Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,889)

Search Parameters:
Keywords = attribute optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 1337 KB  
Article
Quality-by-Design Development of a Clofazimine–Pyrazinamide Dermal Emulsion and Its Diffusion Behavior in Strat-M® and Human Skin
by Francelle Bouwer, Marius Brits, Daniélle van Staden and Joe M. Viljoen
Pharmaceuticals 2026, 19(2), 255; https://doi.org/10.3390/ph19020255 (registering DOI) - 1 Feb 2026
Abstract
Background/Objectives: Topical treatment of cutaneous tuberculosis (CTB) requires reliable models to evaluate dermal drug release and diffusion, particularly for fixed-dose combinations (FDCs) with contrasting physicochemical properties. Human skin remains the reference standard but poses ethical, logistical, and reproducibility challenges. This study investigated [...] Read more.
Background/Objectives: Topical treatment of cutaneous tuberculosis (CTB) requires reliable models to evaluate dermal drug release and diffusion, particularly for fixed-dose combinations (FDCs) with contrasting physicochemical properties. Human skin remains the reference standard but poses ethical, logistical, and reproducibility challenges. This study investigated the suitability of Strat-M® synthetic membranes as an alternative to human skin for assessing the simultaneous release and diffusion of clofazimine (CFZ) and pyrazinamide (PZA) from a topical FDC, and aimed to develop an optimized dermal emulsion using a Quality-by-Design (QbD)-informed formulation development tool. Methods: Self-emulsifying dermal emulsions containing CFZ and PZA were developed following QbD principles. Preformulation studies included drug solubility screening, oil phase selection, and pseudoternary phase diagram construction to identify stable emulsion regions. Formulations were characterized for droplet size, polydispersity index, zeta potential, viscosity, self-emulsification efficiency, and thermodynamic stability. Eight stable emulsions were identified, of which four were selected for in vitro drug release studies. The peppermint oil-based emulsion (PPO415) was further evaluated in comparative diffusion studies using Strat-M® membranes and ex vivo human skin (Caucasian and African). Results: PPO415 demonstrated favorable physicochemical properties, including high CFZ solubility, uniform droplet distribution, and suitability for dermal application. Comparative diffusion studies showed that Strat-M® underestimated the partitioning of lipophilic CFZ while overestimating the diffusion of hydrophilic PZA relative to human skin. These differences were attributed to compositional and structural disparities between synthetic membranes and biological skin. Conclusions: Strat-M® membranes show potential as a reproducible and ethical in vitro screening tool during early-stage formulation development for topical FDCs. However, ex vivo human skin remains essential for accurately predicting dermal drug distribution and therapeutic performance. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

20 pages, 1230 KB  
Review
Analysis of Microbial Interactions During the Production of Chinese Ethnic Fermented Foods
by Xinyue Jiang, Xianghao Li, Panpan Song, Yao Dou, Jiayi Xue, Ze Wu, Shuaijun Ma, Wuxuan Wei, Wenjing Zheng, Shaohua Dou and Liang Dong
Foods 2026, 15(3), 489; https://doi.org/10.3390/foods15030489 (registering DOI) - 1 Feb 2026
Abstract
Food fermentation is an ancient bioprocess characterized by complex biochemical transformations driven primarily by microbial communities. Across the diverse regions of China, various ethnic groups have developed a rich array of traditional fermented foods through long-term practical experience. These foods are integral to [...] Read more.
Food fermentation is an ancient bioprocess characterized by complex biochemical transformations driven primarily by microbial communities. Across the diverse regions of China, various ethnic groups have developed a rich array of traditional fermented foods through long-term practical experience. These foods are integral to local culinary heritage and provide valuable systems for studying microbial ecology and function. From the perspective of microbial interactions, this review summarizes key concepts and major interaction types—including mutualism, commensalism, and competition—and describes how bacteria, yeasts, and molds interact via metabolic division of labor to drive substrate conversion, flavor formation, preservation, and biosynthesis of functional compounds. Focusing on four representative ethnic fermented foods—Dong fermented fish, Mongoslian milk curd, Miao sour soup, and Manchurian kombucha—we analyze how microbial interactions contribute to product quality, safety, and sensory attributes. Given current challenges in industrializing traditional fermented foods, such as poor standardization and variable quality, we propose future research directions centered on modern microbiome tools, designed microbial consortia, and process optimization. This work aims to provide a scientific foundation and practical strategies for modernization and quality improvement of traditional fermented foods. Full article
Show Figures

Figure 1

25 pages, 18687 KB  
Article
Fine 3D Seismic Processing and Quantitative Interpretation of Tight Sandstone Gas Reservoirs—A Case Study of the Shaximiao Formation in the Yingshan Area, Sichuan Basin
by Hongxue Li, Yankai Wang, Mingju Xie and Shoubin Wen
Processes 2026, 14(3), 506; https://doi.org/10.3390/pr14030506 (registering DOI) - 1 Feb 2026
Abstract
Targeting the thinly bedded and strongly heterogeneous tight sandstone gas reservoirs of the Shaximiao Formation in the Yingshan area of the Sichuan Basin, this study establishes an integrated workflow that combines high-fidelity 3D seismic processing with quantitative interpretation to address key challenges such [...] Read more.
Targeting the thinly bedded and strongly heterogeneous tight sandstone gas reservoirs of the Shaximiao Formation in the Yingshan area of the Sichuan Basin, this study establishes an integrated workflow that combines high-fidelity 3D seismic processing with quantitative interpretation to address key challenges such as insufficient resolution of conventional seismic data under complex near-surface conditions and difficulty in depicting sand-body geometries. On the processing side, a 2D-3D integrated amplitude-preserving high-resolution strategy is applied. In contrast to conventional workflows that treat 2D and 3D datasets independently and often sacrifice true-amplitude characteristics during static correction and noise suppression, the proposed approach unifies first-break picking and static-correction parameters across 2D and 3D data while preserving relative amplitude fidelity. Techniques such as true-surface velocity modeling, coherent-noise suppression, and wavelet compression are introduced. As a result, the effective frequency bandwidth of the newly processed data is broadened by approximately 10–16 Hz relative to the legacy dataset, and the imaging of small faults and narrow river-channel boundaries is significantly enhanced. On the interpretation side, ten sublayers within the first member of the Shaximiao Formation are correlated with high precision, yielding the identification of 41 fourth-order local structural units and 122 stratigraphic traps. Through seismic forward modeling and attribute optimization, a set of sensitive attributes suitable for thin-sandstone detection is established. These attributes enable fine-scale characterization of sand-body distributions within the shallow-water delta system, where fluvial control is pronounced, leading to the identification of 364 multi-phase superimposed channels. Based on attribute fusion, rock-physics-constrained inversion, and integrated hydrocarbon-indicator analysis, 147 favorable “sweet spots” are predicted, and six well locations are proposed. The study builds a reservoir-forming model of “deep hydrocarbon generation–upward migration, fault-controlled charging, structural trapping, and microfacies-controlled enrichment,” achieving high-fidelity imaging and quantitative prediction of tight sandstone reservoirs in the Shaximiao Formation. The results provide robust technical support for favorable-zone evaluation and subsequent exploration deployment in the Yingshan area. Full article
Show Figures

Figure 1

10 pages, 5879 KB  
Article
The Effect of High Heat Input on the Microstructure and Impact Toughness of EH36 Steel Welded Joints
by Zhenteng Li, Pan Zhang, Gengzhe Shen, Fujian Guo, Yanmei Zhang, Liuyan Zhang, Qunye Gao and Xuelin Wang
Metals 2026, 16(2), 169; https://doi.org/10.3390/met16020169 (registering DOI) - 1 Feb 2026
Abstract
Ultra-high heat input welding offers high efficiency for large-scale offshore engineering, but excessive heat input can degrade low-temperature toughness. This study investigates the microstructural evolution and impact toughness of EH36 ship steel under high heat inputs (300–500 kJ/cm) using Gleeble-3500 thermal simulation, Charpy [...] Read more.
Ultra-high heat input welding offers high efficiency for large-scale offshore engineering, but excessive heat input can degrade low-temperature toughness. This study investigates the microstructural evolution and impact toughness of EH36 ship steel under high heat inputs (300–500 kJ/cm) using Gleeble-3500 thermal simulation, Charpy impact tests, and multi-scale characterization (OM, SEM, EBSD). Results show that impact toughness peaks at 400 kJ/cm, with surface and core energies reaching 343.33 J and 215.18 J, respectively. The optimal toughness is attributed to the formation of acicular ferrite and a high fraction of high-angle grain boundaries (up to 48.7%), which effectively inhibit crack propagation. These findings provide a practical basis for selecting heat input to balance welding efficiency and mechanical performance in marine steel fabrication. Full article
Show Figures

Figure 1

16 pages, 2856 KB  
Article
Morphology-Driven Enhancement of Alkaline OER Performance in Spinel NiCo2O4 Nanosheet Electrodes
by Abu Talha Aqueel Ahmed, Abu Saad Ansari, Sangeun Cho and Atanu Jana
Int. J. Mol. Sci. 2026, 27(3), 1444; https://doi.org/10.3390/ijms27031444 (registering DOI) - 31 Jan 2026
Abstract
The oxygen evolution reaction (OER) is a critical anodic process in alkaline water electrolysis, and its catalytic performance can be effectively regulated through rational morphology engineering that governs active-site exposure, mass transport, and charge-transfer kinetics. Herein, we report a precursor-controlled synthesis of spinel [...] Read more.
The oxygen evolution reaction (OER) is a critical anodic process in alkaline water electrolysis, and its catalytic performance can be effectively regulated through rational morphology engineering that governs active-site exposure, mass transport, and charge-transfer kinetics. Herein, we report a precursor-controlled synthesis of spinel NiCo2O4 (NCO) catalysts with tunable two-dimensional architectures for efficient alkaline OER. By employing hexamethylenetetramine (H) and urea (U) as precipitating agents, the NiCo2O4 catalysts with distinctly different nanosheet morphologies were directly grown on nickel foam. The NCO-H catalyst exhibits substantially enhanced OER activity by achieving lower overpotential of 259 mV, a smaller Tafel slope of 84 mV dec–1, and higher turnover frequency compared to NCO-U catalyst. The superior OER performance is attributed to an ultrathin, highly interconnected nanosheet network that provides abundant accessible active sites, shortened ion-diffusion pathways, and accelerated interfacial charge transfer. Moreover, the optimized electrode demonstrates excellent durability (50 h) with negligible potential degradation after the partial surface transformation into an oxyhydroxide-rich active phase, while post-stability polarization and impedance analyses confirm the preservation of catalytic integrity. These findings highlight precursor-regulated morphology engineering as an effective strategy for optimizing the electrocatalytic performance of spinel oxides and establish NiCo2O4 as a robust, earth-abundant OER catalyst for alkaline water-splitting applications. Full article
14 pages, 1612 KB  
Article
Prenatal Diagnosis of Sex Chromosome Aneuploidies: A Retrospective Study Using QF-PCR, SNP-Based Chromosomal Microarray Analysis, and NIPT
by Irina Ioana Iordanescu, Andreea Catana, Zina Barabas Cuzmici, Paula Chelu, Bianca Florentina Basangiu, Emilia Severin and Mariela Sanda Militaru
Genes 2026, 17(2), 171; https://doi.org/10.3390/genes17020171 (registering DOI) - 31 Jan 2026
Abstract
Objectives: This study aimed to characterize the types and frequencies of sex chromosome aneuploidies (SCAs) detected through invasive prenatal testing, evaluate the concordance between non-invasive prenatal testing (NIPT) and confirmatory diagnostic methods, and assess the challenges faced during genetic counseling following SCA diagnosis. [...] Read more.
Objectives: This study aimed to characterize the types and frequencies of sex chromosome aneuploidies (SCAs) detected through invasive prenatal testing, evaluate the concordance between non-invasive prenatal testing (NIPT) and confirmatory diagnostic methods, and assess the challenges faced during genetic counseling following SCA diagnosis. Study Design: A retrospective review was conducted on 842 prenatal samples collected between 2020 and 2024 in a tertiary private medical center. Samples included amniotic fluid, chorionic villi, and products of conception. Testing involved rapid QF-PCR for aneuploidy detection, followed by SNP-based chromosomal microarray analysis (CMA). NIPT results with high risk for sex chromosomes aneuploidies were correlated with invasive testing outcomes in 19 cases. Results: Sex chromosome aneuploidies were identified in 67 cases (7.96%), with Turner syndrome (45, X) being the most frequent (23 cases, including six mosaics), followed by Klinefelter syndrome (18 cases), 47, XYY (14 cases), and trisomy X (12 cases). Among 19 NIPT-tested cases, 10 were true positives, 5 false positives, and 4 false negatives, including two mosaic Turner syndrome cases undetected by NIPT. Discordances were attributed to factors such as mosaicism and placental anomalies. Conclusions: Prenatal diagnosis of SCAs via invasive testing remains crucial due to NIPT’s limited sensitivity for mosaicism and false positives. Comprehensive genetic counseling is essential to navigate diagnostic uncertainties and optimize prenatal management and postnatal outcomes. Full article
(This article belongs to the Section Genetic Diagnosis)
Show Figures

Figure 1

17 pages, 5014 KB  
Article
Mechanical Properties of Granite Residual Soil Reinforced by Permeable Water-Reactive Polyurethane
by Shuzhong Tan, Jinyong Li, Dingfeng Cao, Tao Xiao and Jiajia Zheng
Polymers 2026, 18(3), 381; https://doi.org/10.3390/polym18030381 - 30 Jan 2026
Abstract
Granite residual soil (GRS) is highly susceptible to water-induced softening, posing significant risks of slope instability and collapse. Conventional impermeable grouting often exacerbates these hazards by blocking groundwater drainage. This study investigates the efficacy of a permeable water-reactive polyurethane (PWPU) in stabilizing GRS, [...] Read more.
Granite residual soil (GRS) is highly susceptible to water-induced softening, posing significant risks of slope instability and collapse. Conventional impermeable grouting often exacerbates these hazards by blocking groundwater drainage. This study investigates the efficacy of a permeable water-reactive polyurethane (PWPU) in stabilizing GRS, aiming to resolve the conflict between mechanical reinforcement and hydraulic conductivity. Uniaxial compression tests were conducted on specimens with varying initial water contents (5%, 10%, and 15%) and PWPU contents (5%, 10%, and 15%). To reveal the multi-scale failure mechanism, synchronous acoustic emission (AE) monitoring and digital image correlation (DIC) were employed, complemented by scanning electron microscopy (SEM) for microstructural characterization. Results indicate that PWPU treatment significantly enhances soil ductility, shifting the failure mode from brittle fracturing to strain-hardening, particularly at higher moisture levels where failure strains exceeded 30%. This enhancement is attributed to the formation of a flexible polymer network that acts as a micro-reinforcement system to restrict particle sliding and dissipate strain energy. An optimal PWPU content of 10% yielded a maximum compressive strength of 4.5 MPa, while failure strain increased linearly with polymer dosage. SEM analysis confirmed the formation of a porous, reticulated polymer network that effectively bonds soil particles while preserving permeability. The synchronous monitoring quantitatively bridged the gap between internal micro-crack evolution and macroscopic strain localization, with AE analysis revealing that tensile cracking accounted for 79.17% to 96.35% of the total failure events. Full article
(This article belongs to the Section Polymer Processing and Engineering)
12 pages, 13393 KB  
Article
Effect of Gd Alloying on Magnetic Properties of Direct-Quenched Fe-Gd-B Nanocrystalline Alloys
by Linli Wang, Yuanyuan Wang, Zhongao Wang, Ming Nie, Feng Huang, Wangyan Lv, Huameng Fu, Haifeng Zhang and Zhengwang Zhu
Materials 2026, 19(3), 561; https://doi.org/10.3390/ma19030561 - 30 Jan 2026
Viewed by 27
Abstract
Nanocrystalline Fe-Gd-B alloys were successfully synthesized via Gd alloying in a binary Fe-B system using a single-roller melt-spinning technique. A systematic investigation of Gd content variation (0–4.35 at.%) reveals its critical role in tuning microstructure evolution, thermal stability, and magnetic properties. Crucially, the [...] Read more.
Nanocrystalline Fe-Gd-B alloys were successfully synthesized via Gd alloying in a binary Fe-B system using a single-roller melt-spinning technique. A systematic investigation of Gd content variation (0–4.35 at.%) reveals its critical role in tuning microstructure evolution, thermal stability, and magnetic properties. Crucially, the Fe90.70Gd2.32B6.98 alloy ribbon exhibits optimized magnetic performance, achieving a high saturation magnetic induction (Bs) of 1.67 T and a low coercivity (Hc) of 2.737 kA/m. This enhancement is attributed to the suppression α-Fe grain growth through Gd-induced elevation of the thermal stability of the amorphous matrix, which confines the average crystallite size to 26.3 nm. The refined α-Fe phase contributes to elevated Bs through an increased ferromagnetic fraction, while its nanoscale grain structure, combined with wide magnetic domain configurations, effectively reduces Hc by limiting domain wall pinning sites. These findings establish that the synergistic effect of Gd alloying and Fe/B ratio adjustment is a viable strategy for designing high-performance Fe-based magnetic alloys. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (4th Edition))
27 pages, 4045 KB  
Article
Characteristic Aroma Fingerprint Disclosure of Apples (Malus × domestica) by Applying SBSE-GC-O-MS and GC-IMS Technology Coupled with Sensory Molecular Science
by Ning Ma, Jiancai Zhu, Heng Wang, Michael C. Qian and Zuobing Xiao
Foods 2026, 15(3), 482; https://doi.org/10.3390/foods15030482 - 30 Jan 2026
Viewed by 26
Abstract
Apple aroma is an important factor influencing consumers’ preferences. To understand the overall flavor characteristics of apples (Ruixue, Liangzhi, Grystal Fuji, and Guifei), volatile compounds and aroma profiles were investigated by headspace–gas chromatography–ion mobility spectrometry (HS-GC-IMS) combined with stir bar sorptive extraction (SBSE) [...] Read more.
Apple aroma is an important factor influencing consumers’ preferences. To understand the overall flavor characteristics of apples (Ruixue, Liangzhi, Grystal Fuji, and Guifei), volatile compounds and aroma profiles were investigated by headspace–gas chromatography–ion mobility spectrometry (HS-GC-IMS) combined with stir bar sorptive extraction (SBSE) and gas chromatography–mass spectrometry (GC-MS). The results showed that a total of 56 aroma compounds were identified by SBSE-GC-MS, and 39 aroma-active compounds were screened out using aroma intensity (AI) and odor activity value (OAV). Aroma recombination experiments showed enhanced ‘fruity’ and ‘sweet’ notes, whereas ‘floral’, ‘woody’, and ‘green’ aromas were weaker compared to the Crystal Fuji sample. Additionally, GC-IMS coupled with principal component analysis (PCA) was used to distinguish the apple samples, and partial least squares regression (PLSR) was applied to explore the correlation between sensory attributes and characteristic aroma compounds. The results indicated that Crystal Fuji exhibited the greatest correlation with the “woody” attribute, and Ruixue was highly correlated with “fruity”, “green”, and “sour” attributes, while butanoic acid, β-damascenone, butyl acetate, pentyl acetate, furfuryl alcohol, γ-decalactone, and vanillin had a significant impact on the “flower” and “sweet” attributes of Guifei. This study clarified the characteristic aroma composition of the four apple cultivars, providing data support for apple flavor quality evaluation and cultivar optimization. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

15 pages, 6464 KB  
Article
Defect Passivation and Enhanced Hole Extraction in Inverted Perovskite Solar Cells via CeO2@MoS2 Interfacial Engineering
by Pradeep Kumar, Chia-Feng Li, Hou-Chin Cha, Yun-Ming Sung, Yu-Ching Huang and Kuen-Lin Chen
Nanomaterials 2026, 16(3), 188; https://doi.org/10.3390/nano16030188 - 30 Jan 2026
Viewed by 27
Abstract
Nanomaterial-based hole transport layers (HTLs) play a vital role in regulating interfacial charge extraction and recombination in perovskite solar cells (PSCs). To improve PSC efficiency, hydrothermally synthesized CeO2@MoS2 nanocomposites (CM NCs) were incorporated as an interfacial buffer layer into a [...] Read more.
Nanomaterial-based hole transport layers (HTLs) play a vital role in regulating interfacial charge extraction and recombination in perovskite solar cells (PSCs). To improve PSC efficiency, hydrothermally synthesized CeO2@MoS2 nanocomposites (CM NCs) were incorporated as an interfacial buffer layer into a NiOX/MeO-2PACz HTL. The introduction of CM NCs induces strong interfacial interactions, where Mo sites in MoS2 interact with NiOX, modulating the Ni2+/Ni3+ ratio and reducing the interfacial trap density. Moreover, CeO2 promotes the formation of oxygen vacancies, collectively improving the conductivity and hole transport capability of the NiOX HTL. The MoS2-grafted CeO2 interlayer effectively tailors the interfacial energetics and creates an effective channel for hole transfer, thereby reducing open-circuit voltage (VOC) loss and enhancing device performance. This interface modification efficiently enhances hole extraction, and non-radiative recombination is effectively suppressed at the NiOX/MeO-2PACz/perovskite interface. Thereby, incorporating 2 vol% CM NCs into PSCs achieved a power conversion efficiency (PCE) of 17.93%, compared to 17.50% for a 1 vol% CM NCs-based device and 17.01% for the unmodified control device. The enhanced performance at the optimized CM NCs concentration is attributed to effective defect passivation, reduced VOC loss, and improved interfacial band alignment, which together facilitate hole extraction and suppress non-radiative recombination. However, excessive CM NCs incorporation (4 vol%) leads to increased interfacial resistance, partial hole blocking effects associated with the n-type nature of CeO2, and aggravated recombination, resulting in degraded device performance. These results demonstrate that precise control over CM NCs interlayer thickness and concentration is critical for maximizing device performance, providing a robust strategy for designing high-efficiency and stable NiOX-based PSCs and advancing nanocomposite-enabled interfacial engineering for photovoltaic applications. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

13 pages, 2770 KB  
Article
Air and Spray Pattern Characterization of Multi-Fan Autonomous Unmanned Ground Vehicle Sprayer Adapted for Modern Orchard Systems
by Dattatray G. Bhalekar, Kingsley Umani, Srikanth Gorthi, Gwen-Alyn Hoheisel and Lav R. Khot
Agronomy 2026, 16(3), 344; https://doi.org/10.3390/agronomy16030344 - 30 Jan 2026
Viewed by 34
Abstract
A newly commercialized single-row multi-fan autonomous unmanned ground vehicle (UGV) sprayer, for use in trellised tree fruit crops, was tested to better understand air and spray patterns prior to wide-scale adoption in the modern apple orchard systems typical to Washington State. This sprayer [...] Read more.
A newly commercialized single-row multi-fan autonomous unmanned ground vehicle (UGV) sprayer, for use in trellised tree fruit crops, was tested to better understand air and spray patterns prior to wide-scale adoption in the modern apple orchard systems typical to Washington State. This sprayer was equipped with five brown and yellow Albuz ATR80 nozzles per fan (QM-420, Croplands Quantum). The fans were installed in a Q8 configuration, with eight fans (four on each side) staggered near the front and back as a stack to increase vertical span. Air velocity and spray delivery patterns of the commercialized sprayer unit were assessed in laboratory using a customized smart spray analytical system. Previous field trails of this sprayer unit revealed a hardware issue with electric proportional valve controls in fan-nozzle assembly, resulting in uneven spray deposition across V-trellised canopy. Post issue resolution, the sprayer characterization data showed an average Symmetry of 91%, and 84% for air velocity and spray volume delivery on either side. An average Uniformity of 57% and 48%, respectively was recorded for pertinent sprayer attributes across the spray height. Overall, after optimization, the UGV sprayer is suitable for efficient agrochemical application in modern orchard systems. Further evaluation of labor savings, biological efficacy gains from autonomous operation, and a full economic analysis would better inform grower adoption. Commercial viability of this UGV sprayer could also be improved by added features such as variable-rate application enabled by real-time crop sensing or task-map integration. Full article
Show Figures

Figure 1

14 pages, 3099 KB  
Article
Removal of Microplastics from Wastewater Treatment Plants by Coagulation
by Cheng Chen, Chaoyue Li, Zixuan Xin, Chang Cui and Guihua Xu
Sustainability 2026, 18(3), 1381; https://doi.org/10.3390/su18031381 - 30 Jan 2026
Viewed by 46
Abstract
Wastewater treatment plants represent an important point source of microplastics (MPs) entering aquatic environments, raising increasing concerns regarding ecosystem integrity and potential risks to human health. Improving the removal efficiency of MPs during wastewater treatment is therefore of both environmental and technological significance. [...] Read more.
Wastewater treatment plants represent an important point source of microplastics (MPs) entering aquatic environments, raising increasing concerns regarding ecosystem integrity and potential risks to human health. Improving the removal efficiency of MPs during wastewater treatment is therefore of both environmental and technological significance. Polyaluminum chloride (PAC), polyferric sulfate (PFS), and polyacrylamide (PAM) were applied to remove MPs by coagulation, with particular emphasis on the effects of PAM type (cationic, anionic, and non-ionic). The optimal removal efficiency achieved by PAC alone for polystyrene was 55.00 ± 3.54% at a dosage of 300 mg L−1, which increased significantly to 87.50 ± 1.87% with the addition of cationic PAM. Similarly, MPs removal by PFS increased from 33.75 ± 1.77% at 160 mg L−1 to 62.50 ± 3.53% when combined with cationic PAM. Overall, PAC-based coagulation exhibited higher MPs removal efficiency than PFS, and cationic PAM outperformed anionic and non-ionic PAM, likely attributable to electrostatic interactions with negatively charged MPs in wastewater systems. In addition, PAC/PAM coagulation enabled effective removal of multiple MPs types while simultaneously enhancing phosphate removal, highlighting its potential for the integrated control of MPs and phosphate pollution in wastewater systems. Full article
(This article belongs to the Special Issue Wastewater Treatment, Water Pollution and Sustainable Water Resources)
Show Figures

Figure 1

18 pages, 1748 KB  
Article
Sustainable Tourist Satisfaction in Art Museums: Identifying Attributes That Enhance Visitor Experience for Sustainable Cultural Management
by Seunghun Shin, Seong-Bin Ko and Juhyun Kang
Sustainability 2026, 18(3), 1367; https://doi.org/10.3390/su18031367 - 29 Jan 2026
Viewed by 219
Abstract
Art museums play a critical role in sustaining cultural heritage, promoting lifelong learning, and supporting sustainable urban and tourism development. In this study, we identify the key attributes of art museums that shape visitor satisfaction and clarify how each attribute contributes to satisfaction [...] Read more.
Art museums play a critical role in sustaining cultural heritage, promoting lifelong learning, and supporting sustainable urban and tourism development. In this study, we identify the key attributes of art museums that shape visitor satisfaction and clarify how each attribute contributes to satisfaction or dissatisfaction. By drawing on the Kano model, we argue that not all attributes play the same role in influencing visitor evaluations, which holds important implications for the sustainable management of cultural institutions. To empirically test this, we analyze user-generated online reviews from a major immersive museum in South Korea using a two-stage approach: first, the main experiential attributes were extracted through topic modeling; second, the relationship between topic mentions and overall review ratings was evaluated through regression analysis. The findings reveal eight core attributes of the art museum experience, with one functioning as a satisfier and the others as dissatisfiers, demonstrating the asymmetric effects proposed by the Kano model. This study contributes to sustainability research in hospitality and tourism by conceptualizing art museums as service products with distinct attribute structures and by showing how optimized management of these attributes can strengthen the long-term sustainability of cultural tourism destinations. Practically, our results provide guidance for museum managers on which attributes require strategic prioritization to enhance visitor satisfaction and support sustainable operational practices. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

17 pages, 3788 KB  
Article
Morphology and Surface Reconstruction-Driven Catalytic Enhancement in CoMn2O4 for Efficient OER Application
by Abu Talha Aqueel Ahmed, Abu Saad Ansari, Sangeun Cho and Atanu Jana
Materials 2026, 19(3), 542; https://doi.org/10.3390/ma19030542 - 29 Jan 2026
Viewed by 111
Abstract
The development of efficient and durable oxygen evolution reaction (OER) catalysts from earth-abundant materials is essential for advancing alkaline water electrolysis. Herein, nanograss-like CoMn2O4 electrode films are directly grown on stainless-steel substrates via a temperature-controlled hydrothermal approach, and their OER [...] Read more.
The development of efficient and durable oxygen evolution reaction (OER) catalysts from earth-abundant materials is essential for advancing alkaline water electrolysis. Herein, nanograss-like CoMn2O4 electrode films are directly grown on stainless-steel substrates via a temperature-controlled hydrothermal approach, and their OER performance is systematically investigated. The CoMn2O4 obtained at 120 °C (CMO-120) delivers the best catalytic activity in 1.0 M KOH, requiring an overpotential of 292 mV at 10 mA cm−2, which is lower than those synthesized at 150 (CMO-150) and 90 °C (CMO-90). Notably, activity of CMO-120 becomes even more pronounced at elevated current densities, achieving the low overpotential of 434 mV even at 300 mA cm−2, substantially outperforming both CMO-90 and CMO-150 electrodes. The enhanced activity is attributed to an interconnected nanograss architecture with mixed Co2+/Co3+ and Mn2+/Mn3+ redox couples and abundant defect-related oxygen species, which result in increased electrochemically active surface area and improved charge transportation throughout the nanograss architecture that facilitate OH adsorption and OER intermediate transformation. Furthermore, CMO-120 demonstrates excellent durability (100 h) after electro-oxidation-induced surface activation. These findings highlight precise temperature regulation as an effective strategy for optimizing Mn-Co spinel for efficient alkaline OER applications. Full article
Show Figures

Graphical abstract

29 pages, 3669 KB  
Article
Assessing Coastal Landscape Vibrancy and Ecological Vulnerability with Multi-Source Big Data: A Framework for Sustainable Planning
by Lifeng Li, Wenai Liu, Shuangjiao Cai and Weiguo Jiang
Sustainability 2026, 18(3), 1357; https://doi.org/10.3390/su18031357 - 29 Jan 2026
Viewed by 78
Abstract
The intensifying pressures of urbanization and climate change on coastal zones necessitate a holistic understanding of the interplay between human activity and ecological integrity for sustainable development. However, prevailing methods for assessing coastal vibrancy often overlook direct measures of human presence and fail [...] Read more.
The intensifying pressures of urbanization and climate change on coastal zones necessitate a holistic understanding of the interplay between human activity and ecological integrity for sustainable development. However, prevailing methods for assessing coastal vibrancy often overlook direct measures of human presence and fail to quantitatively capture its complex relationship with ecological vulnerability. To address these gaps, this study develops a novel multi-dimensional assessment framework for Coastal Landscape Vibrancy (CLV) and empirically examines its interaction with ecological vulnerability factors in Beihai, China. Moving beyond built-environment-centric approaches, our framework integrates the ‘Crowd’ dimension, directly quantified using Baidu Heat Index data, with the ‘Place’ dimension, characterized by urban features, natural attributes, and visual experience. Principal Component Analysis (PCA) was employed to objectively weight these indicators and construct a composite CLV index. We then applied multiple linear regression to analyze the influence of ecological factors constructed based on the Sensitivity-Resilience-Pressure (SRP) model. The results revealed that vibrancy was highly concentrated in urban cores and exhibited significant spatiotemporal variations. Regression analysis revealed that while ecological quality factors like green coverage (β = 0.236, p < 0.001) positively influenced vibrancy, anthropogenic stressors such as slope (β = −0.457, p < 0.001) and the impervious surface index (β = −0.092, p < 0.001) had significant negative impacts, highlighting a critical trade-off between human activity and ecological conditions. The findings provide a quantitative, evidence-based foundation for spatial planning, demonstrating that sustainable coastal vibrancy is achieved through a balanced integration of human activity and ecological conservation, rather than through unchecked development. This framework offers critical insights for formulating strategies that simultaneously enhance ecological resilience and optimize human service facilities. Full article
Back to TopTop