Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (647)

Search Parameters:
Keywords = automated driving vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8744 KiB  
Article
A User-Centered Teleoperation GUI for Automated Vehicles: Identifying and Evaluating Information Requirements for Remote Driving and Assistance
by Maria-Magdalena Wolf, Henrik Schmidt, Michael Christl, Jana Fank and Frank Diermeyer
Multimodal Technol. Interact. 2025, 9(8), 78; https://doi.org/10.3390/mti9080078 (registering DOI) - 31 Jul 2025
Viewed by 70
Abstract
Teleoperation emerged as a promising fallback for situations beyond the capabilities of automated vehicles. Nevertheless, teleoperation still faces challenges, such as reduced situational awareness. Since situational awareness is primarily built through the remote operator’s visual perception, the graphical user interface (GUI) design is [...] Read more.
Teleoperation emerged as a promising fallback for situations beyond the capabilities of automated vehicles. Nevertheless, teleoperation still faces challenges, such as reduced situational awareness. Since situational awareness is primarily built through the remote operator’s visual perception, the graphical user interface (GUI) design is critical. In addition to video feed, supplemental informational elements are crucial—not only for the predominantly studied remote driving, but also for emerging desk-based remote assistance concepts. This work develops a GUI for different teleoperation concepts by identifying key informational elements during the teleoperation process through expert interviews (N = 9). Following this, a static and dynamic GUI prototype was developed and evaluated in a click dummy study (N = 36). Thereby, the dynamic GUI adapts the number of displayed elements according to the teleoperation phase. Results show that both GUIs achieve good system usability scale (SUS) ratings, with the dynamic GUI significantly outperforming the static version in both usability and task completion time. However, the results might be attributable to a learning effect due to the lack of randomization. The user experience questionnaire (UEQ) score shows potential for improvement. To enhance the user experience, the GUI should be evaluated in a follow-up study that includes interaction with a real vehicle. Full article
Show Figures

Figure 1

30 pages, 1038 KiB  
Article
Permissibility, Moral Emotions, and Perceived Moral Agency in Autonomous Driving Dilemmas: An Investigation of Pedestrian-Sacrifice and Driver-Sacrifice Scenarios in the Third-Person Perspective
by Chaowu Dong, Xuqun You and Ying Li
Behav. Sci. 2025, 15(8), 1038; https://doi.org/10.3390/bs15081038 - 30 Jul 2025
Viewed by 138
Abstract
Automated vehicles controlled by artificial intelligence are becoming capable of making moral decisions independently. This study investigates the differences in participants’ perceptions of the moral decision-maker’s permissibility when viewing scenarios (pre-test) and after witnessing the outcomes of moral decisions (post-test). It also investigates [...] Read more.
Automated vehicles controlled by artificial intelligence are becoming capable of making moral decisions independently. This study investigates the differences in participants’ perceptions of the moral decision-maker’s permissibility when viewing scenarios (pre-test) and after witnessing the outcomes of moral decisions (post-test). It also investigates how permissibility, ten typical moral emotions, and perceived moral agency fluctuate when AI and the human driver make deontological or utilitarian decisions in a pedestrian-sacrificing dilemma (Experiment 1, N = 254) and a driver-sacrificing dilemma (Experiment 2, N = 269) from a third-person perspective. Moreover, by conducting binary logistic regression, this study examined whether these factors could predict the non-decrease in permissibility ratings. In both experiments, participants preferred to delegate decisions to human drivers rather than to AI, and they generally preferred utilitarianism over deontology. The results of perceived moral emotions and moral agency provide evidence. Moreover, Experiment 2 elicited greater variations in permissibility, moral emotions, and perceived moral agency compared to Experiment 1. Moreover, deontology and gratitude could positively predict the non-decrease in permissibility ratings in Experiment 1, while contempt had a negative influence. In Experiment 2, the human driver and disgust were significant negative predictor factors, while perceived moral agency had a positive influence. These findings deepen the comprehension of the dynamic processes of autonomous driving’s moral decision-making and facilitate understanding of people’s attitudes toward moral machines and their underlying reasons, providing a reference for developing more sophisticated moral machines. Full article
30 pages, 2282 KiB  
Article
User Experience of Navigating Work Zones with Automated Vehicles: Insights from YouTube on Challenges and Strengths
by Melika Ansarinejad, Kian Ansarinejad, Pan Lu and Ying Huang
Smart Cities 2025, 8(4), 120; https://doi.org/10.3390/smartcities8040120 - 19 Jul 2025
Viewed by 388
Abstract
Understanding automated vehicle (AV) behavior in complex road environments and user attitudes in such contexts is critical for their safe and effective integration into smart cities. Despite growing deployment, limited public data exist on AV performance in construction zones; highly dynamic settings marked [...] Read more.
Understanding automated vehicle (AV) behavior in complex road environments and user attitudes in such contexts is critical for their safe and effective integration into smart cities. Despite growing deployment, limited public data exist on AV performance in construction zones; highly dynamic settings marked by irregular lane markings, shifting detours, and unpredictable human presence. This study investigates AV behavior in these conditions through qualitative, video-based analysis of user-documented experiences on YouTube, focusing on Tesla’s supervised Full Self-Driving (FSD) and Waymo systems. Spoken narration, captions, and subtitles were examined to evaluate AV perception, decision-making, control, and interaction with humans. Findings reveal that while AVs excel in structured tasks such as obstacle detection, lane tracking, and cautious speed control, they face challenges in interpreting temporary infrastructure, responding to unpredictable human actions, and navigating low-visibility environments. These limitations not only impact performance but also influence user trust and acceptance. The study underscores the need for continued technological refinement, improved infrastructure design, and user-informed deployment strategies. By addressing current shortcomings, this research offers critical insights into AV readiness for real-world conditions and contributes to safer, more adaptive urban mobility systems. Full article
Show Figures

Figure 1

22 pages, 9880 KiB  
Article
Dynamic Correction of Preview Weighting in the Driver Model Inspired by Human Brain Memory Mechanisms
by Chang Li, Hengyu Wang, Bo Yang, Haotian Luo, Jianjin Liu and Wei Zheng
Machines 2025, 13(7), 617; https://doi.org/10.3390/machines13070617 - 17 Jul 2025
Viewed by 262
Abstract
Driver models, which provide mathematical or computational representations of human driving behavior, are crucial for intelligent driving systems by enabling stable and repeatable operations. However, existing models typically employ fixed weighting parameters to simulate preview delay, failing to reflect individual driver differences and [...] Read more.
Driver models, which provide mathematical or computational representations of human driving behavior, are crucial for intelligent driving systems by enabling stable and repeatable operations. However, existing models typically employ fixed weighting parameters to simulate preview delay, failing to reflect individual driver differences and real-time dynamic behaviors. This paper proposes a Brain-Memory Driver Model (BMDM) that emulates human brain memory mechanisms to dynamically adjust preview weights by integrating global path curvature, real-time vehicle speed, and steering torque. This emulation involves a three-stage process: capturing data in an Instantaneous Memory (IM) region, filtering data via a forgetting mechanism in a Short-Time Memory (STM) region to reduce scale, and retaining data based on correlation strength in a Long-Time Memory (LTM) region for persistent mining. By deploying a trained behavioral memory database, the model dynamically calibrates preview weights based on the driver’s state and real-time curvature variations under different road conditions. This enables the model to more accurately simulate authentic preview characteristics and improves its adaptability. Simulation results from an automated steering case study demonstrate that the improved model exhibits control performance closer to the real driving process, reproducing authentic steering behavior within the human–vehicle–road closed-loop system from an intelligent biomimetic perspective. Full article
(This article belongs to the Special Issue Advances in Autonomous Vehicles Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

29 pages, 4633 KiB  
Article
Failure Detection of Laser Welding Seam for Electric Automotive Brake Joints Based on Image Feature Extraction
by Diqing Fan, Chenjiang Yu, Ling Sha, Haifeng Zhang and Xintian Liu
Machines 2025, 13(7), 616; https://doi.org/10.3390/machines13070616 - 17 Jul 2025
Viewed by 240
Abstract
As a key component in the hydraulic brake system of automobiles, the brake joint directly affects the braking performance and driving safety of the vehicle. Therefore, improving the quality of brake joints is crucial. During the processing, due to the complexity of the [...] Read more.
As a key component in the hydraulic brake system of automobiles, the brake joint directly affects the braking performance and driving safety of the vehicle. Therefore, improving the quality of brake joints is crucial. During the processing, due to the complexity of the welding material and welding process, the weld seam is prone to various defects such as cracks, pores, undercutting, and incomplete fusion, which can weaken the joint and even lead to product failure. Traditional weld seam detection methods include destructive testing and non-destructive testing; however, destructive testing has high costs and long cycles, and non-destructive testing, such as radiographic testing and ultrasonic testing, also have problems such as high consumable costs, slow detection speed, or high requirements for operator experience. In response to these challenges, this article proposes a defect detection and classification method for laser welding seams of automotive brake joints based on machine vision inspection technology. Laser-welded automotive brake joints are subjected to weld defect detection and classification, and image processing algorithms are optimized to improve the accuracy of detection and failure analysis by utilizing the high efficiency, low cost, flexibility, and automation advantages of machine vision technology. This article first analyzes the common types of weld defects in laser welding of automotive brake joints, including craters, holes, and nibbling, and explores the causes and characteristics of these defects. Then, an image processing algorithm suitable for laser welding of automotive brake joints was studied, including pre-processing steps such as image smoothing, image enhancement, threshold segmentation, and morphological processing, to extract feature parameters of weld defects. On this basis, a welding seam defect detection and classification system based on the cascade classifier and AdaBoost algorithm was designed, and efficient recognition and classification of welding seam defects were achieved by training the cascade classifier. The results show that the system can accurately identify and distinguish pits, holes, and undercutting defects in welds, with an average classification accuracy of over 90%. The detection and recognition rate of pit defects reaches 100%, and the detection accuracy of undercutting defects is 92.6%. And the overall missed detection rate is less than 3%, with both the missed detection rate and false detection rate for pit defects being 0%. The average detection time for each image is 0.24 s, meeting the real-time requirements of industrial automation. Compared with infrared and ultrasonic detection methods, the proposed machine-vision-based detection system has significant advantages in detection speed, surface defect recognition accuracy, and industrial adaptability. This provides an efficient and accurate solution for laser welding defect detection of automotive brake joints. Full article
Show Figures

Figure 1

27 pages, 6174 KiB  
Article
Non-Compliant Behaviour of Automated Vehicles in a Mixed Traffic Environment
by Marlies Mischinger-Rodziewicz, Felix Hofbaur, Michael Haberl and Martin Fellendorf
Appl. Sci. 2025, 15(14), 7852; https://doi.org/10.3390/app15147852 - 14 Jul 2025
Viewed by 182
Abstract
Legal requirements for minimum distances between vehicles are often not met for short periods of time, especially when changing lanes on multi-lane roads. These situations are typically non-hazardous, as human drivers anticipate surrounding traffic, allowing for shorter headways and improved traffic flow. Automated [...] Read more.
Legal requirements for minimum distances between vehicles are often not met for short periods of time, especially when changing lanes on multi-lane roads. These situations are typically non-hazardous, as human drivers anticipate surrounding traffic, allowing for shorter headways and improved traffic flow. Automated vehicles (AVs), however, are typically designed to maintain strict headway limits, potentially reducing traffic efficiency. Therefore, legal questions arise as to whether mandatory gap and headway limits for AVs may be violated during periods of non-compliance. While traffic flow simulation is a common method for analyzing AV impacts, previous studies have typically modeled AV behavior using driver models originally designed to replicate human driving. These models are not well suited for representing clearly defined, structured non-compliant maneuvers, as they cannot simulate intentional, rule-deviating strategies. This paper addresses this gap by introducing a concept for AV non-compliant behavior and implementing it as a module within a pre-existing AV driver model. Simulations were conducted on a three-lane highway with an on-ramp under varying traffic volumes and AV penetration rates. The results showed that, with an AV-penetration rate of more than 25%, road capacity at highway entrances could be increased and travel times reduced by over 20%, provided that AVs were allowed to merge with a legal gap of 0.9 s and a minimum non-compliant gap of 0.6 s lasting up to 3 s. This suggests that performance gains are achievable under adjusted legal requirements. In addition, the proposed framework can serve as a foundation for further development of AV driver models aiming at improving traffic efficiency while maintaining regulatory compliance. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

12 pages, 1393 KiB  
Article
A Proactive Collision Avoidance Model for Connected and Autonomous Vehicles in Mixed Traffic Flow
by Guojing Hu, Kun Li, Weike Lu, Ouchan Chen, Chuan Sun and Yuanqi Zhao
World Electr. Veh. J. 2025, 16(7), 394; https://doi.org/10.3390/wevj16070394 - 14 Jul 2025
Viewed by 233
Abstract
Collision avoidance between vehicles is a great challenge, especially in the context of mixed driving of connected and autonomous vehicles (CAVs) and human-driven vehicles (HVs). Advances in automation and connectivity technologies provide opportunities for CAVs to drive cooperatively. This paper proposes a proactive [...] Read more.
Collision avoidance between vehicles is a great challenge, especially in the context of mixed driving of connected and autonomous vehicles (CAVs) and human-driven vehicles (HVs). Advances in automation and connectivity technologies provide opportunities for CAVs to drive cooperatively. This paper proposes a proactive collision avoidance model, aiming to avoid collisions by controlling the speed and lane-changing behavior of CAVs. In the model, the subject vehicle first collects information about surrounding lanes and judges the traffic conditions; it then chooses to decelerate or change lanes to avoid collisions. The subject vehicle also searches for the optimal vehicle in the surrounding lanes for cooperation. The effectiveness of the proposed collision avoidance model is verified through the Python-SUMO platform. The experimental results show that the performance of the collision avoidance model is better than that of the cooperative adaptive cruise control (CACC) model in terms of average speed, lost time and the number of vehicle conflicts, proving the advantages of the proposed model in safety and efficiency. Full article
(This article belongs to the Special Issue Modeling for Intelligent Vehicles)
Show Figures

Figure 1

27 pages, 27475 KiB  
Article
LiGenCam: Reconstruction of Color Camera Images from Multimodal LiDAR Data for Autonomous Driving
by Minghao Xu, Yanlei Gu, Igor Goncharenko and Shunsuke Kamijo
Sensors 2025, 25(14), 4295; https://doi.org/10.3390/s25144295 - 10 Jul 2025
Viewed by 313
Abstract
The automotive industry is advancing toward fully automated driving, where perception systems rely on complementary sensors such as LiDAR and cameras to interpret the vehicle’s surroundings. For Level 4 and higher vehicles, redundancy is vital to prevent safety-critical failures. One way to achieve [...] Read more.
The automotive industry is advancing toward fully automated driving, where perception systems rely on complementary sensors such as LiDAR and cameras to interpret the vehicle’s surroundings. For Level 4 and higher vehicles, redundancy is vital to prevent safety-critical failures. One way to achieve this is by using data from one sensor type to support another. While much research has focused on reconstructing LiDAR point cloud data using camera images, limited work has been conducted on the reverse process—reconstructing image data from LiDAR. This paper proposes a deep learning model, named LiDAR Generative Camera (LiGenCam), to fill this gap. The model reconstructs camera images by utilizing multimodal LiDAR data, including reflectance, ambient light, and range information. LiGenCam is developed based on the Generative Adversarial Network framework, incorporating pixel-wise loss and semantic segmentation loss to guide reconstruction, ensuring both pixel-level similarity and semantic coherence. Experiments on the DurLAR dataset demonstrate that multimodal LiDAR data enhances the realism and semantic consistency of reconstructed images, and adding segmentation loss further improves semantic consistency. Ablation studies confirm these findings. Full article
(This article belongs to the Special Issue Recent Advances in LiDAR Sensing Technology for Autonomous Vehicles)
Show Figures

Figure 1

38 pages, 4650 KiB  
Review
Overview of Path Planning and Motion Control Methods for Port Transfer Vehicles
by Mei Yang, Dan Zhang and Haonan Wang
J. Mar. Sci. Eng. 2025, 13(7), 1318; https://doi.org/10.3390/jmse13071318 - 9 Jul 2025
Viewed by 525
Abstract
Recent advancements have been made in unmanned freight systems at ports, effectively improving port freight efficiency and being widely promoted and popularized in the field of cargo transportation in major ports around the world. The path planning and motion control of port transfer [...] Read more.
Recent advancements have been made in unmanned freight systems at ports, effectively improving port freight efficiency and being widely promoted and popularized in the field of cargo transportation in major ports around the world. The path planning and motion control of port transfer vehicles are the key technology for automatic transportation of vehicles. How to integrate cutting-edge unmanned driving control technology into port unmanned freight transportation and improve the level of port automation is currently an important issue. This article introduces the three-layer control operation architecture of unmanned freight systems in ports, as well as the challenges of applying path planning and motion control technology for unmanned freight vehicles in port environments. It focuses on the mainstream algorithms of path planning and motion control technology, introduces their principles, provides a summary of their current development situation, and elaborates on the improvement and integration achievements of current researchers on algorithms. The algorithms are reviewed and contrasted, highlighting their respective strengths and weaknesses. Finally, this article looks ahead to the development trend of unmanned cargo transportation in ports and provides reference for the automation and intelligent upgrading of unmanned cargo transportation in ports in the future. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

37 pages, 10760 KiB  
Article
AI-Based Vehicle State Estimation Using Multi-Sensor Perception and Real-World Data
by Julian Ruggaber, Daniel Pölzleitner and Jonathan Brembeck
Sensors 2025, 25(14), 4253; https://doi.org/10.3390/s25144253 - 8 Jul 2025
Viewed by 310
Abstract
With the rise of vehicle automation, accurate estimation of driving dynamics has become crucial for ensuring safe and efficient operation. Vehicle dynamics control systems rely on these estimates to provide necessary control variables for stabilizing vehicles in various scenarios. Traditional model-based methods use [...] Read more.
With the rise of vehicle automation, accurate estimation of driving dynamics has become crucial for ensuring safe and efficient operation. Vehicle dynamics control systems rely on these estimates to provide necessary control variables for stabilizing vehicles in various scenarios. Traditional model-based methods use wheel-related measurements, such as steering angle or wheel speed, as inputs. However, under low-traction conditions, e.g., on icy surfaces, these measurements often fail to deliver trustworthy information about the vehicle states. In such critical situations, precise estimation is essential for effective system intervention. This work introduces an AI-based approach that leverages perception sensor data, specifically camera images and lidar point clouds. By using relative kinematic relationships, it bypasses the complexities of vehicle and tire dynamics and enables robust estimation across all scenarios. Optical and scene flow are extracted from the sensor data and processed by a recurrent neural network to infer vehicle states. The proposed method is vehicle-agnostic, allowing trained models to be deployed across different platforms without additional calibration. Experimental results based on real-world data demonstrate that the AI-based estimator presented in this work achieves accurate and robust results under various conditions. Particularly in low-friction scenarios, it significantly outperforms conventional model-based approaches. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

19 pages, 26419 KiB  
Article
Pulse–Glide Behavior in Emerging Mixed Traffic Flow Under Sensor Accuracy Variations: An Energy-Safety Perspective
by Mengyuan Huang, Jinjun Sun, Honggang Li and Qiqi Miao
Sensors 2025, 25(13), 4189; https://doi.org/10.3390/s25134189 - 5 Jul 2025
Viewed by 376
Abstract
Pulse and Glide (PnG), as a fuel-saving technique, has primarily been applied to manual transmission vehicles. So, its effectiveness when integrated with a novel vehicle type like connected and automated vehicles (CAVs) remains largely unexplored. On the other hand, CAVs have evidently received [...] Read more.
Pulse and Glide (PnG), as a fuel-saving technique, has primarily been applied to manual transmission vehicles. So, its effectiveness when integrated with a novel vehicle type like connected and automated vehicles (CAVs) remains largely unexplored. On the other hand, CAVs have evidently received less attention regarding energy conservation, and their prominent perception capabilities clearly exhibit individual variations. In light of this, this study investigates the impacts of PnG combined with CAVs on energy conservation and safety within the emerging mixed traffic flow composed of CAVs with varying sensing accuracies. The results indicate the following: (i) compared to the traditional driving modes, the PnG can achieve a maximum fuel-saving rate of 39.53% at Fuel Consumption with Idle (FCI), reducing conflicts by approximately 30% on average; (ii) CAVs, equipped with sensors boasting a greater detection range, markedly enhance safety during vehicle operation and contribute to a more uniform distribution of individual fuel consumption; (iii) PnG modes with moderate acceleration, such as 1–2 m/s2, can achieve excellent fuel consumption while ensuring safety and may even slightly enhance the operational efficiency of the intersection. The findings could provide a theoretical reference for the transition of transportation systems toward sustainability. Full article
Show Figures

Figure 1

19 pages, 5486 KiB  
Article
The Development of Teleoperated Driving to Cooperate with the Autonomous Driving Experience
by Nuksit Noomwongs, Krit T.Siriwattana, Sunhapos Chantranuwathana and Gridsada Phanomchoeng
Automation 2025, 6(3), 26; https://doi.org/10.3390/automation6030026 - 25 Jun 2025
Viewed by 664
Abstract
Autonomous vehicles are increasingly being adopted, with manufacturers competing to enhance automation capabilities. While full automation eliminates human input, lower levels still require driver intervention under specific conditions. This study presents the design and development of a prototype vehicle featuring both low- and [...] Read more.
Autonomous vehicles are increasingly being adopted, with manufacturers competing to enhance automation capabilities. While full automation eliminates human input, lower levels still require driver intervention under specific conditions. This study presents the design and development of a prototype vehicle featuring both low- and high-level control systems, integrated with a 5G-based teleoperation interface that enables seamless switching between autonomous and remote-control modes. The system includes a malfunction surveillance unit that monitors communication latency and obstacle conditions, triggering a hardware-based emergency braking mechanism when safety thresholds are exceeded. Field experiments conducted over four test phases around Chulalongkorn University demonstrated stable performance under both driving modes. Mean lateral deviations ranged from 0.19 m to 0.33 m, with maximum deviations up to 0.88 m. Average end-to-end latency was 109.7 ms, with worst-case spikes of 316.6 ms. The emergency fallback system successfully identified all predefined fault conditions and responded with timely braking. Latency-aware stopping analysis showed an increase in braking distance from 1.42 m to 2.37 m at 3 m/s. In scenarios with extreme latency (>500 ms), the system required operator steering input or fallback to autonomous mode to avoid obstacles. These results confirm the platform’s effectiveness in real-world teleoperation over public 5G networks and its potential scalability for broader deployment. Full article
(This article belongs to the Section Smart Transportation and Autonomous Vehicles)
Show Figures

Figure 1

21 pages, 3247 KiB  
Article
An Improved YOLOP Lane-Line Detection Utilizing Feature Shift Aggregation for Intelligent Agricultural Machinery
by Cundeng Wang, Xiyuan Chen, Zhiyuan Jiao, Shuang Song and Zhen Ma
Agriculture 2025, 15(13), 1361; https://doi.org/10.3390/agriculture15131361 - 25 Jun 2025
Viewed by 284
Abstract
Agricultural factories utilize advanced facilities and technologies to cultivate crops in a controlled environment, enhancing operational yields and reducing reliance on natural resources. This is crucial for ensuring a stable supply of agricultural products year-round and plays a significant role in the transformation [...] Read more.
Agricultural factories utilize advanced facilities and technologies to cultivate crops in a controlled environment, enhancing operational yields and reducing reliance on natural resources. This is crucial for ensuring a stable supply of agricultural products year-round and plays a significant role in the transformation of agricultural modernization. Automated Guided Vehicles (AGVs) are commonly employed in agricultural factories due to their low ownership costs and high efficiency. However, small embedded devices on AGVs face significant challenges in managing multiple tasks while maintaining the required timeliness. Multi-task learning (MTL) is increasingly employed to enhance the efficiency and performance of detection models in joint detection tasks, such as lane-line detection, pedestrian detection, and obstacle detection. The YOLOP (You Only Look for Panoptic Driving Perception) model demonstrates strong performance in simultaneously addressing these tasks; detecting lane lines in changeable agricultural factory scenarios is yet a challenging task, limiting the subsequent accurate planning and control of AGVs. This paper proposes a feedback-based network for joint detection tasks (MTNet) that simultaneously detects pedestrians, automated guided vehicles (AGVs), and QR codes, while also performing lane-line segmentation. This approach addresses the challenge faced by using embedded devices mounted on AGVs, which are unable to run multiple models for different tasks in parallel due to limited computational resources. For lane-line detection tasks, we also propose an improved YOLOP lane-line detection algorithm based on feature shift aggregation. Homemade datasets were used for training and testing. Comparative experiments of our model with different models in the target-detection and lane-line detection tasks, respectively, show the progressiveness of our model. Surprisingly, we also obtained a significant improvement in the model’s processing speed. Furthermore, we conducted ablation experiments to assess the effectiveness of our improvements in lane-line detection, all of which outperformed the original detection model. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

27 pages, 2176 KiB  
Article
Minimum Critical Test Scenario Set Selection for Autonomous Vehicles Prior to First Deployment and Public Road Testing
by Balint Toth and Zsolt Szalay
Appl. Sci. 2025, 15(13), 7031; https://doi.org/10.3390/app15137031 - 22 Jun 2025
Viewed by 454
Abstract
The growing complexity of autonomous vehicle functionalities poses significant challenges for vehicle testing, validation, and regulatory approval. Despite the availability of various testing protocols and standards, a harmonized and widely accepted method specifically targeting the selection of critical test scenarios—especially for safety assessments [...] Read more.
The growing complexity of autonomous vehicle functionalities poses significant challenges for vehicle testing, validation, and regulatory approval. Despite the availability of various testing protocols and standards, a harmonized and widely accepted method specifically targeting the selection of critical test scenarios—especially for safety assessments prior to public road testing—has not yet been developed. This study introduces a systematic methodology for selecting a minimum critical set of test scenarios tailored to an autonomous vehicle’s Operational Design Domain (ODD) and capabilities. Building on existing testing frameworks (e.g., EuroNCAP protocols, ISO standards, UNECE and EU regulations), the proposed method combines a structured questionnaire with a weighted cosine similarity based filtering mechanism to identify relevant scenarios from a robust database of over 1000 test cases. Further refinement using similarity metrics such as Euclidean and Manhattan distances ensures the elimination of redundant test scenarios. Application of the framework to real-world projects demonstrates significant alignment with expert-identified cases, while also identifying overlooked but relevant scenarios. By addressing the need for a structured and efficient scenario selection method, this work supports the advancement of systematic safety assurance for autonomous vehicles and provides a scalable solution for authorities and vehicle testing companies. Full article
(This article belongs to the Special Issue Advances in Autonomous Driving and Smart Transportation)
Show Figures

Figure 1

20 pages, 1369 KiB  
Article
Analysis of the Impact for Mixed Traffic Flow Based on the Time-Varying Model Predictive Control
by Rongjun Cheng, Haoli Lou and Qi Wei
Systems 2025, 13(6), 481; https://doi.org/10.3390/systems13060481 - 17 Jun 2025
Viewed by 390
Abstract
The connected and automated vehicles (CAV) smoothing mixed traffic flow has gained attention, and a thorough assessment of these control algorithms is necessary. Our previous research proposed the time-varying model predictive control (TV-MPC) strategy, which considers the time-varying driving style of human driven [...] Read more.
The connected and automated vehicles (CAV) smoothing mixed traffic flow has gained attention, and a thorough assessment of these control algorithms is necessary. Our previous research proposed the time-varying model predictive control (TV-MPC) strategy, which considers the time-varying driving style of human driven vehicles (HDV), performing better than current baseline models. Due TV-MPC can be applied to any traffic congestion scenario and the dynamic modeling that considers driving style, can be easily transferred to other control algorithms. Thus, TV-MPC enable to represent typical control algorithms in mixed traffic flow. This study investigates the performance of TV-MPC under diverse disturbance characteristics and mixed platoons. Firstly, quantifying mixed traffic flow with different CAV penetration rates and platooning intensities by a Markov chain model. Secondly, by constructing evaluation indicators for micro-level operation of mixed traffic flow, this paper analyzed the impact of TV-MPC on the operation of mixed traffic flow through simulation. The results demonstrate that (1) CAV achieve optimal control at specific positions within mixed traffic flow; (2) higher CAV penetration enhances TV-MPC performance; (3) dispersed CAV distributions improve control effectiveness; and (4) TV-MPC excels in scenarios with significant disturbances. Full article
Show Figures

Figure 1

Back to TopTop