varied to probe the effect of the nature of a hydrocarbon spacer between the azide groups on their reactivity. Isoconversional analysis demonstrates that the polymerization processes are characterized by the same activation energy of 84 kJ mol−1 for all studied diazides. It is found that diazides with aromatic spacers demonstrate ~1.6 times higher reactivity than that of diazides with the alkyl spacer. The difference in the reactivity is explained by the difference in the electronic effects of the hydrocarbon spacers on the azide groups as well as by the difference in their steric availability. The veracity of the obtained kinetic parameters is validated by a polymerization test at the time–temperature conditions predicted from the obtained kinetic data followed by independent assessment of the monomer conversion using FTIR. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

23 pages, 1189 KiB  
Article
Hyaluronic Acid-Graft-Poly(L-Lysine): Synthesis and Evaluation as a Gene Delivery System
by Viktor Korzhikov-Vlakh, Polina Teterina, Nina Gubina, Apollinariia Dzhuzha, Tatiana Tennikova and Evgenia Korzhikova-Vlakh
Polysaccharides 2025, 6(3), 60; https://doi.org/10.3390/polysaccharides6030060 - 5 Jul 2025
Viewed by 536
Abstract
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free [...] Read more.
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free strain-promoted azide-alkyne cycloaddition reaction was proposed. For this purpose, hyaluronic acid was modified with dibenzocyclooctyne moieties, and poly-L-lysine with a terminal azido group was obtained using ring-opening polymerization of N-carboxyanhydride of the corresponding protected amino acid, initiated with the amino group azido-PEG3-amine. Two HA-g-PLys samples with different degrees of grafting were synthesized, and the structures of all modified and synthesized polymers were confirmed using 1H NMR and FTIR spectroscopy. The HA-g-PLys samples obtained were able to form nanoparticles in aqueous media due to self-assembly driven by electrostatic interactions. The binding of DNA and model siRNA by copolymers to form polyplexes was analyzed using ethidium bromide, agarose gel electrophoresis, and SybrGreen I assays. The hydrodynamic diameter of polyplexes was ˂300 nm (polydispersity index, PDI ˂ 0.3). The release of a model fluorescently-labeled oligonucleotide in the complex biological medium was significantly higher in the case of HA-g-PLys as compared to that in the case of PLys-based polyplexes. In addition, the cytotoxicity in normal and cancer cells, as well as the ability of HA-g-PLys to facilitate intracellular delivery of anti-GFP siRNA to NIH-3T3/GFP+ cells, were evaluated. Full article
Show Figures

Figure 1

21 pages, 4310 KiB  
Article
Evaluating Triazole-Substituted Pyrrolopyrimidines as CSF1R Inhibitors
by Srinivasulu Cherukupalli, Jan Eickhoff, Carsten Degenhart, Peter Habenberger, Anke Unger, Bård Helge Hoff and Eirik Sundby
Molecules 2025, 30(12), 2641; https://doi.org/10.3390/molecules30122641 - 18 Jun 2025
Viewed by 684
Abstract
6-Aryl-7H-pyrrolo[2,3-d]pyrimidin-4-amines have promising properties as colony-stimulating factor 1 receptor (CSF1R) inhibitors. Inspired by these antagonists, two series of 1,2,3-triazole analogues (28 compounds) were synthesized and evaluated as CSF1R inhibitors. Enzymatic IC50 profiling showed that 27 of the 28 [...] Read more.
6-Aryl-7H-pyrrolo[2,3-d]pyrimidin-4-amines have promising properties as colony-stimulating factor 1 receptor (CSF1R) inhibitors. Inspired by these antagonists, two series of 1,2,3-triazole analogues (28 compounds) were synthesized and evaluated as CSF1R inhibitors. Enzymatic IC50 profiling showed that 27 of the 28 derivatives had lower IC50 than the reference drug PLX-3397. Three derivatives displayed CSF1R Ba/F3 cellular IC50 well below 1 µM. Profiling of the most promising triazole analogue (compound 27a) toward a panel of kinases reveals a high selectivity for CSF1R with respect to its family kinases, but 27a also inhibits ABL, SRC, and YES kinases. Molecular docking of 27a toward two CSF1R X-ray structures identified two different ligand-inverted binding poses, which triggers interest for further investigations. Full article
Show Figures

Graphical abstract

24 pages, 1892 KiB  
Article
Construction of 1,2,3-Triazole-Embedded Polyheterocyclic Compounds via CuAAC and C–H Activation Strategies
by Antonia Iazzetti, Dario Allevi, Giancarlo Fabrizi, Yuri Gazzilli, Antonella Goggiamani, Federico Marrone, Francesco Stipa, Karim Ullah and Roberta Zoppoli
Molecules 2025, 30(12), 2588; https://doi.org/10.3390/molecules30122588 - 13 Jun 2025
Viewed by 493
Abstract
Over the past two decades, the copper(I)-catalyzed azide–alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as click chemistry, and C–H bond activation have gained significant attention and have emerged as key synthetic methodologies. In our efforts to synthesize fused nitrogen-containing heterocycles, we developed a palladium-catalyzed [...] Read more.
Over the past two decades, the copper(I)-catalyzed azide–alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as click chemistry, and C–H bond activation have gained significant attention and have emerged as key synthetic methodologies. In our efforts to synthesize fused nitrogen-containing heterocycles, we developed a palladium-catalyzed protocol for the synthesis of functionalized 7,10-dihydropyrrolo[3,2,1-ij][1,2,3]triazolo[4,5-c]quinolines and 5,8-dihydrobenzo[3,4][1,2,3]triazolo[4′,5′:5,6]azepino[1,2-a]indoles from suitable bromo-substituted N-propargyl-indoles. The reaction conditions demonstrate broad functional group compatibility including halogen, alkoxyl, cyano, ketone, and ester, affording the target compounds in good to high yields. Full article
Show Figures

Graphical abstract

21 pages, 3205 KiB  
Article
Click on Click: Click-Flavone Glycosides Encapsulated in Click-Functionalised Polymersomes for Glioblastoma Therapy
by Nuno M. Saraiva, Ana Alves, Ana Isabel Barbosa, Andreia Marinho, Salette Reis, Marta Correia-da-Silva and Paulo C. Costa
Pharmaceutics 2025, 17(6), 771; https://doi.org/10.3390/pharmaceutics17060771 - 12 Jun 2025
Viewed by 654
Abstract
In this study, three new 3,7-dihydroxyflavone (1) derivatives with different sugars were designed and synthesised by click chemistry. Click chemistry requires the previously modification of building blocks with azide and alkyne groups and therefore, the 3,7-dihydroxyflavone (1) was first [...] Read more.
In this study, three new 3,7-dihydroxyflavone (1) derivatives with different sugars were designed and synthesised by click chemistry. Click chemistry requires the previously modification of building blocks with azide and alkyne groups and therefore, the 3,7-dihydroxyflavone (1) was first converted in 3,7-(prop-2-yn-yloxy)flavone (2) and acetobromo-α-D-glucose (3) was converted into 2,3,4,6-tetra-O-acetyl-β-glucopyranosyl azide (4). Subsequently, a click reaction was performed via copper-catalysed cycloaddition (CuAAC) between 2 and 4, as well as between 2 and 2-acetamido-3,4,6-tetra-O-acetyl-2-deoxy-β-D-glucopyranosyl (AG931) and, 2 and commercial 2-azidoethyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl (AG358), resulting in three distinct disubstituted flavone glycosides (5a5c). Biological assays performed on L929 fibroblast cell lines and human glioblastoma astrocytoma U-251 cell lines indicated cytocompatibility with fibroblasts and reduced metabolic activity of GBM cells in the presence of compound 5b and 5c. To enhance therapeutic effect, improve local drug delivery, and overcome solubility issues of these high molecular weight compounds, the synthesised compounds were encapsulated in polymeric particles (polymersomes, PMs) composed of polylactic acid-polyethylene glycol (PEG-PLA) functionalized, once more by click chemistry, with 0.1 mol% transferrin mimetic (T7—HRPYIAH) peptide. The PMs were prepared by solvent displacement and exhibited stability over 100 days, encapsulation efficiency of 39–93%, and mean size diameters of 120–180 nm. The toxicity assays of the PMs on the U-251 cell line showed a significant decrease in metabolic activity, supporting the potential of this delivery system against GBM. Among the PMs tested, the flavone 5c-based PM demonstrated the highest efficacy. Full article
(This article belongs to the Special Issue Nano-Based Technology for Glioblastoma)
Show Figures

Graphical abstract

28 pages, 4731 KiB  
Article
Time-Resolved Visualization of Cyanotoxin Synthesis via Labeling by the Click Reaction in the Bloom-Forming Cyanobacteria Microcystis aeruginosa and Planktothrix agardhii
by Rainer Kurmayer and Rubén Morón Asensio
Toxins 2025, 17(6), 278; https://doi.org/10.3390/toxins17060278 - 3 Jun 2025
Viewed by 924
Abstract
In non-ribosomal peptide synthesis of cyanobacteria, promiscuous adenylation domains allow the incorporation of clickable non-natural amino acids into peptide products—namely into microcystins (MCs) or into anabaenopeptins (APs): 4-azidophenylalanine (Phe-Az), N-propargyloxy-carbonyl-L-lysine (Prop-Lys), or O-propargyl-L-tyrosine (Prop-Tyr). Subsequently, chemo-selective labeling is used to visualize [...] Read more.
In non-ribosomal peptide synthesis of cyanobacteria, promiscuous adenylation domains allow the incorporation of clickable non-natural amino acids into peptide products—namely into microcystins (MCs) or into anabaenopeptins (APs): 4-azidophenylalanine (Phe-Az), N-propargyloxy-carbonyl-L-lysine (Prop-Lys), or O-propargyl-L-tyrosine (Prop-Tyr). Subsequently, chemo-selective labeling is used to visualize the clickable cyanopeptides using Alexa Fluor 488 (A488). In this study, the time-lapse build up or decline of azide- or alkyne-modified MCs or APs was visualized during maximum growth, specifically MC biosynthesis in Microcystis aeruginosa and AP biosynthesis in Planktothrix agardhii. Throughout the time-lapse build up or decline, the A488 signal occurred with heterogeneous intracellular distribution. There was a fast increase or decrease in the A488 signal for either Prop-Tyr or Prop-Lys, while a delayed or unobservable A488 signal for Phe-Az was related to increased cell size as well as a reduction in growth and autofluorescence. The proportion of clickable MC/AP in peptide extracts as recorded by a chemical–analytical technique correlated positively with A488 labeling intensity quantified via laser-scanning confocal microscopy for individual cells or via flow cytometry at the population level. It is concluded that chemical modification of MC/AP can be used to track intracellular dynamics in biosynthesis using both analytical chemistry and high-resolution imaging. Full article
Show Figures

Graphical abstract

21 pages, 3061 KiB  
Article
Design, Synthesis, and In Vitro Evaluation of 4-(Arylchalcogenyl)methyl)-1H-1,2,3-triazol-1-yl-menadione: Exploring Their Potential Against Tuberculosis
by Nathália L. B. Santos, Luana S. Gomes, Ruan C. B. Ribeiro, Alcione S. de Carvalho, Maria Cristina S. Lourenço, Laís Machado Marins, Sandy Polycarpo Valle, Thiago H. Doring, Adriano D. Andricopulo, Aldo S. de Oliveira, Vitor F. Ferreira, Fernando de C. da Silva, Luana da Silva Magalhães Forezi and Vanessa Nascimento
Pharmaceuticals 2025, 18(6), 797; https://doi.org/10.3390/ph18060797 - 26 May 2025
Viewed by 762
Abstract
Background/Objectives: In this study, a novel series of 4-(arylchalcogenyl)methyl)-1H-1,2,3-Triazol-1-yl-menadione derivatives were synthesized to explore their potential as new antituberculosis (anti-TB) agents. Selenium-containing compounds are known for their significant antimycobacterial activity, which motivated their inclusion in the design. Methods: The target compounds were synthesized [...] Read more.
Background/Objectives: In this study, a novel series of 4-(arylchalcogenyl)methyl)-1H-1,2,3-Triazol-1-yl-menadione derivatives were synthesized to explore their potential as new antituberculosis (anti-TB) agents. Selenium-containing compounds are known for their significant antimycobacterial activity, which motivated their inclusion in the design. Methods: The target compounds were synthesized via a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, affording yields ranging from 34% to 93%. All compounds were evaluated in vitro for anti-TB activity against Mycobacterium tuberculosis H37Rv (ATCC 27294), as well as a drug-resistant strain (T113/09). Results: Several selenium-containing derivatives exhibited promising activity. Compounds 9b and 9g were equipotent to the first-line anti-TB drug, and one compound surpassed its activity. Notably, compounds 9a, 9b, 9g, and 9h also showed efficacy against the INH- and RIF-resistant Mtb strain T113/09. Conclusions: The efficacy of selenium-containing triazole-menadione hybrids against both sensitive and resistant Mtb strains highlight their potential as candidates for addressing antimicrobial resistance in TB treatment. Further investigations are required to understand their mechanisms of action and assess their in vivo therapeutic potential.. Full article
Show Figures

Figure 1

22 pages, 5103 KiB  
Article
Exploring Multivalent Architectures for Binding and Stabilization of N-Acetylgalactosamine 6-Sulfatase
by Maria Giulia Davighi, Francesca Clemente, Giampiero D’Adamio, Macarena Martínez-Bailén, Alessio Morano, Andrea Goti, Amelia Morrone, Camilla Matassini and Francesca Cardona
Molecules 2025, 30(10), 2222; https://doi.org/10.3390/molecules30102222 - 20 May 2025
Viewed by 686
Abstract
Morquio A syndrome is a lysosomal disorder caused by the deficiency of the lysosomal enzyme N-acetylgalactosamine 6-sulfatase (GALNS, EC 3.1.6.4). Currently, enzyme replacement therapy (ERT) is used to treat Morquio A through the infusion of the recombinant enzyme VIMIZIM® (elosulfase alfa, [...] Read more.
Morquio A syndrome is a lysosomal disorder caused by the deficiency of the lysosomal enzyme N-acetylgalactosamine 6-sulfatase (GALNS, EC 3.1.6.4). Currently, enzyme replacement therapy (ERT) is used to treat Morquio A through the infusion of the recombinant enzyme VIMIZIM® (elosulfase alfa, BioMarin). Unfortunately, the recombinant enzyme exhibits low conformational stability in vivo. A promising approach to address this issue is the coadministration of recombinant human GALNS (rhGALNS) with a pharmacological chaperone (PC), a molecule that selectively binds to the misfolded protein, stabilizes its conformation, and assists in the restoration of the impaired function. We report in this work the synthesis of a library of multivalent glycomimetics exploiting the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between several dendrimeric scaffolds armed with terminal alkynes and azido ending iminosugars of different structures (pyrrolidines, piperidines, and pyrrolizidines) or simple azido ending carbohydrates as bioactive units. The biological evaluation identified pyrrolidine-based nonavalent dendrimers 1 and 36 as the most promising compounds, able both to bind the native enzyme with IC50 in the micromolar range and to act as enzyme stabilizers toward rhGALNS in a thermal denaturation study, thus identifying promising compounds for a combined PC/ERT therapy. Full article
(This article belongs to the Special Issue Glycomimetics: Design, Synthesis and Bioorganic Applications)
Show Figures

Figure 1

31 pages, 4011 KiB  
Review
Progress and Prospects of Triazoles in Advanced Therapies for Parasitic Diseases
by Jaime A. Isern, Renzo Carlucci, Guillermo R. Labadie and Exequiel O. J. Porta
Trop. Med. Infect. Dis. 2025, 10(5), 142; https://doi.org/10.3390/tropicalmed10050142 - 20 May 2025
Cited by 1 | Viewed by 959
Abstract
Parasitic diseases represent a severe global burden, with current treatments often limited by toxicity, drug resistance, and suboptimal efficacy in chronic infections. This review examines the emerging role of triazole-based compounds, originally developed as antifungals, in advanced antiparasitic therapy. Their unique structural properties, [...] Read more.
Parasitic diseases represent a severe global burden, with current treatments often limited by toxicity, drug resistance, and suboptimal efficacy in chronic infections. This review examines the emerging role of triazole-based compounds, originally developed as antifungals, in advanced antiparasitic therapy. Their unique structural properties, particularly those of 1,2,3- and 1,2,4-triazole isomers, facilitate diverse binding interactions and favorable pharmacokinetics. By leveraging innovative synthetic approaches, such as click chemistry (copper-catalyzed azide–alkyne cycloaddition) and structure-based design, researchers have repurposed and optimized triazole scaffolds to target essential parasite pathways, including sterol biosynthesis via CYP51 and other novel enzymatic routes. Preclinical studies in models of Chagas disease, leishmaniasis, malaria, and helminth infections demonstrate that derivatives like posaconazole, ravuconazole, and DSM265 exhibit potent in vitro and in vivo activity, although their primarily static effects have limited their success as monotherapies in chronic cases. Combination strategies and hybrid molecules have demonstrated the potential to enhance efficacy and mitigate drug resistance. Despite challenges in achieving complete parasite clearance and managing potential toxicity, interdisciplinary efforts across medicinal chemistry, parasitology, and clinical research highlight the significant potential of triazoles as components of next-generation, patient-friendly antiparasitic regimens. These findings support the further optimization and clinical evaluation of triazole-based agents to improve treatments for neglected parasitic diseases. Full article
Show Figures

Figure 1

24 pages, 1755 KiB  
Article
Exploring the Anticancer Properties of 1,2,3-Triazole-Substituted Andrographolide Derivatives
by Joana R. L. Ribeiro, Juliana Calheiros, Rita A. M. Silva, Bruno M. F. Gonçalves, Carlos A. M. Afonso, Lucília Saraiva and Maria-José U. Ferreira
Pharmaceuticals 2025, 18(5), 750; https://doi.org/10.3390/ph18050750 - 19 May 2025
Viewed by 825
Abstract
Background/Objectives: The search for new anticancer agents from natural sources remains a key strategy in drug discovery. This study aimed to synthesize and evaluate novel triazole derivatives of the diterpenic lactone andrographolide for their antiproliferative activity against various cancer cell lines. Methods [...] Read more.
Background/Objectives: The search for new anticancer agents from natural sources remains a key strategy in drug discovery. This study aimed to synthesize and evaluate novel triazole derivatives of the diterpenic lactone andrographolide for their antiproliferative activity against various cancer cell lines. Methods: Twenty-two new triazole derivatives (526), of the triacetyl derivative (2) of the diterpenic lactone andrographolide (1), were synthesized via the azide-alkyne “click reaction”. The antiproliferative effects of compounds 126 were evaluated using the sulforhodamine B assay against a panel of cancer cell lines and a non-tumorigenic colon cell line. A representative compound, triazole derivative 12, was further evaluated in human pancreatic ductal adenocarcinoma (PANC-1) cells for its effects on the cell cycle, apoptosis, migration, and drug synergy with 5-fluorouracil. Results: Several compounds, specifically, 9, 14, 16, and 17, bearing a phenyl moiety, exhibited improved antiproliferative activity compared to the parental compound 1. Derivative 12, selected for further investigation, induced G2/M cell cycle arrest and apoptosis in a concentration-dependent manner. Additionally, this compound significantly reduced cell migration and demonstrated synergistic effects with 5-fluorouracil in PANC-1 cells. Conclusions: The synthesized andrographolide-based triazole derivatives, particularly compound 12, showed promising antiproliferative activity and mechanisms relevant to cancer therapy. These findings support their potential as lead compounds for further development in anticancer research. Full article
Show Figures

Graphical abstract

21 pages, 6505 KiB  
Article
Discovery of Boronic Acids-Based β-Lactamase Inhibitors Through In Situ Click Chemistry
by Nicolò Santi, Alessandra Piccirilli, Federico Corsini, Magdalena A. Taracila, Mariagrazia Perilli, Robert A. Bonomo, Francesco Fini, Fabio Prati and Emilia Caselli
Int. J. Mol. Sci. 2025, 26(9), 4182; https://doi.org/10.3390/ijms26094182 - 28 Apr 2025
Viewed by 1159
Abstract
In this study, we evaluated in situ click chemistry as a platform for discovering boronic acid-based β-lactamase inhibitors (BLIs). Unlike conventional drug discovery approaches requiring multi-step synthesis, protection strategies, and extensive screening, the in situ method can allow for the generation and identification [...] Read more.
In this study, we evaluated in situ click chemistry as a platform for discovering boronic acid-based β-lactamase inhibitors (BLIs). Unlike conventional drug discovery approaches requiring multi-step synthesis, protection strategies, and extensive screening, the in situ method can allow for the generation and identification of potent β-lactamase inhibitors in a rapid, economic, and efficient way. Using KPC-2 (class A carbapenemase) and AmpC (class C cephalosporinase) as templates, we demonstrated their ability to catalyse azide-alkyne cycloaddition, facilitating the formation of triazole-based β-lactamase inhibitors. Initial screening of various β-lactamases and boronic warheads identified compound 3 (3-azidomethylphenyl boronic acid) as the most effective scaffold for kinetic target-guided synthesis (KTGS). KTGS experiments with AmpC and KPC-2 yielded triazole inhibitors with Ki values as low as 140 nM (compound 10a, AmpC) and 730 nM (compound 5, KPC-2). Competitive inhibition studies confirmed triazole formation within the active site, while an LC–MS analysis verified that the reversible covalent interaction of boronic acids did not affect detection of the in situ-synthesised product. While KTGS successfully identified potent inhibitors, limitations in amplification coefficients and spatial constraints highlight the need for optimised warhead designs. This study validates KTGS as a promising strategy for BLI discovery and provides insights for further refinement in fighting β-lactamase-mediated antibiotic resistance. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

Back to TopTop