Metal-Free A2/B2-Type Azide–Alkyne Polyaddition: Effect of Azides Structure on Their Reactivity and Properties of Polymerization Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Computations
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAP | Azide–alkyne polyaddition |
AAC | Azide–alkyne cycloaddition |
HOMO | Highest occupied molecular orbital |
LUMO | Lowest unoccupied molecular orbital |
DSC | Differential scanning calorimetry |
FMO | Frontier molecular orbital |
References
- Wang, K.; Amin, K.; An, Z.; Cai, Z.; Chen, H.; Chen, H.; Dong, Y.; Feng, X.; Fu, W.; Gu, J.; et al. Advanced functional polymer materials. Mater. Chem. Front. 2020, 4, 1803–1915. [Google Scholar] [CrossRef]
- Jin, Y.; Joshi, M.; Araki, T.; Kamimura, N.; Masai, E.; Nakamura, M.; Michinobu, T. Click Synthesis of Triazole Polymers Based on Lignin-Derived Metabolic Intermediate and Their Strong Adhesive Properties to Cu Plate. Polymers 2023, 15, 1349. [Google Scholar] [CrossRef] [PubMed]
- E, Y.; Wan, L.; Huang, F.; Du, L. New heat-resistant polytriazole adhesives: Investigation of adhesion of polytriazole resins to metals. J. Adhes. Sci. Technol. 2013, 27, 1767–1777. [Google Scholar] [CrossRef]
- Fang, J.; Wan, L.; Wang, L.; Bie, R.; Zhang, Y.; Huang, F. Preparation and performance of urethane-modified polytriazole adhesives. Polym. Eng. Sci. 2021, 61, 2437–2444. [Google Scholar] [CrossRef]
- Armelin, E.; Whelan, R.; Martínez-Triana, Y.M.; Alemán, C.; Finn, M.G.; Díaz, D.D. Protective Coatings for Aluminum Alloy Based on Hyperbranched 1,4-Polytriazoles. ACS Appl. Mater. Interfaces 2017, 9, 4231–4243. [Google Scholar] [CrossRef]
- Kantheti, S.; Sarath, P.S.; Narayan, R.; Raju, K.V.S.N. Synthesis and characterization of triazole rich polyether polyols using click chemistry for highly branched polyurethanes. React. Funct. Polym. 2013, 73, 1597–1605. [Google Scholar] [CrossRef]
- Sykam, K.; Donempudi, S.; Basak, P. 1,2,3-Triazole rich polymers for flame retardant application: A review. J. Appl. Polym. Sci. 2022, 139, e52771. [Google Scholar] [CrossRef]
- Döhler, D.; Michael, P.; Binder, W.H. CuAAC-Based Click Chemistry in Self-Healing Polymers. Acc. Chem. Res. 2017, 50, 2610–2620. [Google Scholar] [CrossRef]
- Wang, X.; Hu, R.; Zhao, Z.; Qin, A.; Tang, B.Z. Self-healing hyperbranched polytriazoles prepared by metal-free click polymerization of propiolate and azide monomers. Sci. China Chem. 2016, 59, 1554–1560. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, J.; Shen, X.; Zhang, X.A.; Sun, J.Z.; Qin, A.; Tang, B.Z. Self-healing hyperbranched poly(aroyltriazole)s. Sci. Rep. 2013, 3, 1093. [Google Scholar] [CrossRef]
- Ragin Ramdas, M.; Reghunadhan Nair, C.P.; Santhosh Kumar, K.S. H-bonded polytriazoles: Synthesis and thermoresponsive shape memory properties. Eur. Polym. J. 2017, 91, 176–186. [Google Scholar] [CrossRef]
- Obadia, M.M.; Jourdain, A.; Cassagnau, P.; Montarnal, D.; Drockenmuller, E. Tuning the Viscosity Profile of Ionic Vitrimers Incorporating 1,2,3-Triazolium Cross-Links. Adv. Funct. Mater. 2017, 27, 1703258. [Google Scholar] [CrossRef]
- Obadia, M.M.; Mudraboyina, B.P.; Serghei, A.; Montarnal, D.; Drockenmuller, E. Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C–N Bonds. J. Am. Chem. Soc. 2015, 137, 6078–6083. [Google Scholar] [CrossRef] [PubMed]
- Obadia, M.M.; Crépet, A.; Serghei, A.; Montarnal, D.; Drockenmuller, E. Expanding the structural variety of poly(1,2,3-triazolium)s obtained by simultaneous 1,3-dipolar Huisgen polyaddition and N-alkylation. Polymer 2015, 79, 309–315. [Google Scholar] [CrossRef]
- Besset, C.; Binauld, S.; Ibert, M.; Fuertes, P.; Pascault, J.-P.; Fleury, E.; Bernard, J.; Drockenmuller, E. Copper-Catalyzed vs Thermal Step Growth Polymerization of Starch-Derived α-Azide−ω-Alkyne Dianhydrohexitol Stereoisomers: To Click or Not To Click? Macromolecules 2010, 43, 17–19. [Google Scholar] [CrossRef]
- Tsarevsky, N.V.; Sumerlin, B.S.; Matyjaszewski, K. Step-Growth “Click” Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization. Macromolecules 2005, 38, 3558–3561. [Google Scholar] [CrossRef]
- Binauld, S.; Damiron, D.; Hamaide, T.; Pascault, J.-P.; Fleury, E.; Drockenmuller, E. Click chemistry step growth polymerization of novel α-azide-ω-alkyne monomers. Chem. Commun. 2008, 35, 4138–4140. [Google Scholar] [CrossRef]
- Binauld, S.; Fleury, E.; Drockenmuller, E. Solving the loss of orthogonality during the polyaddition of α-azide-ω-alkyne monomers catalyzed by Cu(PPh3)3Br: Application to the synthesis of high-molar mass polytriazoles. J. Polym. Sci. A Polym. Chem. 2010, 48, 2470–2476. [Google Scholar] [CrossRef]
- Petrov, A.; Malkov, G.; Karpov, S.; Shastin, A.; Bakeshko, A. Kinetic Study of the Polyaddition of Azide-Alkyne AB2 Monomers in Nonisotermic Conditions. Key Eng. Mater. 2019, 816, 151–156. [Google Scholar] [CrossRef]
- Min, B.S.; Kim, S.Y. Kinetics of in situ robust chain-ends crosslinked polymeric networks formed using catalyst- and solvent-free Huisgen cycloaddition reaction. Macromol. Res. 2017, 25, 249–254. [Google Scholar] [CrossRef]
- Sheng, X.; Mauldin, T.C.; Kessler, M.R. Kinetics of bulk azide/alkyne “click” polymerization. J. Polym. Sci. A Polym. Chem. 2010, 48, 4093–4102. [Google Scholar] [CrossRef]
- Kargarfard, N.; Diedrich, N.; Rupp, H.; Döhler, D.; Binder, W.H. Improving Kinetics of “Click-Crosslinking” for Self-Healing Nanocomposites by Graphene-Supported Cu-Nanoparticles. Polymers 2018, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Gorman, I.E.; Willer, R.L.; Kemp, L.K.; Storey, R.F. Development of a triazole-cure resin system for composites: Evaluation of alkyne curatives. Polymer 2012, 53, 2548–2558. [Google Scholar] [CrossRef]
- Schlimbach, J.; Ogale, A. 14—Out-of-autoclave curing process in polymer matrix composites. In Manufacturing Techniques for Polymer Matrix Composites (PMCs); Advani, S.G., Hsiao, K.-T., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 435–480. [Google Scholar] [CrossRef]
- Sheng, X.; Rock, D.M.; Mauldin, T.C.; Kessler, M.R. Evaluation of different catalyst systems for bulk polymerization through “click” chemistry. Polymer 2011, 52, 4435–4441. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Y.; Qin, A.; Tang, B.Z. Structure–Property Relationship of Regioregular Polytriazoles Produced by Ligand-Controlled Regiodivergent Ru(II)-Catalyzed Azide–Alkyne Click Polymerization. Macromolecules 2019, 52, 1985–1992. [Google Scholar] [CrossRef]
- Qin, A.; Lam, J.W.Y.; Jim, C.K.W.; Zhang, L.; Yan, J.; Häussler, M.; Liu, J.; Dong, Y.; Liang, D.; Chen, E.; et al. Hyperbranched Polytriazoles: Click Polymerization, Regioisomeric Structure, Light Emission, and Fluorescent Patterning. Macromolecules 2008, 41, 3808–3822. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Y.; Qin, A.; Tang, B.Z. Nickel-Catalyzed Azide–Alkyne Click Polymerization toward 1,5-Regioregular Polytriazoles. Macromolecules 2023, 56, 10092–10100. [Google Scholar] [CrossRef]
- Osawa, Z. Role of metals and metal-deactivators in polymer degradation. Polym. Degrad. Stab. 1988, 20, 203–236. [Google Scholar] [CrossRef]
- Deng, F.; Xu, B.; Gao, Y.; Liu, Z.; Yang, D.; Li, H. Metal- and solvent-free, clickable synthesis and postpolymerization functionalization of poly(triazole)s. J. Polym. Sci. A Polym. Chem. 2012, 50, 3767–3774. [Google Scholar] [CrossRef]
- Sustmann, R.; Trill, H. Substituent Effects in 1,3-Dipolar Cycloadditions of Phenyl Azide. Angew. Chem. Int. Ed. 1972, 11, 838–840. [Google Scholar] [CrossRef]
- Huisgen, R. 1,3-Dipolar cycloadditions. 76. Concerted nature of 1,3-dipolar cycloadditions and the question of diradical intermediates. J. Org. Chem. 1976, 41, 403–419. [Google Scholar] [CrossRef]
- Huisgen, R. Mechanism of 1,3-dipolar cycloadditions. Reply. J. Org. Chem. 1968, 33, 2291–2297. [Google Scholar] [CrossRef]
- Sustmann, R. Orbital energy control of cycloaddition reactivity. Pure Appl. Chem. 1974, 40, 569–593. [Google Scholar] [CrossRef]
- Geittner, J.; Huisgen, R.; Sustmann, R. Kinetics of 1,3-dipolar cycloaddition reactions of diazomethane; A correlation with homo-lumo energies. Tetrahedron Lett. 1977, 18, 881–884. [Google Scholar] [CrossRef]
- Breugst, M.; Reissig, H.-U. The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition. Angew. Chem. Int. Ed. 2020, 59, 12293–12307. [Google Scholar] [CrossRef] [PubMed]
- Ess, D.H.; Houk, K.N. Distortion/Interaction Energy Control of 1,3-Dipolar Cycloaddition Reactivity. J. Am. Chem. Soc. 2007, 129, 10646–10647. [Google Scholar] [CrossRef]
- Ess, D.H.; Houk, K.N. Theory of 1,3-Dipolar Cycloadditions: Distortion/Interaction and Frontier Molecular Orbital Models. J. Am. Chem. Soc. 2008, 130, 10187–10198. [Google Scholar] [CrossRef]
- Vyazovkin, S. Isoconversional Kinetics of Thermally Stimulated Processes; Springer International Publishing: Cham, Switzerland, 2015; p. 239. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Achilias, D.; Fernandez-Francos, X.; Galukhin, A.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for analysis of thermal polymerization kinetics. Thermochim. Acta 2022, 714, 179243. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Favergeon, L.; Koga, N.; Moukhina, E.; Pérez-Maqueda, L.A.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta 2020, 689, 178597. [Google Scholar] [CrossRef]
- Tang, J.; Wan, L.; Zhou, Y.; Ye, L.; Zhou, X.; Huang, F. Synthesis and performance study of a novel sulfonated polytriazole proton exchange membrane. J. Solid State Electrochem. 2017, 21, 725–734. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Chrissafis, K.; Di Lorenzo, M.L.; Koga, N.; Pijolat, M.; Roduit, B.; Sbirrazzuoli, N.; Suñol, J.J. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta. 2014, 590, 1–23. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Perez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Vyazovkin, S. Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 2001, 22, 178–183. [Google Scholar] [CrossRef]
- Vyazovkin, S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J. Comput. Chem. 1997, 18, 393–402. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Dollimore, D. Linear and Nonlinear Procedures in Isoconversional Computations of the Activation Energy of Nonisothermal Reactions in Solids. J. Chem. Inf. Comput. Sci. 1996, 36, 42–45. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Wight, C.A. Estimating Realistic Confidence Intervals for the Activation Energy Determined from Thermoanalytical Measurements. Anal. Chem. 2000, 72, 3171–3175. [Google Scholar] [CrossRef]
- Galukhin, A. Isoconversional approach to quantitative assessment of reactivity under non-isothermal conditions. Thermochim. Acta 2024, 737, 179766. [Google Scholar] [CrossRef]
- Glasstone, S.; Laidler, K.; Eyring, H. The Theory of Rate Processes; Hammet, L., Ed.; McGraw-Hill Book Company, Inc.: New York, NY, USA; London, UK, 1941; p. 611. [Google Scholar]
- Hein, J.E.; Fokin, V.V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper(i) acetylides. Chem. Soc. Rev. 2010, 39, 1302–1315. [Google Scholar] [CrossRef]
- Galukhin, A.; Aleshin, R.; Nosov, R.; Vyazovkin, S. Probing kinetic and mechanistic features of bulk azide–alkyne cycloaddition. Phys. Chem. Chem. Phys. 2023, 25, 10671–10677. [Google Scholar] [CrossRef]
- Galukhin, A.; Aleshin, R.; Nosov, R.; Vyazovkin, S. Kinetics of Polycycloaddition of Flexible α-Azide-ω-Alkynes Having Different Spacer Length. Polymers 2023, 15, 3109. [Google Scholar] [CrossRef]
- Vyazovkin, S. A time to search: Finding the meaning of variable activation energy. Phys. Chem. Chem. Phys. 2016, 18, 18643–18656. [Google Scholar] [CrossRef] [PubMed]
- Laidler, K. Symbolism and terminology in chemical kinetics (Appendix no. V to manual of symbols and terminology for physicochemical quantities and units). Pure Appl. Chem. 1981, 53, 753–771. [Google Scholar] [CrossRef]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [Google Scholar] [CrossRef]
- Muller, P. Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994). Pure Appl. Chem. 1994, 66, 1077–1184. [Google Scholar] [CrossRef]
- Chapter 7—Structure and Reactivity Relationships. In Studies in Organic Chemistry; Ruff, F., Csizmadia, I.G., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; Volume 50, pp. 161–209. [Google Scholar]
- Fukui, K.; Yonezawa, T.; Shingu, H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys. 1952, 20, 722–725. [Google Scholar] [CrossRef]
- Flachard, D.; Serghei, A.; Fumagalli, M.; Drockenmuller, E. Main-chain poly(1,2,3-triazolium hydroxide)s obtained through AA+BB click polyaddition as anion exchange membranes. Polym. Int. 2019, 68, 1591–1598. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Sbirrazzuoli, N. Kinetic analysis of isothermal cures performed below the limiting glass transition temperature. Macromol. Rapid Commun. 2000, 21, 85–90. [Google Scholar] [CrossRef]
Sample | γ | a C0/mol L−1 | b E/kJ mol−1 | A1/s−1 | A2/s−1 | n |
---|---|---|---|---|---|---|
1 + 2 | 1.63 | 3.6 | 84 ± 2 | (0.97 ± 0.03) × 108 | (0.59 ± 0.02) × 108 | 1.72 ± 0.02 |
1 + 3 | 1.56 | 4.1 | 84 ± 3 | (1.54 ± 0.04) × 108 | (0.99 ± 0.03) × 108 | 1.61 ± 0.02 |
1 + 4 | 1.56 | 3.5 | 84 ± 2 | (1.50 ± 0.03) × 108 | (0.96 ± 0.02) × 108 | 1.65 ± 0.02 |
Diazide | ZT (Equation (5)) | ZT (Equation (11)) |
---|---|---|
2 | 1.00 | 1.00 |
3 | 1.64 ± 0.13 | 1.62 ± 0.16 |
4 | 1.52 ± 0.08 | 1.58 ± 0.10 |
Reacting System | Mw/kDa | Mn/kDa | PDI | Td5%/°C | a Char/% | Tg/°C |
---|---|---|---|---|---|---|
1 + 2 | 45.5 | 22.6 | 2.02 | 358 | 10.5 | 32 |
1 + 3 | 9.3 b | 4.5 b | 2.08 b | 347 | 37.0 | 122 |
1 + 4 | 11.2 b | 7.4 b | 1.51 b | 350 | 33.1 | 136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galukhin, A.; Aleshin, R.; Gerasimov, A.; Klimovitskii, A.; Nosov, R.; Zubaidullina, L.; Vyazovkin, S. Metal-Free A2/B2-Type Azide–Alkyne Polyaddition: Effect of Azides Structure on Their Reactivity and Properties of Polymerization Products. Polymers 2025, 17, 1909. https://doi.org/10.3390/polym17141909
Galukhin A, Aleshin R, Gerasimov A, Klimovitskii A, Nosov R, Zubaidullina L, Vyazovkin S. Metal-Free A2/B2-Type Azide–Alkyne Polyaddition: Effect of Azides Structure on Their Reactivity and Properties of Polymerization Products. Polymers. 2025; 17(14):1909. https://doi.org/10.3390/polym17141909
Chicago/Turabian StyleGalukhin, Andrey, Roman Aleshin, Alexander Gerasimov, Alexander Klimovitskii, Roman Nosov, Liana Zubaidullina, and Sergey Vyazovkin. 2025. "Metal-Free A2/B2-Type Azide–Alkyne Polyaddition: Effect of Azides Structure on Their Reactivity and Properties of Polymerization Products" Polymers 17, no. 14: 1909. https://doi.org/10.3390/polym17141909
APA StyleGalukhin, A., Aleshin, R., Gerasimov, A., Klimovitskii, A., Nosov, R., Zubaidullina, L., & Vyazovkin, S. (2025). Metal-Free A2/B2-Type Azide–Alkyne Polyaddition: Effect of Azides Structure on Their Reactivity and Properties of Polymerization Products. Polymers, 17(14), 1909. https://doi.org/10.3390/polym17141909