Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,154)

Search Parameters:
Keywords = available potential energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6187 KiB  
Article
Device Modeling Method for the Entire Process of Energy-Saving Retrofit of a Refrigeration Plant
by Xuanru Xu, Lun Zhang, Jun Chen, Qingbin Lin and Junjie Chen
Energies 2025, 18(15), 4147; https://doi.org/10.3390/en18154147 - 5 Aug 2025
Viewed by 26
Abstract
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the [...] Read more.
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the equipment within the chiller plants of central air-conditioning systems. Traditional modeling approaches have been static and have focused on modeling within narrow time frames when a certain amount of equipment operating data has accumulated, thus prioritizing the precision of the model itself while overlooking the fact that energy-saving retrofits are a long-term process. This study proposes a modeling scheme for the equipment within chiller plants throughout the energy-saving retrofit process. Based on the differences in the amount of available operating data for the equipment and the progress of retrofit implementation, the retrofit process was divided into three stages, each employing different modeling techniques and ensuring smooth transitions between the stages. The equipment within the chiller plants is categorized into two types based on the clarity of their operating characteristics, and two modeling schemes are proposed accordingly. Based on the proposed modeling scheme, chillers and chilled-water pumps were selected to represent the two types of equipment. Real operating data from actual retrofit projects was used to model the equipment and evaluate the accuracy of the model predictions. The results indicate that the models established by the proposed modeling scheme exhibit good accuracy at each stage of the retrofit, with the coefficients of variation (CV) remaining below 6.88%. Furthermore, the prediction accuracy improved as the retrofitting process progressed. The modeling scheme performs better on equipment with simpler and clearer operating characteristics, with a CV as low as 0.67% during normal operation stages. This underscores the potential application of the proposed modeling scheme throughout the energy-saving retrofit process and provides a model foundation for the subsequent optimization of the refrigeration system. Full article
Show Figures

Figure 1

28 pages, 2340 KiB  
Article
Determining the Operating Performance of an Isolated, High-Power, Photovoltaic Pumping System Through Sensor Measurements
by Florin Dragan, Dorin Bordeasu and Ioan Filip
Appl. Sci. 2025, 15(15), 8639; https://doi.org/10.3390/app15158639 (registering DOI) - 4 Aug 2025
Viewed by 178
Abstract
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically [...] Read more.
Modernizing irrigation systems (ISs) from traditional gravity methods to sprinkler and drip technologies has significantly improved water use efficiency. However, it has simultaneously increased electricity demand and operational costs. Integrating photovoltaic generators into ISs represents a promising solution, as solar energy availability typically aligns with peak irrigation periods. Despite this potential, photovoltaic pumping systems (PVPSs) often face reliability issues due to fluctuations in solar irradiance, resulting in frequent start/stop cycles and premature equipment wear. The IEC 62253 standard establishes procedures for evaluating PVPS performance but primarily addresses steady-state conditions, neglecting transient regimes. As the main contribution, the current paper proposes a non-intrusive, high-resolution monitoring system and a methodology to assess the performance of an isolated, high-power PVPS, considering also transient regimes. The system records critical electrical, hydraulic and environmental parameters every second, enabling in-depth analysis under various weather conditions. Two performance indicators, pumped volume efficiency and equivalent operating time, were used to evaluate the system’s performance. The results indicate that near-optimal performance is only achievable under clear sky conditions. Under the appearance of clouds, control strategies designed to protect the system reduce overall efficiency. The proposed methodology enables detailed performance diagnostics and supports the development of more robust PVPSs. Full article
(This article belongs to the Special Issue New Trends in Renewable Energy and Power Systems)
Show Figures

Figure 1

22 pages, 2103 KiB  
Article
Air-STORM: Informed Decision Making to Improve the Success of Solar-Powered Air Quality Samplers in Challenging Environments
by Kyan Kuo Shlipak, Julian Probsdorfer and Christian L’Orange
Sensors 2025, 25(15), 4798; https://doi.org/10.3390/s25154798 - 4 Aug 2025
Viewed by 122
Abstract
Outdoor air pollution poses a major global health risk, yet monitoring remains insufficient, especially in regions with limited infrastructure. Solar-powered monitors could allow for increased coverage in regions lacking robust connectivity. However, reliable sample collection can be challenging with these systems due to [...] Read more.
Outdoor air pollution poses a major global health risk, yet monitoring remains insufficient, especially in regions with limited infrastructure. Solar-powered monitors could allow for increased coverage in regions lacking robust connectivity. However, reliable sample collection can be challenging with these systems due to extreme temperatures and insufficient solar energy. Proper planning can help overcome these challenges. Air Sampler Solar and Thermal Optimization for Reliable Monitoring (Air-STORM) is an open-source tool that uses meteorological and solar radiation data to identify temperature and solar charging risks for air pollution monitors based on the target deployment area. The model was validated experimentally, and its utility was demonstrated through illustrative case studies. Air-STORM simulations can be customized for specific locations, seasons, and monitor configurations. This capability enables the early detection of potential sampling risks and provides opportunities to optimize monitor design, proactively mitigate temperature and power failures, and increase the likelihood of successful sample collection. Ultimately, improving sampling success will help increase the availability of high-quality outdoor air pollution data necessary to reduce global air pollution exposure. Full article
(This article belongs to the Special Issue Recent Trends in Air Quality Sensing)
Show Figures

Figure 1

25 pages, 1356 KiB  
Review
Mobile Thermal Energy Storage—A Review and Analysis in the Context of Waste Heat Recovery
by Marta Kuta, Agata Mlonka-Mędrala, Ewelina Radomska and Andrzej Gołdasz
Energies 2025, 18(15), 4136; https://doi.org/10.3390/en18154136 - 4 Aug 2025
Viewed by 136
Abstract
The global energy transition and increasingly rigorous legal regulations aimed at climate protection are driving the search for alternative energy sources, including renewable energy sources (RESs) and waste heat. However, the mismatch between supply and demand presents a significant challenge. Thermal energy storage [...] Read more.
The global energy transition and increasingly rigorous legal regulations aimed at climate protection are driving the search for alternative energy sources, including renewable energy sources (RESs) and waste heat. However, the mismatch between supply and demand presents a significant challenge. Thermal energy storage (TES) technologies, particularly mobile thermal energy storage (M-TES), offer a potential solution to address this gap. M-TES can not only balance supply and demand but also facilitate the transportation of heat from the source to the recipient. This paper reviews the current state of M-TES technologies, focusing on their technology readiness level, key operating parameters, and advantages and disadvantages. It is found that M-TES can be based on sensible heat, latent heat, or thermochemical reactions, with the majority of research and projects centered around latent heat storage. Regarding the type of research, significant progress has been made at the laboratory and simulation levels, while real-world implementation remains limited, with few pilot projects and commercially available systems. Despite the limited number of real-world M-TES implementations, currently existing M-TES systems can store up to 5.4 MWh in temperatures ranging from 58 °C to as high as 1300 °C. These findings highlight the potential of the M-TES and offer data for technology selection, simultaneously indicating the research gaps and future research directions. Full article
(This article belongs to the Special Issue Highly Efficient Thermal Energy Storage (TES) Technologies)
Show Figures

Figure 1

23 pages, 676 KiB  
Review
Stunted Versus Normally Growing Fish: Adapted to Different Niches
by Bror Jonsson
Fishes 2025, 10(8), 376; https://doi.org/10.3390/fishes10080376 - 4 Aug 2025
Viewed by 91
Abstract
This literature-based review draws on studies of thirty-four fish species; most are from northern temperate regions. Fish have flexible and indeterminate growth, and often they do not reach their growth and size potential. They may become stunted with impaired growth and early maturity, [...] Read more.
This literature-based review draws on studies of thirty-four fish species; most are from northern temperate regions. Fish have flexible and indeterminate growth, and often they do not reach their growth and size potential. They may become stunted with impaired growth and early maturity, chiefly as a phenotypically plastic reaction. The main causes of stunted growth are negatively density-dependent food availability and keen intraspecific competition leading to environmental stress. Typically, their growth levels off early in life as energy consumptions approach energy costs of maintenance. Females typically attain maturity soon after the energy surplus from feeding starts to decrease. Males are often more variable in size at maturity owing to alternative mating strategies, and their size at maturity depends on both species-specific mating behaviours and environmental opportunities. In polyphenic/polymorphic populations, one phenotype may be stunted and the other phenotype non-stunted; stunted individuals do not perform the required ontogenetic niche shift needed to grow larger. The adult morphology of stunted fish is typically like the morphology of juveniles. Their secondary sexual characters are less pronounced, and they phenotypically retain adaptation to their early feeding niche, which is different from that of large-growing individuals. There are open questions regarding to what extent genetics and epigenetics regulate the life histories of stunted phenotypes. Full article
(This article belongs to the Special Issue Habitat as a Template for Life Histories of Fish)
Show Figures

Figure 1

19 pages, 10990 KiB  
Article
Geospatial Assessment and Economic Analysis of Rooftop Solar Photovoltaic Potential in Thailand
by Linux Farungsang, Alvin Christopher G. Varquez and Koji Tokimatsu
Sustainability 2025, 17(15), 7052; https://doi.org/10.3390/su17157052 - 4 Aug 2025
Viewed by 189
Abstract
Evaluating the renewable energy potential, such as that of solar photovoltaics (PV), is important for developing renewable energy policies. This study investigated rooftop solar PV potential in Thailand based on open-source geographic information system (GIS) building footprints, solar PV power output, and the [...] Read more.
Evaluating the renewable energy potential, such as that of solar photovoltaics (PV), is important for developing renewable energy policies. This study investigated rooftop solar PV potential in Thailand based on open-source geographic information system (GIS) building footprints, solar PV power output, and the most recent land use data (2022). GIS-based overlay analysis, buffering, fishnet modeling, and spatial join operations were applied to assess rooftop availability across various building types, taking into account PV module installation parameters and optimal panel orientation. Economic feasibility and sensitivity analyses were conducted using standard economic metrics, including net present value (NPV), internal rate of return (IRR), payback period, and benefit–cost ratio (BCR). The findings showed a total rooftop solar PV power generation potential of 50.32 TWh/year, equivalent to 25.5% of Thailand’s total electricity demand in 2022. The Central region contributed the highest potential (19.59 TWh/year, 38.94%), followed by the Northeastern (10.49 TWh/year, 20.84%), Eastern (8.16 TWh/year, 16.22%), Northern (8.09 TWh/year, 16.09%), and Southern regions (3.99 TWh/year, 7.92%). Both commercial and industrial sectors reflect the financial viability of rooftop PV installations and significantly contribute to the overall energy output. These results demonstrate the importance of incorporating rooftop solar PV in renewable energy policy development in regions with similar data infrastructure, particularly the availability of detailed and standardized land use data for building type classification. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

20 pages, 9591 KiB  
Article
A Channel Centerline-Based Method for Modeling Turbidity Currents Morphodynamics: Case Study of the Baco–Malaylay Submarine Canyon System
by Alessandro Frascati, Michele Bolla Pittaluga, Octavio E. Sequeiros, Carlos Pirmez and Alessandro Cantelli
J. Mar. Sci. Eng. 2025, 13(8), 1495; https://doi.org/10.3390/jmse13081495 - 3 Aug 2025
Viewed by 193
Abstract
Turbidity currents pose significant threats to offshore seabed infrastructures, including subsea hydrocarbon production facilities and submarine communication cables. These powerful underwater flows can damage pipelines, potentially causing hydrocarbon spills that endanger local communities, the environment, and negatively impact energy production infrastructures. Therefore, a [...] Read more.
Turbidity currents pose significant threats to offshore seabed infrastructures, including subsea hydrocarbon production facilities and submarine communication cables. These powerful underwater flows can damage pipelines, potentially causing hydrocarbon spills that endanger local communities, the environment, and negatively impact energy production infrastructures. Therefore, a comprehensive understanding of the spatio-temporal development and destructive force of turbidity currents is essential. While numerical computation of 3D flow, sediment transport, and substrate exchange is possible, field-scale simulations are computationally intensive. In this study, we develop a simplified morphodynamic approach to model the flow properties of channelized turbidity currents and the associated trends of sediment accretion and erosion. This model is applied to the Baco–Malaylay submarine system to investigate the dynamics of a significant turbidity current event that impacted a submarine pipeline offshore the Philippines. The modeling results align with available seabed assessments and observed erosion trends of the protective rock berm. Our simplified modeling approach shows good agreement with simulations from a fully 3D numerical model, demonstrating its effectiveness in providing valuable insights while reducing computational demands. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

22 pages, 3994 KiB  
Article
Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
by Bartosz Woźniak, Agata Wawrzyńczak and Izabela Nowak
Coatings 2025, 15(8), 907; https://doi.org/10.3390/coatings15080907 (registering DOI) - 2 Aug 2025
Viewed by 314
Abstract
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware [...] Read more.
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware of the potential risks associated with the production of cosmetics and household chemistry products. This is one of the most important challenges of today’s industry, given that some of the raw materials still commonly used, such as surfactants, may be toxic to aquatic organisms. Many companies are choosing to use natural raw materials that have satisfactory performance properties but are also environmentally friendly. In addition, modern products are also characterized by reduced consumption of water, resources, and energy in production processes. These measures reduce the carbon footprint and reduce the amount of plastic packaging required. In the present study, seven formulations of environmentally friendly car shampoo concentrates were developed, based entirely on mixtures of bio-based surfactants. The developed formulations were tested for application on the car body surface, allowing the selection of the two best products. For these selected formulations, an in-depth physicochemical analysis was carried out, including pH, density, and viscosity measurements. Comparison of the results with commercial products available on the market was also performed. Additionally, using the multiple light scattering method, the foamability and foam stability were determined for the car shampoos developed. The results obtained indicate the very high application potential of the products under study, which combine high performance and environmental concerns. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 223
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

21 pages, 1353 KiB  
Article
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
by Dario Atzori, Claudia Bassano, Edoardo Rossi, Simone Tiozzo, Sandra Corasaniti and Angelo Spena
Energies 2025, 18(15), 4105; https://doi.org/10.3390/en18154105 - 2 Aug 2025
Viewed by 198
Abstract
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated [...] Read more.
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances, enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment, including both on-grid and off-grid configurations. Subsequently, the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally, potential barriers to large-scale implementation are discussed, along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Figure 1

15 pages, 3882 KiB  
Article
Performance of Low-Cost Energy Dense Mixed Material MnO2-Cu2O Cathodes for Commercially Scalable Aqueous Zinc Batteries
by Gautam G. Yadav, Malesa Sammy, Jungsang Cho, Megan N. Booth, Michael Nyce, Jinchao Huang, Timothy N. Lambert, Damon E. Turney, Xia Wei and Sanjoy Banerjee
Batteries 2025, 11(8), 291; https://doi.org/10.3390/batteries11080291 - 1 Aug 2025
Viewed by 204
Abstract
Zinc (Zn)-based batteries have attracted significant interest for applications ranging from electric bikes to grid storage because of its advantageous properties like high abundance, non-toxicity and low-cost. Zn offers a high theoretical capacity of two electrons per atom, resulting in 820 mAh/g, making [...] Read more.
Zinc (Zn)-based batteries have attracted significant interest for applications ranging from electric bikes to grid storage because of its advantageous properties like high abundance, non-toxicity and low-cost. Zn offers a high theoretical capacity of two electrons per atom, resulting in 820 mAh/g, making it a promising anode material for the development of highly energy dense batteries. However, the advancement of Zn-based battery systems is hindered by the limited availability of cathode materials that simultaneously offer high theoretical capacity, long-term cycling stability, and affordability. In this work, we present a new mixed material cathode system, comprising of a mixture of manganese dioxide (MnO2) and copper oxide (Cu2O) as active materials, that delivers a high theoretical capacity of ~280 mAh/g (MnO2 + Cu2O active material) (based on the combined mass of MnO2 and Cu2O) and supports stable cycling for >200 cycles at 1C. We further demonstrate the scalability of this novel cathode system by increasing the electrode size and capacity, highlighting its potential for practical and commercial applications. Full article
Show Figures

Figure 1

18 pages, 4841 KiB  
Article
Nocturnal Convection Along a Trailing-End Cold Front: Insights from Ground-Based Remote Sensing Observations
by Kylie Hoffman, David D. Turner and Belay B. Demoz
Atmosphere 2025, 16(8), 926; https://doi.org/10.3390/atmos16080926 (registering DOI) - 30 Jul 2025
Viewed by 120
Abstract
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with [...] Read more.
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with elevated divergence near 3 km AGL and moisture transport over both warm and cold sectors. Data from Raman lidar (RL), Atmospheric Emitted Radiance Interferometer (AERI), and Radar Wind Profilers (RWP) were used to characterize vertical profiles of the event, revealing the presence of a narrow moist updraft, horizontal moisture advection, and cloud development ahead of the front. Convection parameters, Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), were derived from collocated AERI and RL. Regions of high CAPE were aligned with areas of high moisture, indicating that convection was more favorable at moist elevated levels than near the surface. RWP observations revealed vorticity structures consistent with existing theories. This study highlights the value of high-resolution, continuous profiling from remote sensors to resolve mesoscale processes and evaluate convection potential. The event underscores the role of elevated moisture and wind shear in modulating convection initiation along a trailing-end cold front boundary where mesoscale and synoptic forces interact. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 4279 KiB  
Article
Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model
by Sarah Eliuth Ochoa-Hugo, Karla Valdivia-Aviña, Yanet Karina Gutiérrez-Mercado, Alejandro Arturo Canales-Aguirre, Verónica Chaparro-Huerta, Adriana Aguilar-Lemarroy, Luis Felipe Jave-Suárez, Mario Eduardo Cano-González, Antonio Topete, Andrea Molina-Pineda and Rodolfo Hernández-Gutiérrez
Pharmaceutics 2025, 17(8), 988; https://doi.org/10.3390/pharmaceutics17080988 (registering DOI) - 30 Jul 2025
Viewed by 337
Abstract
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can [...] Read more.
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can be effective and localized. The combination of chemotherapy and hyperthermia is promising. Our aim was to evaluate the combination therapy of photon hyperthermia with 5-fluorouracil (5-FU) both in vitro and in vivo. Methods: This study evaluated the antitumor efficacy of a combined chemo-photothermal therapy using 5-fluorouracil (5-FU) and branched gold nanoshells (BGNSs) in a colorectal cancer model. BGNSs were synthesized via a seed-mediated method and characterized by electron microscopy and UV–vis spectroscopy, revealing an average diameter of 126.3 nm and a plasmon resonance peak at 800 nm, suitable for near-infrared (NIR) photothermal applications. In vitro assays using SW620-GFP colon cancer cells demonstrated a ≥90% reduction in cell viability after 24 h of combined treatment with 5-FU and BGNS under NIR irradiation. In vivo, xenograft-bearing nude mice received weekly intratumoral administrations of the combined therapy for four weeks. The group treated with 5-FU + BGNS + NIR exhibited a final tumor volume of 0.4 mm3 on day 28, compared to 1010 mm3 in the control group, corresponding to a tumor growth inhibition (TGI) of 100.74% (p < 0.001), which indicates not only complete inhibition of tumor growth but also regression below the initial tumor volume. Thermographic imaging confirmed that localized hyperthermia reached 45 ± 0.5 °C at the tumor site. Results: These findings suggest that the combination of 5-FU and BGNS-mediated hyperthermia may offer a promising strategy for enhancing therapeutic outcomes in patients with colorectal cancer while potentially minimizing systemic toxicity. Conclusions: This study highlights the potential of integrating nanotechnology with conventional chemotherapy for more effective and targeted cancer treatment. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Combination Therapy and Diagnosis)
Show Figures

Graphical abstract

11 pages, 261 KiB  
Review
Minimally Invasive Surgical Strategies for the Treatment of Atrial Fibrillation: An Evolving Role in Contemporary Cardiac Surgery
by Luciana Benvegnù, Giorgia Cibin, Fabiola Perrone, Vincenzo Tarzia, Augusto D’Onofrio, Giovanni Battista Luciani, Gino Gerosa and Francesco Onorati
J. Cardiovasc. Dev. Dis. 2025, 12(8), 289; https://doi.org/10.3390/jcdd12080289 - 29 Jul 2025
Viewed by 341
Abstract
Atrial fibrillation remains the most frequent sustained arrhythmia, particularly in the elderly population, and is associated with increased risks of stroke, heart failure, and reduced quality of life. While catheter ablation is widely used for rhythm control, its efficacy is limited in persistent [...] Read more.
Atrial fibrillation remains the most frequent sustained arrhythmia, particularly in the elderly population, and is associated with increased risks of stroke, heart failure, and reduced quality of life. While catheter ablation is widely used for rhythm control, its efficacy is limited in persistent and long-standing atrial fibrillation. Over the past two decades, minimally invasive surgical strategies have emerged as effective alternatives, aiming to replicate the success of the Cox-Maze procedure while reducing surgical trauma. This overview critically summarizes the current minimally invasive techniques available for atrial fibrillation treatment, including mini-thoracotomy ablation, thoracoscopic ablation, and hybrid procedures such as the convergent approach. These methods offer the potential for durable sinus rhythm restoration by enabling direct visualization, transmural lesion creation, and left atrial appendage exclusion, with lower perioperative morbidity compared to traditional open surgery. The choice of energy source plays a key role in lesion efficacy and safety. Particular attention is given to the technical steps of each procedure, patient selection criteria, and the role of left atrial appendage closure in stroke prevention. Hybrid strategies, which combine epicardial surgical ablation with endocardial catheter-based procedures, have shown encouraging outcomes in patients with refractory or long-standing atrial fibrillation. Despite the steep learning curve, minimally invasive techniques provide significant benefits in terms of recovery time, reduced hospital stay, and fewer complications. As evidence continues to evolve, these approaches represent a key advancement in the surgical management of atrial fibrillation, deserving integration into contemporary treatment algorithms and multidisciplinary heart team planning. Full article
(This article belongs to the Special Issue Hybrid Ablation of the Atrial Fibrillation)
Show Figures

Graphical abstract

17 pages, 3289 KiB  
Article
Significant Attribution of Urbanization to Triggering Extreme Rainfall in the Urban Core—A Case of Dallas–Fort Worth in North Texas
by Junaid Ahmad, Jessica A. Eisma and Muhammad Sajjad
Urban Sci. 2025, 9(8), 295; https://doi.org/10.3390/urbansci9080295 - 29 Jul 2025
Viewed by 343
Abstract
While rainfall occurs for several reasons, climate change and urbanization influence its frequency and geographical disparities. Although recent research suggests that urbanization may lead to increased rainfall, insights into how urbanization can trigger rainfall remain limited. We selected the Dallas–Fort Worth (DFW) metroplex, [...] Read more.
While rainfall occurs for several reasons, climate change and urbanization influence its frequency and geographical disparities. Although recent research suggests that urbanization may lead to increased rainfall, insights into how urbanization can trigger rainfall remain limited. We selected the Dallas–Fort Worth (DFW) metroplex, which has minimal orographic and coastal influences, to analyze the urban impact on rainfall. DFW was divided into 256 equal grids (10 km × 10 km) and grouped into four clusters using K-means clustering based on the urbanization ratio. Using Multi-Sensor Precipitation Estimator data (with a spatial resolution of 4 km), we examined rainfall exceeding the 95th percentile (i.e., extreme rainfall) on low synoptic days to highlight localized effects. The urban heat island (UHI) effect was estimated based on the average temperature difference between the urban core and the other three non-urban clusters. Multiple rainfall events were monitored on an hourly basis. Potential linkages between urbanization, the UHI, extreme rainfall, wind speed, wind direction, convective inhibition, and convective available potential energy were evaluated. An intense UHI within the DFW area triggered a tornado, resulting in maximum rainfall in the urban core area under high wind speeds and a dominant wind direction. Our findings further clarify the role of urbanization in generating extreme rainfall events, which is essential for developing better policies for urban planning in response to intensifying extreme events due to climate change. Full article
Show Figures

Figure 1

Back to TopTop