Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,611)

Search Parameters:
Keywords = averaging bias

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5704 KiB  
Article
A Robust Framework for Bamboo Forest AGB Estimation by Integrating Geostatistical Prediction and Ensemble Learning
by Lianjin Fu, Qingtai Shu, Cuifen Xia, Zeyu Li, Hailing He, Zhengying Li, Shaoyang Ma, Chaoguan Qin, Rong Wei, Qin Xiang, Xiao Zhang, Yiran Zhang and Huashi Cai
Remote Sens. 2025, 17(15), 2682; https://doi.org/10.3390/rs17152682 (registering DOI) - 3 Aug 2025
Abstract
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain [...] Read more.
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain environment. This study first employed Empirical Bayesian Kriging Regression Prediction (EBKRP) to spatialize sparse GEDI and ICESat-2 LiDAR metrics using Sentinel-2 and topographic covariates. Subsequently, a stacked ensemble model, integrating four machine learning algorithms, predicted AGB from the full suite of continuous variables. The stacking model achieved high predictive accuracy (R2 = 0.84, RMSE = 11.07 Mg ha−1) and substantially mitigated the common bias of underestimating high AGB, improving the predicted observed regression slope from a base model average of 0.63 to 0.81. Furthermore, SHAP analysis provided mechanistic insights, identifying the canopy photon rate as the dominant predictor and quantifying the ecological thresholds governing AGB distribution. The mean AGB density was 71.8 ± 21.9 Mg ha−1, with its spatial pattern influenced by elevation and human settlements. This research provides a robust framework for synergizing multi-source remote sensing data to improve AGB estimation, offering a refined methodological pathway for large-scale carbon stock assessments. Full article
Show Figures

Figure 1

27 pages, 1326 KiB  
Systematic Review
Application of Artificial Intelligence in Pancreatic Cyst Management: A Systematic Review
by Donghyun Lee, Fadel Jesry, John J. Maliekkal, Lewis Goulder, Benjamin Huntly, Andrew M. Smith and Yazan S. Khaled
Cancers 2025, 17(15), 2558; https://doi.org/10.3390/cancers17152558 (registering DOI) - 2 Aug 2025
Abstract
Background: Pancreatic cystic lesions (PCLs), including intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs), pose a diagnostic challenge due to their variable malignant potential. Current guidelines, such as Fukuoka and American Gastroenterological Association (AGA), have moderate predictive accuracy and may lead [...] Read more.
Background: Pancreatic cystic lesions (PCLs), including intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs), pose a diagnostic challenge due to their variable malignant potential. Current guidelines, such as Fukuoka and American Gastroenterological Association (AGA), have moderate predictive accuracy and may lead to overtreatment or missed malignancies. Artificial intelligence (AI), incorporating machine learning (ML) and deep learning (DL), offers the potential to improve risk stratification, diagnosis, and management of PCLs by integrating clinical, radiological, and molecular data. This is the first systematic review to evaluate the application, performance, and clinical utility of AI models in the diagnosis, classification, prognosis, and management of pancreatic cysts. Methods: A systematic review was conducted in accordance with PRISMA guidelines and registered on PROSPERO (CRD420251008593). Databases searched included PubMed, EMBASE, Scopus, and Cochrane Library up to March 2025. The inclusion criteria encompassed original studies employing AI, ML, or DL in human subjects with pancreatic cysts, evaluating diagnostic, classification, or prognostic outcomes. Data were extracted on the study design, imaging modality, model type, sample size, performance metrics (accuracy, sensitivity, specificity, and area under the curve (AUC)), and validation methods. Study quality and bias were assessed using the PROBAST and adherence to TRIPOD reporting guidelines. Results: From 847 records, 31 studies met the inclusion criteria. Most were retrospective observational (n = 27, 87%) and focused on preoperative diagnostic applications (n = 30, 97%), with only one addressing prognosis. Imaging modalities included Computed Tomography (CT) (48%), endoscopic ultrasound (EUS) (26%), and Magnetic Resonance Imaging (MRI) (9.7%). Neural networks, particularly convolutional neural networks (CNNs), were the most common AI models (n = 16), followed by logistic regression (n = 4) and support vector machines (n = 3). The median reported AUC across studies was 0.912, with 55% of models achieving AUC ≥ 0.80. The models outperformed clinicians or existing guidelines in 11 studies. IPMN stratification and subtype classification were common focuses, with CNN-based EUS models achieving accuracies of up to 99.6%. Only 10 studies (32%) performed external validation. The risk of bias was high in 93.5% of studies, and TRIPOD adherence averaged 48%. Conclusions: AI demonstrates strong potential in improving the diagnosis and risk stratification of pancreatic cysts, with several models outperforming current clinical guidelines and human readers. However, widespread clinical adoption is hindered by high risk of bias, lack of external validation, and limited interpretability of complex models. Future work should prioritise multicentre prospective studies, standardised model reporting, and development of interpretable, externally validated tools to support clinical integration. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

28 pages, 5779 KiB  
Article
Regional Wave Spectra Prediction Method Based on Deep Learning
by Yuning Liu, Rui Li, Wei Hu, Peng Ren and Chao Xu
J. Mar. Sci. Eng. 2025, 13(8), 1461; https://doi.org/10.3390/jmse13081461 - 30 Jul 2025
Viewed by 166
Abstract
The wave spectrum, as a key statistical feature describing wave energy distribution, is crucial for understanding wave propagation mechanisms and supporting ocean engineering applications. This study, based on ERA5 reanalysis spectrum data, proposes a model combining CNN and xLSTM for rapid gridded wave [...] Read more.
The wave spectrum, as a key statistical feature describing wave energy distribution, is crucial for understanding wave propagation mechanisms and supporting ocean engineering applications. This study, based on ERA5 reanalysis spectrum data, proposes a model combining CNN and xLSTM for rapid gridded wave spectrum prediction over the Bohai and Yellow Seas domain. It uses 2D gridded spectrum data rather than a spectrum at specific points as input and analyzes the impact of various input factors at different time lags on wave development. The results show that incorporating water depth and mean sea level pressure significantly reduces errors. The model performs well across seasons with the seasonal spatial average root mean square error (SARMSE) of spectral energy remaining below 0.040 m2·s and RMSEs for significant wave height (SWH) and mean wave period (MWP) of 0.138 m and 1.331 s, respectively. At individual points, the spectral density bias is near zero, correlation coefficients range from 0.95 to 0.98, and the peak frequency RMSE is between 0.03 and 0.04 Hz. During a typical cold wave event, the model accurately reproduces the energy evolution and peak frequency shift. Buoy observations confirm that the model effectively tracks significant wave height trends under varying conditions. Moreover, applying a frequency-weighted loss function enhances the model’s ability to capture high-frequency spectral components, further improving prediction accuracy. Overall, the proposed method shows strong performance in spectrum prediction and provides a valuable approach for regional wave spectrum modeling. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

14 pages, 1726 KiB  
Systematic Review
Mucous Fistula Refeeding in Newborns: Why, When, How, and Where? Insights from a Systematic Review
by Layla Musleh, Ilaria Cozzi, Anteo Di Napoli and Fabio Fusaro
Nutrients 2025, 17(15), 2490; https://doi.org/10.3390/nu17152490 - 30 Jul 2025
Viewed by 191
Abstract
Background/Objectives: Infants with high-output enterostomies often require prolonged parenteral nutrition (PN), increasing risks of infections, liver dysfunction, and impaired growth. Mucous fistula refeeding (MFR) is proposed to enhance intestinal adaptation, weight gain, and distal bowel maturation. This systematic review and meta-analysis assessed [...] Read more.
Background/Objectives: Infants with high-output enterostomies often require prolonged parenteral nutrition (PN), increasing risks of infections, liver dysfunction, and impaired growth. Mucous fistula refeeding (MFR) is proposed to enhance intestinal adaptation, weight gain, and distal bowel maturation. This systematic review and meta-analysis assessed its effectiveness, safety, and technical aspects. Methods: Following PRISMA guidelines, studies reporting MFR-related outcomes were included without data or language restrictions. Data sources included PubMed, EMBASE, CINAHL, Scopus, Web of Science, Cochrane Library, and UpToDate. Bias risk was assessed using the Joanna Briggs Institute Critical Appraisal Checklist. Meta-analysis employed random- and fixed-effects models, with outcomes reported as odds ratios (ORs) and 95% confidence interval (CI). Primary outcomes assessed were weight gain, PN duration, and complications and statistical comparisons were made between MFR and non-MFR groups. Results: Seventeen studies involving 631 infants were included; 482 received MFR and 149 did not. MFR started at 31 postoperative days and lasted for 50 days on average, using varied reinfusion methods, catheter types, and fixation strategies. MFR significantly improved weight gain (4.7 vs. 24.2 g/day, p < 0.05) and reduced PN duration (60.3 vs. 95 days, p < 0.05). Hospital and NICU stays were also shorter (160 vs. 263 days, p < 0.05; 122 vs. 200 days, p < 0.05). Cholestasis risk was lower (OR 0.151, 95% CI 0.071–0.319, p < 0.0001), while effects on bilirubin levels were inconsistent. Complications included sepsis (3.5%), intestinal perforation (0.83%), hemorrhage (0.62%), with one MFR-related death (0.22%). Conclusions: Despite MFR benefits neonatal care, its practices remain heterogeneous. Standardized protocols are required to ensure MFR safety and efficacy. Full article
Show Figures

Figure 1

16 pages, 5245 KiB  
Article
Automatic Detection of Foraging Hens in a Cage-Free Environment with Computer Vision Technology
by Samin Dahal, Xiao Yang, Bidur Paneru, Anjan Dhungana and Lilong Chai
Poultry 2025, 4(3), 34; https://doi.org/10.3390/poultry4030034 - 30 Jul 2025
Viewed by 151
Abstract
Foraging behavior in hens is an important indicator of animal welfare. It involves both the search for food and exploration of the environment, which provides necessary enrichment. In addition, it has been inversely linked to damaging behaviors such as severe feather pecking. Conventional [...] Read more.
Foraging behavior in hens is an important indicator of animal welfare. It involves both the search for food and exploration of the environment, which provides necessary enrichment. In addition, it has been inversely linked to damaging behaviors such as severe feather pecking. Conventional studies rely on manual observation to investigate foraging location, duration, timing, and frequency. However, this approach is labor-intensive, time-consuming, and subject to human bias. Our study developed computer vision-based methods to automatically detect foraging hens in a cage-free research environment and compared their performance. A cage-free room was divided into four pens, two larger pens measuring 2.9 m × 2.3 m with 30 hens each and two smaller pens measuring 2.3 m × 1.8 m with 18 hens each. Cameras were positioned vertically, 2.75 m above the floor, recording the videos at 15 frames per second. Out of 4886 images, 70% were used for model training, 20% for validation, and 10% for testing. We trained multiple You Only Look Once (YOLO) object detection models from YOLOv9, YOLOv10, and YOLO11 series for 100 epochs each. All the models achieved precision, recall, and mean average precision at 0.5 intersection over union (mAP@0.5) above 75%. YOLOv9c achieved the highest precision (83.9%), YOLO11x achieved the highest recall (86.7%), and YOLO11m achieved the highest mAP@0.5 (89.5%). These results demonstrate the use of computer vision to automatically detect complex poultry behavior, such as foraging, making it more efficient. Full article
Show Figures

Figure 1

24 pages, 3726 KiB  
Article
Telemedicine-Supported CPAP Therapy in Patients with Obstructive Sleep Apnea: Association with Treatment Adherence and Clinical Outcomes
by Norbert Wellmann, Versavia Maria Ancusa, Monica Steluta Marc, Ana Adriana Trusculescu, Camelia Corina Pescaru, Flavia Gabriela Martis, Ioana Ciortea, Alexandru Florian Crisan, Adelina Maritescu, Madalina Alexandra Balica and Ovidiu Fira-Mladinescu
J. Clin. Med. 2025, 14(15), 5339; https://doi.org/10.3390/jcm14155339 - 29 Jul 2025
Viewed by 174
Abstract
Background/Objectives: Obstructive sleep apnea (OSA) is a highly prevalent disorder that significantly impacts quality of life and daily functioning. While continuous positive airway pressure (CPAP) therapy is effective, long-term adherence remains a challenge. This single-arm observational study aimed to evaluate clinical outcomes and [...] Read more.
Background/Objectives: Obstructive sleep apnea (OSA) is a highly prevalent disorder that significantly impacts quality of life and daily functioning. While continuous positive airway pressure (CPAP) therapy is effective, long-term adherence remains a challenge. This single-arm observational study aimed to evaluate clinical outcomes and adherence patterns during telemedicine-supported CPAP therapy and identify distinct phenotypic response clusters in Romanian patients with OSA. Methods: This prospective observational study included 86 adults diagnosed with OSA, treated with ResMed Auto CPAP devices at “Victor Babeș” University Hospital in Timișoara, Romania. All patients were remotely monitored via the AirView™ platform and received monthly telephone interventions to promote adherence when necessary. Clinical outcomes were assessed through objective telemonitoring data. K-means clustering and t-distributed stochastic neighbor embedding (t-SNE) were employed to explore phenotypic response patterns. Results: During telemedicine-supported CPAP therapy, significant clinical improvements were observed. The apnea–hypopnea index (AHI) decreased from 42.0 ± 21.1 to 1.9 ± 1.3 events/hour. CPAP adherence improved from 75.5% to 90.5% over six months. Average daily usage increased from 348.4 ± 85.8 to 384.2 ± 65.2 min. However, post hoc analysis revealed significant concerns about the validity of self-reported psychological improvements. Self-esteem changes showed negligible correlation with objective clinical measures (r < 0.2, all p > 0.1), with only 3.3% of variance being explained by measurable therapeutic factors (R2 = 0.033). Clustering analysis identified four distinct adherence and outcome profiles, yet paradoxically, patients with lower adherence showed greater self-esteem improvements, contradicting therapeutic causation. Conclusions: Telemedicine-supported CPAP therapy with structured monthly interventions was associated with substantial clinical improvements, including excellent AHI reduction (22-fold) and high adherence rates (+15% after 6 months). Data-driven phenotyping successfully identified distinct patient response profiles, supporting personalized management approaches. However, the single-arm design prevents definitive attribution of improvements to telemonitoring versus natural adaptation or placebo effects. Self-reported psychological outcomes showed concerning patterns suggesting predominant placebo responses rather than therapeutic benefits. While the overall findings demonstrate the potential value of structured telemonitoring for objective CPAP outcomes, controlled trials are essential to establishing true therapeutic efficacy and distinguishing intervention effects from measurement bias. Full article
(This article belongs to the Special Issue Advances in Pulmonary Disease Management and Innovation in Treatment)
Show Figures

Figure 1

16 pages, 285 KiB  
Article
Diagnostic Accuracy and Concordance of Standardized vs. Non-Standardized Joint Physical Examination for Assessing Disease Activity in Rheumatoid Arthritis: A Paired Comparison Using Ultrasound as Reference Standard
by Yimy F. Medina and Martin A. Rondón
J. Clin. Med. 2025, 14(15), 5334; https://doi.org/10.3390/jcm14155334 - 29 Jul 2025
Viewed by 318
Abstract
Objective: Physical joint examination is fundamental in rheumatoid arthritis (RA) assessment. This study evaluated the diagnostic accuracy and agreement between standardized and non-standardized physical joint examinations in RA patients using musculoskeletal ultrasound as the reference standard. Methods: We assessed the joints for tenderness [...] Read more.
Objective: Physical joint examination is fundamental in rheumatoid arthritis (RA) assessment. This study evaluated the diagnostic accuracy and agreement between standardized and non-standardized physical joint examinations in RA patients using musculoskeletal ultrasound as the reference standard. Methods: We assessed the joints for tenderness and swelling, calculating sensitivity, specificity, and predictive values. Musculoskeletal ultrasound was used as the reference standard, with adjustment for imperfect reference bias. Agreement between the methods was evaluated using the average kappa coefficient. Results: A total of 1496 joints were evaluated. Without adjustment for imperfect reference bias, standardized examination showed higher sensitivity for detecting pain and swelling than non-standardized examination. Specificity was similar for pain but higher for swelling in standardized examination. After bias adjustment, standardized examination sensitivity improved for pain (93.8% vs. 77.3%; 95% CI: 0.14–0.19) and swelling (91.9% vs. 60.0%; 95% CI: 0.29–0.34). Tenderness specificity remained comparable (standardized examination: 75.4%, non-standardized examination: 76.3%), while the non-standardized examination maintained superior swelling specificity (85.7% vs. 77.1%). Standardized joint examination demonstrated significantly higher concordance than non-standardized assessment in evaluating joint tenderness; standardized assessment yielded significantly greater average kappa coefficients under both false-positive-prioritized (0.44 vs. 0.37; p = 0.01) and false-negative-prioritized scenarios (0.59 vs. 0.45; p < 0.0001). For joint swelling, standardized evaluation showed significantly higher concordance when false negatives were considered more critical (0.59 vs. 0.37; p < 0.0001), whereas differences under false-positive prioritization were not statistically significant. Conclusions: Standardization of the physical joint examination significantly improves diagnostic accuracy and agreement in detecting joint tenderness and swelling in patients with rheumatoid arthritis. Implementing a standardized physical examination protocol may enhance disease activity diagnosis and optimize clinical management of RA. Full article
(This article belongs to the Section Immunology)
22 pages, 786 KiB  
Article
Diet to Data: Validation of a Bias-Mitigating Nutritional Screener Using Assembly Theory
by O’Connell C. Penrose, Phillip J. Gross, Hardeep Singh, Ania Izabela Rynarzewska, Crystal Ayazo and Louise Jones
Nutrients 2025, 17(15), 2459; https://doi.org/10.3390/nu17152459 - 28 Jul 2025
Viewed by 174
Abstract
Background/Objectives: Traditional dietary screeners face significant limitations: they rely on subjective self-reporting, average intake estimates, and are influenced by a participant’s awareness of being observed—each of which can distort results. These factors reduce both accuracy and reproducibility. The Guide Against Age-Related Disease (GARD) [...] Read more.
Background/Objectives: Traditional dietary screeners face significant limitations: they rely on subjective self-reporting, average intake estimates, and are influenced by a participant’s awareness of being observed—each of which can distort results. These factors reduce both accuracy and reproducibility. The Guide Against Age-Related Disease (GARD) addresses these issues by applying Assembly Theory to objectively quantify food and food behavior (FFB) complexity. This study aims to validate the GARD as a structured, bias-resistant tool for dietary assessment in clinical and research settings. Methods: The GARD survey was administered in an internal medicine clinic within a suburban hospital system in the southeastern U.S. The tool assessed six daily eating windows, scoring high-complexity FFBs (e.g., fresh plants, social eating, fasting) as +1 and low-complexity FFBs (e.g., ultra-processed foods, refined ingredients, distracted eating) as –1. To minimize bias, patients were unaware of scoring criteria and reported only what they ate the previous day, avoiding broad averages. A computer algorithm then scored responses based on complexity, independent of dietary guidelines. Internal (face, convergent, and discriminant) validity was assessed using Spearman rho correlations. Results: Face validation showed high inter-rater agreement using predefined Assembly Index (Ai) and Copy Number (Ni) thresholds. Positive correlations were found between high-complexity diets and behaviors (rho = 0.533–0.565, p < 0.001), while opposing constructs showed moderate negative correlations (rho = –0.363 to −0.425, p < 0.05). GARD scores aligned with established diet patterns: Mediterranean diets averaged +22; Standard American Diet averaged −10. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
Show Figures

Figure 1

23 pages, 4324 KiB  
Article
Monitoring Nitrogen Uptake and Grain Quality in Ponded and Aerobic Rice with the Squared Simplified Canopy Chlorophyll Content Index
by Gonzalo Carracelas, John Hornbuckle and Carlos Ballester
Remote Sens. 2025, 17(15), 2598; https://doi.org/10.3390/rs17152598 - 25 Jul 2025
Viewed by 413
Abstract
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs [...] Read more.
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs between high-yielding ponded and aerobic rice, (ii) validate the feasibility of using the squared simplified canopy chlorophyll content index (SCCCI2) for N uptake estimates, and (iii) explore the SCCCI2 and similar chlorophyll-sensitive indices for grain quality monitoring. Multispectral images were collected from an unmanned aerial vehicle during both rice-growing seasons. Above-ground biomass and nitrogen (N) uptake were measured at panicle initiation (PI). The performance of single-vegetation-index models in estimating rice N uptake, as previously published, was assessed. Yield and grain quality were determined at harvest. Results showed that canopy reflectance in the visible and near-infrared regions differed between aerobic and ponded rice early in the growing season. Chlorophyll-sensitive indices showed lower values in aerobic rice than in the ponded rice at PI, despite having similar yields at harvest. The SCCCI2 model (RMSE = 20.52, Bias = −6.21 Kg N ha−1, and MAPE = 11.95%) outperformed other models assessed. The SCCCI2, squared normalized difference red edge index, and chlorophyll green index correlated at PI with the percentage of cracked grain, immature grain, and quality score, suggesting that grain milling quality parameters could be associated with N uptake at PI. This study highlights canopy reflectance differences between high-yielding aerobic (averaging 15 Mg ha−1) and ponded rice at key phenological stages and confirms the validity of a single-vegetation-index model based on the SCCCI2 for N uptake estimates in ponded and non-ponded rice crops. Full article
Show Figures

Figure 1

25 pages, 4344 KiB  
Article
YOLO-DFAM-Based Onboard Intelligent Sorting System for Portunus trituberculatus
by Penglong Li, Shengmao Zhang, Hanfeng Zheng, Xiumei Fan, Yonchuang Shi, Zuli Wu and Heng Zhang
Fishes 2025, 10(8), 364; https://doi.org/10.3390/fishes10080364 - 25 Jul 2025
Viewed by 254
Abstract
This study addresses the challenges of manual measurement bias and low robustness in detecting small, occluded targets in complex marine environments during real-time onboard sorting of Portunus trituberculatus. We propose YOLO-DFAM, an enhanced YOLOv11n-based model that replaces the global average pooling in [...] Read more.
This study addresses the challenges of manual measurement bias and low robustness in detecting small, occluded targets in complex marine environments during real-time onboard sorting of Portunus trituberculatus. We propose YOLO-DFAM, an enhanced YOLOv11n-based model that replaces the global average pooling in the Focal Modulation module with a spatial–channel dual-attention mechanism and incorporates the ASF-YOLO cross-scale fusion strategy to improve feature representation across varying target sizes. These enhancements significantly boost detection, achieving an mAP@50 of 98.0% and precision of 94.6%, outperforming RetinaNet-CSL and Rotated Faster R-CNN by up to 6.3% while maintaining real-time inference at 180.3 FPS with only 7.2 GFLOPs. Unlike prior static-scene approaches, our unified framework integrates attention-guided detection, scale-adaptive tracking, and lightweight weight estimation for dynamic marine conditions. A ByteTrack-based tracking module with dynamic scale calibration, EMA filtering, and optical flow compensation ensures stable multi-frame tracking. Additionally, a region-specific allometric weight estimation model (R2 = 0.9856) reduces dimensional errors by 85.7% and maintains prediction errors below 4.7% using only 12 spline-interpolated calibration sets. YOLO-DFAM provides an accurate, efficient solution for intelligent onboard fishery monitoring. Full article
Show Figures

Figure 1

26 pages, 5975 KiB  
Article
A Detailed Performance Evaluation of the GK2A Fog Detection Algorithm Using Ground-Based Visibility Meter Data (2021–2023, Part I)
by Hyun-Kyoung Lee and Myoung-Seok Suh
Remote Sens. 2025, 17(15), 2596; https://doi.org/10.3390/rs17152596 - 25 Jul 2025
Viewed by 246
Abstract
This study evaluated the performance of the operational GK2A (GEO-KOMPSAT-2A) fog detection algorithm (GK2A_FDA) using ground-based visibility meter data from 176 stations across South Korea from 2021 to 2023. According to the verification method using the nearest pixel and 3 × 3 neighborhood [...] Read more.
This study evaluated the performance of the operational GK2A (GEO-KOMPSAT-2A) fog detection algorithm (GK2A_FDA) using ground-based visibility meter data from 176 stations across South Korea from 2021 to 2023. According to the verification method using the nearest pixel and 3 × 3 neighborhood pixel approaches to the visibility meter, the 3-year average probability of detection (POD) is 0.59 and 0.70, the false alarm ratio (FAR) is 0.86 and 0.81, and the bias is 4.25 and 3.73, respectively. POD is highest during daytime (0.72; bias: 7.34), decreases at night (0.57; bias: 3.89), and is lowest at twilight (0.52; bias: 2.36). The seasonal mean POD is 0.65 in winter, 0.61 in spring and autumn, and 0.47 in summer, with August reaching the minimum value, 0.33. While POD is higher in coastal areas than inland areas, inland regions show lower FAR, indicating more stable performance. Over-detections occurred regardless of geographic location and time, mainly due to the misclassification of low-level clouds and cloud edges as fog. Especially after sunrise, the fog dissipated and transformed into low-level clouds. These findings suggest that there are limitations to improving fog detection levels using satellite data alone, especially when the surface is obscured by clouds, indicating the need to utilize other data sources, such as objective ground-based analysis data. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

25 pages, 1169 KiB  
Article
DPAO-PFL: Dynamic Parameter-Aware Optimization via Continual Learning for Personalized Federated Learning
by Jialu Tang, Yali Gao, Xiaoyong Li and Jia Jia
Electronics 2025, 14(15), 2945; https://doi.org/10.3390/electronics14152945 - 23 Jul 2025
Viewed by 202
Abstract
Federated learning (FL) enables multiple participants to collaboratively train models while efficiently mitigating the issue of data silos. However, large-scale heterogeneous data distributions result in inconsistent client objectives and catastrophic forgetting, leading to model bias and slow convergence. To address the challenges under [...] Read more.
Federated learning (FL) enables multiple participants to collaboratively train models while efficiently mitigating the issue of data silos. However, large-scale heterogeneous data distributions result in inconsistent client objectives and catastrophic forgetting, leading to model bias and slow convergence. To address the challenges under non-independent and identically distributed (non-IID) data, we propose DPAO-PFL, a Dynamic Parameter-Aware Optimization framework that leverages continual learning principles to improve Personalized Federated Learning under non-IID conditions. We decomposed the parameters into two components: local personalized parameters tailored to client characteristics, and global shared parameters that capture the accumulated marginal effects of parameter updates over historical rounds. Specifically, we leverage the Fisher information matrix to estimate parameter importance online, integrate the path sensitivity scores within a time-series sliding window to construct a dynamic regularization term, and adaptively adjust the constraint strength to mitigate the conflict overall tasks. We evaluate the effectiveness of DPAO-PFL through extensive experiments on several benchmarks under IID and non-IID data distributions. Comprehensive experimental results indicate that DPAO-PFL outperforms baselines with improvements from 5.41% to 30.42% in average classification accuracy. By decoupling model parameters and incorporating an adaptive regularization mechanism, DPAO-PFL effectively balances generalization and personalization. Furthermore, DPAO-PFL exhibits superior performance in convergence and collaborative optimization compared to state-of-the-art FL methods. Full article
Show Figures

Figure 1

27 pages, 5938 KiB  
Article
Noise-Adaptive GNSS/INS Fusion Positioning for Autonomous Driving in Complex Environments
by Xingyang Feng, Mianhao Qiu, Tao Wang, Xinmin Yao, Hua Cong and Yu Zhang
Vehicles 2025, 7(3), 77; https://doi.org/10.3390/vehicles7030077 - 22 Jul 2025
Cited by 1 | Viewed by 380
Abstract
Accurate and reliable multi-scene positioning remains a critical challenge in autonomous driving systems, as conventional fixed-noise fusion strategies struggle to handle the dynamic error characteristics of heterogeneous sensors in complex operational environments. This paper proposes a novel noise-adaptive fusion framework integrating Global Navigation [...] Read more.
Accurate and reliable multi-scene positioning remains a critical challenge in autonomous driving systems, as conventional fixed-noise fusion strategies struggle to handle the dynamic error characteristics of heterogeneous sensors in complex operational environments. This paper proposes a novel noise-adaptive fusion framework integrating Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) measurements. Our key innovation lies in developing a dual noise estimation model that synergizes priori weighting with posterior variance compensation. Specifically, we establish an a priori weighting model for satellite pseudorange errors based on elevation angles and signal-to-noise ratios (SNRs), complemented by a Helmert variance component estimation for posterior refinement. For INS error modeling, we derive a bias instability noise accumulation model through Allan variance analysis. These adaptive noise estimates dynamically update both process and observation noise covariance matrices in our Error-State Kalman Filter (ESKF) implementation, enabling real-time calibration of GNSS and INS contributions. Comprehensive field experiments demonstrate two key advantages: (1) The proposed noise estimation model achieves 37.7% higher accuracy in quantifying GNSS single-point positioning uncertainties compared to conventional elevation-based weighting; (2) in unstructured environments with intermittent signal outages, the fusion system maintains an average absolute trajectory error (ATE) of less than 0.6 m, outperforming state-of-the-art fixed-weight fusion methods by 36.71% in positioning consistency. These results validate the framework’s capability to autonomously balance sensor reliability under dynamic environmental conditions, significantly enhancing positioning robustness for autonomous vehicles. Full article
Show Figures

Figure 1

21 pages, 2852 KiB  
Article
Innovative Hands-On Approach for Magnetic Resonance Imaging Education of an Undergraduate Medical Radiation Science Course in Australia: A Feasibility Study
by Curtise K. C. Ng, Sjoerd Vos, Hamed Moradi, Peter Fearns, Zhonghua Sun, Rebecca Dickson and Paul M. Parizel
Educ. Sci. 2025, 15(7), 930; https://doi.org/10.3390/educsci15070930 - 21 Jul 2025
Viewed by 252
Abstract
As yet, no study has investigated the use of a research magnetic resonance imaging (MRI) scanner to support undergraduate medical radiation science (MRS) students in developing their MRI knowledge and practical skills (competences). The purpose of this study was to test an innovative [...] Read more.
As yet, no study has investigated the use of a research magnetic resonance imaging (MRI) scanner to support undergraduate medical radiation science (MRS) students in developing their MRI knowledge and practical skills (competences). The purpose of this study was to test an innovative program for a total of 10 s- and third-year students of a MRS course to enhance their MRI competences. The study involved an experimental, two-week MRI learning program which focused on practical MRI scanning of phantoms and healthy volunteers. Pre- and post-program questionnaires and tests were used to evaluate the competence development of these participants as well as the program’s educational quality. Descriptive statistics, along with Wilcoxon signed-rank and paired t-tests, were used for statistical analysis. The program improved the participants’ self-perceived and actual MRI competences significantly (from an average of 2.80 to 3.20 out of 5.00, p = 0.046; and from an average of 34.87% to 62.72%, Cohen’s d effect size: 2.53, p < 0.001, respectively). Furthermore, they rated all aspects of the program’s educational quality highly (mean: 3.90–4.80 out of 5.00) and indicated that the program was extremely valuable, very effective, and practical. Nonetheless, further evaluation should be conducted in a broader setting with a larger sample size to validate the findings of this feasibility study, given the study’s small sample size and participant selection bias. Full article
(This article belongs to the Special Issue Technology-Enhanced Nursing and Health Education)
Show Figures

Figure 1

19 pages, 3578 KiB  
Article
Internal Dynamics of Pyrene-Labeled Polyols Studied Through the Lens of Pyrene Excimer Formation
by Franklin Frasca and Jean Duhamel
Polymers 2025, 17(14), 1979; https://doi.org/10.3390/polym17141979 - 18 Jul 2025
Viewed by 299
Abstract
Series of pyrene-labeled diols (Py2-DOs) and polyols (Py-POs) were synthesized by coupling a number (nPyBA) of 1-pyrenebutyric acids to diols and polyols to yield series of end-labeled linear (nPyBA = 2) and branched (nPyBA [...] Read more.
Series of pyrene-labeled diols (Py2-DOs) and polyols (Py-POs) were synthesized by coupling a number (nPyBA) of 1-pyrenebutyric acids to diols and polyols to yield series of end-labeled linear (nPyBA = 2) and branched (nPyBA > 2) oligomers, respectively. Pyrene excimer formation (PEF) between an excited and a ground-state pyrene was studied for the Py2-DO and Py-PO samples by analyzing their fluorescence spectra and decays in tetrahydrofuran, dioxane, N,N-dimethylformamide, and dimethyl sulfoxide. Global model-free analysis (MFA) of the pyrene monomer and excimer fluorescence decays yielded the average rate constant (<k>) for PEF. After the calculation of the local pyrene concentration ([Py]loc) for the Py2-DO and Py-PO samples, the <k>-vs.-[Py]loc plots were linear in each solvent, with larger and smaller slopes for the Py2-DO and Py-PO samples, respectively, resulting in a clear kink in the middle of the plot. The difference in slope was attributed to a bias for PEF between pyrenes close to one another on the densely branched Py-PO constructs resulting in lower apparent [Py]loc and <k> values. This study illustrated the ability of PEF to probe how steric hindrance along a main chain affects the dynamic encounters between substituents in multifunctional oligomers such as diols and polyols. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

Back to TopTop