Morphology and Surface Reconstruction-Driven Catalytic Enhancement in CoMn2O4 for Efficient OER Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of CoMn2O4 Electrodes
2.3. Material Characterization
2.4. Catalytic OER Activity
3. Results
3.1. Morphological and Compositional Properties of CoMn2O4 Electrode Films
3.2. Crystallographic and Bonding Properties of CoMn2O4 Electrode Film
3.3. Chemical Bonding States of CoMn2O4 Electrode Film
3.4. Electrochemical Properties of the CoMn2O4 Electrode Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CMO | CoMn2O4 |
| EIS | Electrochemical impedance spectroscopy |
| OER | Oxygen evolution reaction |
| XPS | X-ray photoelectron spectroscopy |
| LSV | Linear sweep voltammetry |
| FESEM | Field-emission scanning electron microscopy |
| XRD | X-ray diffraction |
| EDX | Energy-dispersive X-ray |
| CV | Cyclic voltammetry |
| RHE | Reversible hydrogen electrode |
| SCE | Saturated calomel electrode |
| Rct | Charge transfer resistance |
| RS | Solution resistance |
| η | Overpotential |
| ECSA | Electrochemically active surface area |
References
- Hua, K.; Li, X.; Rui, Z.; Duan, X.; Wu, Y.; Yang, D.; Li, J.; Liu, J. Integrating Atomically Dispersed Ir Sites in MnCo2O4.5 for Highly Stable Acidic Oxygen Evolution Reaction. ACS Catal. 2024, 14, 3712–3724. [Google Scholar] [CrossRef]
- Pawłowska, S.; Lankauf, K.; Błaszczak, P.; Karczewski, J.; Górnicka, K.; Cempura, G.; Jasiński, P.; Molin, S. Tailoring a low-energy ball milled MnCo2O4 spinel catalyst to boost oxygen evolution reaction performance. Appl. Surf. Sci. 2023, 619, 156720. [Google Scholar] [CrossRef]
- Zeng, K.; Li, W.; Zhou, Y.; Sun, Z.; Lu, C.; Yan, J.; Choi, J.-H.; Yang, R. Multilayer hollow MnCo2O4 microsphere with oxygen vacancies as efficient electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 2021, 421, 127831. [Google Scholar] [CrossRef]
- Khamsanga, S.; Khampuanbut, A.; Kheawhom, S.; Limphirat, W.; Uyama, H.; Pattananuwat, P. Defect Engineered Ni Doped MnCO2O4 Spinel Acts as Effective Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries. ChemCatChem 2024, 16, e202301446. [Google Scholar] [CrossRef]
- Lankauf, K.; Górnicka, K.; Błaszczak, P.; Karczewski, J.; Ryl, J.; Cempura, G.; Zając, M.; Bik, M.; Sitarz, M.; Jasiński, P.; et al. Tuning of eg electron occupancy of MnCo2O4 spinel for oxygen evolution reaction by partial substitution of Co by Fe at octahedral sites. Int. J. Hydrogen Energy 2023, 48, 8854–8866. [Google Scholar] [CrossRef]
- Li, M.; Yang, J.; Li, S.; Deng, L.; Zhao, S.; Li, L.; Hung, S.-F.; Xing, G.; Wang, T.; Liang, Y.; et al. Rare-Earth-Induced Intermediate-Spin Co Centers in MnCo2O4.5 for Sustainable Acidic Water Oxidation. J. Am. Chem. Soc. 2025, 147, 45680–45690. [Google Scholar] [CrossRef]
- Rajore, S.M.; Satrughna, J.A.K.; Kanwade, A.R.; Mali, S.; Patil, J.V.; Hong, C.K.; Shirage, P.M. Unravelling Structural–Electronic Properties Correlation with Oxygen Evolution Reaction Activity of MnCo2O4 and Its Performance in Aluminum–Air Batteries. ACS Appl. Eng. Mater. 2025, 3, 4402–4418. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Vignesh, S.; Al-Sadoon, M.K.; Mythili, R.; Alagumalai, K.; Arumugam, E. MnCo2O4 Nanostructure Anchored on Functionalized Carbon Black for the Enhanced Bifunctional Electrocatalytic Performance of OER and HER. Luminescence 2024, 39, e70052. [Google Scholar] [CrossRef]
- Ahmed, A.T.A.; Sekar, S.; Khadtare, S.S.; Rochman, N.T.; Lee, S.; Kim, H.; Kim, D.Y.; Im, H.; Ansari, A.S. Facilitated catalytic surface engineering of MnCo2O4 electrocatalyst towards enhanced oxygen evolution reaction. J. Electroanal. Chem. 2023, 946, 117716. [Google Scholar] [CrossRef]
- Montalto, M.; Freitas, W.d.S.; Mastronardo, E.; Ficca, V.C.A.; Placidi, E.; Baglio, V.; Mosca, E.; Vecchio, C.L.; Gatto, I.; Mecheri, B.; et al. Spinel-type high-entropy oxides for enhanced oxygen evolution reaction activity in anion exchange membrane water electrolyzers. Chem. Eng. J. 2025, 507, 160641. [Google Scholar] [CrossRef]
- Shao, M.; Chang, Q.; Dodelet, J.-P.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116, 3594–3657. [Google Scholar] [CrossRef]
- Grimaud, A.; May, K.J.; Carlton, C.E.; Lee, Y.-L.; Risch, M.; Hong, W.T.; Zhou, J.; Shao-Horn, Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 2013, 4, 2439. [Google Scholar] [CrossRef]
- Suntivich, J.; May, K.J.; Gasteiger, H.A.; Goodenough, J.B.; Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science 2011, 334, 1383–1385. [Google Scholar] [CrossRef]
- Ya, M.; Wang, J.; Li, G.; Gao, G.; Zhao, X.; Cui, J.; Wu, H.; Li, L. Surface Engineering in MgCo2O4 Spinel Oxide for an Improved Oxygen Evolution Reaction. ACS Sustain. Chem. Eng. 2023, 11, 744–750. [Google Scholar] [CrossRef]
- Calle-Vallejo, F.; Martínez, J.I.; García-Lastra, J.M.; Sautet, P.; Loffreda, D. Fast Prediction of Adsorption Properties for Platinum Nanocatalysts with Generalized Coordination Numbers. Angew. Chem. Int. Ed. 2014, 53, 8316–8319. [Google Scholar] [CrossRef]
- Roger, I.; Shipman, M.A.; Symes, M.D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003. [Google Scholar] [CrossRef]
- Dionigi, F.; Strasser, P. NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes. Adv. Energy Mater. 2016, 6, 1600621. [Google Scholar] [CrossRef]
- Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem 2010, 2, 724–761. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, X.-L.; Lv, H.-G.; Yu, H.-Q.; Yu, Y. Bimetallic-Based Electrocatalysts for Oxygen Evolution Reaction. Adv. Funct. Mater. 2023, 33, 2212160. [Google Scholar] [CrossRef]
- Wang, G.-B.; Hsu, C.-S.; Chen, H.M. The individual role of active sites in bimetallic oxygen evolution reaction catalysts. Dalton Trans. 2020, 49, 17505–17510. [Google Scholar] [CrossRef]
- Shang, S.; Li, W.; Liu, S.; Zhang, L.; Tang, Q.; Ding, Y.; Li, C.; Sun, Y.; Wu, H. Bimetallic NiCo-MOF engineering on foam nickel for efficient oxygen evolution reaction in wide-pH-value water and seawater. Chem. Eng. J. 2024, 496, 154093. [Google Scholar] [CrossRef]
- Sekar, S.; Momin, M.M.; Ansari, A.S.; Cho, S.; Lee, Y.; Lee, S.; Ahmed, A.T.A. Unlocking the Cu-Co Interplay: Electrodeposited Spinel Co2CuO4 as a High-Performance Hydrogen Evolution Catalyst. Int. J. Mol. Sci. 2025, 26, 11226. [Google Scholar] [CrossRef]
- Barua, S.; Balčiūnaitė, A.; Upskuvienė, D.; Vaičiūnienė, J.; Tamašauskaitė-Tamašiūnaitė, L.; Norkus, E. Bimetallic Ni–Mn Electrocatalysts for Stable Oxygen Evolution Reaction in Simulated/Alkaline Seawater and Overall Performance in the Splitting of Alkaline Seawater. Coatings 2024, 14, 1074. [Google Scholar] [CrossRef]
- Zang, Y.; Lu, D.-Q.; Wang, K.; Li, B.; Peng, P.; Lan, Y.-Q.; Zang, S.-Q. A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting. Nat. Commun. 2023, 14, 1792. [Google Scholar] [CrossRef]
- Bodhankar, P.M.; Dhawale, D.S.; Giddey, S.; Kumar, R.; Sarawade, P.B. Well-defined hierarchical teddy bear sunflower-like NiCo2O4 electrocatalyst for superior water oxidation. Sustain. Energy Fuels 2022, 6, 5491–5502. [Google Scholar] [CrossRef]
- Xiang, R.; Wang, C.; Luo, W.; Gao, Q. Perspective on recent advances in self-supported electrodes with hierarchical structures for efficient and durable water electrolysis. Dalton Trans. 2025, 54, 17730–17753. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Deng, N.; Wang, S.; Luo, S.; Wang, G.; Gao, H.; Li, Y.; Wang, H.; Cheng, B.; Kang, W. A Review of One-Dimensional Nanomaterials as Electrode Materials for Oxygen Reduction Reaction Electrocatalysis. ChemElectroChem 2022, 9, e202200946. [Google Scholar] [CrossRef]
- Wang, P.; Jia, T.; Wang, B. A critical review: 1D/2D nanostructured self-supported electrodes for electrochemical water splitting. J. Power Sources 2020, 474, 228621. [Google Scholar] [CrossRef]
- Chen, X.; Han, F.; Chen, X.; Zhang, C.; Gou, W. Cerium-Doped CoMn2O4 Spinels as Highly Efficient Bifunctional Electrocatalysts for ORR/OER Reactions. Catalysts 2022, 12, 1122. [Google Scholar] [CrossRef]
- Du, J.; Chen, C.; Cheng, F.; Chen, J. Rapid Synthesis and Efficient Electrocatalytic Oxygen Reduction/Evolution Reaction of CoMn2O4 Nanodots Supported on Graphene. Inorg. Chem. 2015, 54, 5467–5474. [Google Scholar] [CrossRef]
- Ashiq, M.F.; Abid, A.G.; Jabbour, K.; Fawy, K.F.; Alzahrani, H.A.; Ehsan, M.F. Increasing electrocatalytic efficiency of CuO/CoMn2O4 nanocomposite for oxygen evolution reaction. Ceram. Int. 2023, 49, 28071–28079. [Google Scholar] [CrossRef]
- Ahmed, A.T.A.; Ansari, A.S.; Nugroho, F.G.; Kim, J.; Im, H.; Cho, S. Electronic Structure Tuning of CoS2 via N-Heteroatom Doping for Efficient Oxygen Evolution Reaction Application. Int. J. Energy Res. 2025, 2025, 4507049. [Google Scholar] [CrossRef]
- Ahmed, A.T.A.; Mujtaba, M.M.; Ansari, A.S.; Cho, S. Binder-Free Spinel Co2CuO4 Nanosheet Electrodes with Cu-Driven Kinetic Enhancement for Alkaline OER Applications. Materials 2026, 19, 301. [Google Scholar] [CrossRef]
- Ahmed, A.T.A.; Seol, J.H.; Seok, J.H.; Jana, A.; Meena, A.; Cho, S.; Sree, V.G.; Park, Y.; Lee, S.U.; Im, H. Boosting the electrocatalytic performance of CuCo2S4 via surface-state engineering for ampere current water electrolysis applications. Appl. Surf. Sci. 2025, 680, 161353. [Google Scholar] [CrossRef]
- Pattanayak, B.; Simanjuntak, F.M.; Panda, D.; Yang, C.C.; Kumar, A.; Le, P.A.; Wei, K.H.; Tseng, T.Y. Role of precursors mixing sequence on the properties of CoMn2O4 cathode materials and their application in pseudocapacitor. Sci. Rep. 2019, 9, 16852. [Google Scholar] [CrossRef]
- Risch, M.; Stoerzinger, K.A.; Han, B.; Regier, T.Z.; Peak, D.; Sayed, S.Y.; Wei, C.; Xu, Z.; Shao-Horn, Y. Redox Processes of Manganese Oxide in Catalyzing Oxygen Evolution and Reduction: An in Situ Soft X-ray Absorption Spectroscopy Study. J. Phys. Chem. C 2017, 121, 17682–17692. [Google Scholar] [CrossRef]
- Mitran, G.; Chen, S.; Seo, D.-K. Role of oxygen vacancies and Mn4+/Mn3+ ratio in oxidation and dry reforming over cobalt-manganese spinel oxides. Mol. Catal. 2020, 483, 110704. [Google Scholar] [CrossRef]
- Ibrahim, K.B.; Tsai, M.-C.; Chala, S.A.; Berihun, M.K.; Kahsay, A.W.; Berhe, T.A.; Su, W.-N.; Hwang, B.-J. A review of transition metal-based bifunctional oxygen electrocatalysts. J. Chin. Chem. Soc. 2019, 66, 829–865. [Google Scholar] [CrossRef]
- Hirai, S.; Yagi, S.; Seno, A.; Fujioka, M.; Ohno, T.; Matsuda, T. Enhancement of the oxygen evolution reaction in Mn3+-based electrocatalysts: Correlation between Jahn–Teller distortion and catalytic activity. RSC Adv. 2016, 6, 2019–2023. [Google Scholar] [CrossRef]
- Fan, J.; Xiang, X.; Liu, Y.; Yang, X.; Shi, N.; Xu, D.; Zhou, C.; Han, M.; Bao, J.; Huang, W. Defect-Rich High-Entropy Spinel Oxide as an Efficient and Robust Oxygen Evolution Catalyst for Seawater Electrolysis. SusMat 2025, 5, e70010. [Google Scholar] [CrossRef]
- Friebel, D.; Louie, M.W.; Bajdich, M.; Sanwald, K.E.; Cai, Y.; Wise, A.M.; Cheng, M.-J.; Sokaras, D.; Weng, T.-C.; Alonso-Mori, R.; et al. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xu, X.; Li, Y.; Gu, L.; Li, L.; Liu, H.; Cong, H. Triggering lattice oxygen in in-situ evolved CoOOH for industrial-scale water oxidation. Appl. Catal. B Environ. 2025, 363, 124838. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ahmed, A.T.A.; Ansari, A.S.; Cho, S.; Jana, A. Morphology and Surface Reconstruction-Driven Catalytic Enhancement in CoMn2O4 for Efficient OER Application. Materials 2026, 19, 542. https://doi.org/10.3390/ma19030542
Ahmed ATA, Ansari AS, Cho S, Jana A. Morphology and Surface Reconstruction-Driven Catalytic Enhancement in CoMn2O4 for Efficient OER Application. Materials. 2026; 19(3):542. https://doi.org/10.3390/ma19030542
Chicago/Turabian StyleAhmed, Abu Talha Aqueel, Abu Saad Ansari, Sangeun Cho, and Atanu Jana. 2026. "Morphology and Surface Reconstruction-Driven Catalytic Enhancement in CoMn2O4 for Efficient OER Application" Materials 19, no. 3: 542. https://doi.org/10.3390/ma19030542
APA StyleAhmed, A. T. A., Ansari, A. S., Cho, S., & Jana, A. (2026). Morphology and Surface Reconstruction-Driven Catalytic Enhancement in CoMn2O4 for Efficient OER Application. Materials, 19(3), 542. https://doi.org/10.3390/ma19030542

