Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = atorvastatin calcium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2940 KiB  
Article
Evaluation Methods for Stability and Analysis of Underlying Causes of Instability in Form I Atorvastatin Calcium Drug Substance
by Bo Chen, Zhilong Tang, Zhenxing Zhu, Yang Xiao, Guangyao Mei and Xingchu Gong
Chemosensors 2025, 13(7), 265; https://doi.org/10.3390/chemosensors13070265 - 21 Jul 2025
Viewed by 260
Abstract
Stability assessments of drug substances and the detection of crystalline forms are critical for ensuring drug quality and medication safety. Atorvastatin calcium drug substance samples were characterized using powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). DSC results demonstrated a precise discrimination [...] Read more.
Stability assessments of drug substances and the detection of crystalline forms are critical for ensuring drug quality and medication safety. Atorvastatin calcium drug substance samples were characterized using powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). DSC results demonstrated a precise discrimination of the stability of samples. An analysis of PXRD characteristic peaks and DSC melting data suggested that instability likely stems from the presence of the amorphous phase. To validate this hypothesis, blended samples containing controlled ratios of amorphous phase and crystalline Form I were prepared. Quantitative models based on PXRD, DSC, and near-infrared spectroscopy (NIRS) data were developed to predict amorphous content, and classification accuracy was evaluated. Experimental results confirmed that all three models achieved classification accuracy values exceeding 70% in the stability prediction of the two groups of samples, which included “stable” and “unstable” samples, substantiating the hypothesis. Among them, the modeling method based on NIRS data was not only non-destructive and rapid but also demonstrates a superior discrimination accuracy value reaching 100% (n = 11), showing potential for promotion and application in industrial sample detection. The quantitative correlation between amorphous content and stability was successfully established in this study, offering a novel method for a quality stability assessment of atorvastatin calcium drug substances. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Figure 1

22 pages, 3631 KiB  
Article
Improving Atorvastatin Release from Polyelectrolyte Complex-Based Hydrogels Using Freeze-Drying: Formulation and Pharmaceutical Assessment of a Novel Delivery System for Oral Candidiasis Treatment
by Joanna Potaś-Stobiecka, Radosław Aleksander Wach, Bożena Rokita, Weronika Kaja Simonik, Magdalena Wróblewska, Karolina Borkowska, Silje Mork, Nataša Škalko-Basnet and Katarzyna Winnicka
Int. J. Mol. Sci. 2025, 26(5), 2267; https://doi.org/10.3390/ijms26052267 - 4 Mar 2025
Viewed by 946
Abstract
Atorvastatin calcium, an antifungal agent, has the potential to be repositioned/repurposed to combat the increasing antimicrobial resistance. However, one of the most crucial issues in developing atorvastatin calcium-loaded products with a topical antifungal effect is achieving the optimal release and dissolution rates of [...] Read more.
Atorvastatin calcium, an antifungal agent, has the potential to be repositioned/repurposed to combat the increasing antimicrobial resistance. However, one of the most crucial issues in developing atorvastatin calcium-loaded products with a topical antifungal effect is achieving the optimal release and dissolution rates of this statin to produce the desired therapeutic effect. In this paper, we report on the development and pharmaceutical assessment of hydrogels composed of low-molecular-weight chitosan, tragacanth, and xanthan gum/pectin/κ-carrageenan as potential drug carriers for atorvastatin calcium for buccal delivery. Multidirectional analysis of the carriers with regard to their drug-release profiles and mucoadhesive, antimicrobial, and cytotoxic properties was accompanied by an evaluation of the freeze-drying process used to improve the hydrogels’ applicability. Using differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy techniques, the role of lyophilization in enhancing atorvastatin calcium delivery from polyelectrolyte complex-based matrices via drug amorphization was demonstrated. The freeze-dried hydrogels had significantly improved release and dissolution rates for the amorphic statin. Therefore, there is great potential for the use of lyophilization in the design of polyelectrolyte complex-based semi-solids in usable dosage forms for numerous crystalline and poorly water-soluble active substances. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Drug Development)
Show Figures

Figure 1

23 pages, 666 KiB  
Systematic Review
Subgingival Delivery of Statins as an Adjunct in the Non-Surgical Treatment of Periodontitis: A Systematic Review
by Magdalena Maria Pietrzko, Maciej Pietrzko, Wojciech Niemczyk, Dariusz Skaba and Rafał Wiench
Biomedicines 2025, 13(1), 182; https://doi.org/10.3390/biomedicines13010182 - 13 Jan 2025
Cited by 4 | Viewed by 1408
Abstract
Background/Objectives: The gold standard in the non-surgical treatment of periodontitis is scaling and root planning (SRP). In recent years, studies have emerged suggesting additional clinical benefits from the use of statins as an adjunct to classical periodontal disease treatment. The aim of the [...] Read more.
Background/Objectives: The gold standard in the non-surgical treatment of periodontitis is scaling and root planning (SRP). In recent years, studies have emerged suggesting additional clinical benefits from the use of statins as an adjunct to classical periodontal disease treatment. The aim of the present study was to review the relevant literature relating to the subgingival use of statins as an adjunctive treatment to the classical, non-surgical treatment of periodontitis, with a particular focus on groups with general factors that may affect the outcome of treatment. Methods: The authors conducted a systematic review following the PRISMA 2020 guidelines. The electronic literature search conducted included the MEDLINE (PubMed) database, Web of Science, Scopus, and Google Scholar from 1 January 2012 to 14 June 2024. The keywords used for the PubMed search were determined with the help of the MeSH Browser Tool and were as follows: Periodontitis [Mesh] AND Statin [Mesh] OR Simvastatin [Mesh] OR Atorvastatin [Mesh] or Rosuvastatin Calcium [Mesh]. Based on the authors’ inclusion and exclusion criteria, 20 results were included in the review, out of 937. Results: The improvement was more pronounced in patients without systematic diseases compared to those with type II diabetes and in non-smokers compared to smoking patients. Greater improvements in clinical and radiological parameters were seen in patients diagnosed with aggressive periodontitis compared to patients with chronic periodontitis. Conclusions: This literature review led the authors to the conclusion that statins applied locally might be competent agents for improving the therapeutic outcomes of SRP. Full article
(This article belongs to the Collection Feature Papers in Biomedical Materials)
Show Figures

Figure 1

17 pages, 4670 KiB  
Article
Supersaturated Gel Formulation (SGF) of Atorvastatin at a Maximum Dose of 80 mg with Enhanced Solubility, Dissolution, and Physical Stability
by Jin Woo Park, Sa-Won Lee, Jun Hak Lee, Sung Mo Park, Sung Jun Cho, Han-Joo Maeng and Kwan Hyung Cho
Gels 2024, 10(12), 837; https://doi.org/10.3390/gels10120837 - 19 Dec 2024
Cited by 1 | Viewed by 1288
Abstract
The objective of this work was to develop a supersaturated gel formulation (SGF) loaded with the maximum atorvastatin calcium trihydrate (ATR) dose. The maximum dose strength of ATR needs to be reduced through improving solubility and dissolution rate to mitigate side effects due [...] Read more.
The objective of this work was to develop a supersaturated gel formulation (SGF) loaded with the maximum atorvastatin calcium trihydrate (ATR) dose. The maximum dose strength of ATR needs to be reduced through improving solubility and dissolution rate to mitigate side effects due to the necessity of taking high doses. ATR has highly pH-dependent solubility at 37 °C, leading to poor solubility (<10 μg/mL) in stomach acid (pH 1.2). Among the various molecular weights of polyethylene glycols (PEGs) and surfactants, PEG 200 and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected as the solubilizer and precipitation inhibitor for ATR, respectively. PEG 200 demonstrated very high solubility for ATR (>60%, w/w), and the combined use of TPGS and PEG 200 formed an organogel state and suppressed ATR precipitation, showing 15-fold higher dispersion solubility in buffer solution at pH 1.2 compared to the formulation with PEG 200 alone. The optimal SGF composition (ATR/PEG 200/TPGS = 10/60/30, w/w) exhibited an over 95% dissolution rate within 2 h at pH 1.2, compared to less than 50% for the original commercial product. In a transmission electron microscope analysis, the SGF suppressed ATR precipitation and revealed smaller precipitated particles (<300 nm) compared to the control samples. In the XRD analysis, the SGF was physically stable for 100 days at room temperature without the recrystallization of ATR. In conclusion, the SGF suggested in this work would be an alternative formulation for the treatment of dyslipidemia with enhanced solubility, dissolution, and physical stability. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Graphical abstract

10 pages, 4540 KiB  
Article
Protective Effects of Isostrictiniin Against High-Fat, High-Sugar Diet-Induced Steatosis in MASLD Mice via Regulation of the AMPK/SREBP-1c/ACC Pathway
by Qi Yan, Chenyang Li, Jinfeng Li, Yuhan Yao and Jun Zhao
Nutrients 2024, 16(22), 3876; https://doi.org/10.3390/nu16223876 - 13 Nov 2024
Cited by 3 | Viewed by 2012
Abstract
Objectives: Isostrictiniin (ITN), a natural polyphenol extracted from Nymphaea candida (snow-white waterlily), has antioxidant and hepatoprotective activities that may be beneficial in treating metabolic dysfunction-associated steatotic liver disease (MASLD). This study aimed to investigate the protective effects of ITN on high-fat, high-sugar diet [...] Read more.
Objectives: Isostrictiniin (ITN), a natural polyphenol extracted from Nymphaea candida (snow-white waterlily), has antioxidant and hepatoprotective activities that may be beneficial in treating metabolic dysfunction-associated steatotic liver disease (MASLD). This study aimed to investigate the protective effects of ITN on high-fat, high-sugar diet (HFSD)-induced steatosis in MASLD mice and its mechanisms. Methods: Kunming mice were randomly divided into normal control and HFSD groups. After being fed for 4 weeks, the HFSD group was randomly divided into model, atorvastatin calcium (ATC; 10 mg/kg), and ITN (25, 50, and 100 mg/kg) groups. After continued feeding for 4 weeks, the biochemical indexes in the mice were determined. Results: Compared with the model group, the liver index; FBG; HOMA-IR; serum AST, ALT, TG, TC, and LDL-C; and liver MDA, IL-6, TNF-α, and IL-1β levels in the ITN (25, 50, and 100 mg/kg) and ATC (10 mg/kg) groups were significantly decreased (p < 0.05), while serum HDL-C and liver SOD and GSH-Px levels were increased (p < 0.05). Pathological observation showed that ITN treatment mitigated the lipid liver deposition in the HFSD mice. Moreover, ITN could upregulate liver-tissue p-AMPK/AMPK protein expression in the HFSD-induced MASLD mice and downregulate SREBP-1c and ACC levels (p < 0.05). Conclusions: ITN can significantly improve MASLD mice, and its mechanism may be related to the regulation of the AMPK/SREBP-1c/ACC pathway. Full article
(This article belongs to the Special Issue Bioactive Ingredients in Plants Related to Human Health)
Show Figures

Figure 1

13 pages, 1782 KiB  
Article
Effects of Atorvastatin and Simvastatin on the Bioenergetic Function of Isolated Rat Brain Mitochondria
by Krzysztof Wojcicki, Adrianna Budzinska and Wieslawa Jarmuszkiewicz
Int. J. Mol. Sci. 2024, 25(15), 8494; https://doi.org/10.3390/ijms25158494 - 3 Aug 2024
Cited by 1 | Viewed by 2045
Abstract
Little is known about the effects of statins, which are cholesterol-lowering drugs, on the bioenergetic functions of mitochondria in the brain. This study aimed to elucidate the direct effects of atorvastatin and simvastatin on the bioenergetics of isolated rat brain mitochondria by measuring [...] Read more.
Little is known about the effects of statins, which are cholesterol-lowering drugs, on the bioenergetic functions of mitochondria in the brain. This study aimed to elucidate the direct effects of atorvastatin and simvastatin on the bioenergetics of isolated rat brain mitochondria by measuring the statin-induced changes in respiratory chain activity, ATP synthesis efficiency, and the production of reactive oxygen species (ROS). Our results in isolated brain mitochondria are the first to demonstrate that atorvastatin and simvastatin dose-dependently significantly inhibit the activity of the mitochondrial respiratory chain, resulting in a decreased respiratory rate, a decreased membrane potential, and increased ROS formation. Moreover, the tested statins reduced mitochondrial coupling parameters, the ADP/O ratio, the respiratory control ratio, and thus, the oxidative phosphorylation efficiency in brain mitochondria. Among the oxidative phosphorylation complexes, statin-induced mitochondrial impairment concerned complex I, complex III, and ATP synthase activity. The calcium-containing atorvastatin had a significantly more substantial effect on isolated brain mitochondria than simvastatin. The higher inhibitory effect of atorvastatin was dependent on calcium ions, which may lead to the disruption of calcium homeostasis in mitochondria. These findings suggest that while statins are effective in their primary role as cholesterol-lowering agents, their use may impair mitochondrial function, which may have consequences for brain health, particularly when mitochondrial energy efficiency is critical. Full article
Show Figures

Figure 1

12 pages, 14393 KiB  
Article
The Effects of Aflatoxin B1 on Liver Cholestasis and Its Nutritional Regulation in Ducks
by Aimei Yu, Huanbin Wang, Qianhui Cheng, Shahid Ali Rajput and Desheng Qi
Toxins 2024, 16(6), 239; https://doi.org/10.3390/toxins16060239 - 24 May 2024
Cited by 3 | Viewed by 1760
Abstract
The aim of this study was to investigate the effects of aflatoxin B1 (AFB1) on cholestasis in duck liver and its nutritional regulation. Three hundred sixty 1-day-old ducks were randomly divided into six groups and fed for 4 weeks. The [...] Read more.
The aim of this study was to investigate the effects of aflatoxin B1 (AFB1) on cholestasis in duck liver and its nutritional regulation. Three hundred sixty 1-day-old ducks were randomly divided into six groups and fed for 4 weeks. The control group was fed a basic diet, while the experimental group diet contained 90 μg/kg of AFB1. Cholestyramine, atorvastatin calcium, taurine, and emodin were added to the diets of four experimental groups. The results show that in the AFB1 group, the growth properties, total bile acid (TBA) serum levels and total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) liver levels decreased, while the malondialdehyde (MDA) and TBA liver levels increased (p < 0.05). Moreover, AFB1 caused cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin could reduce the TBA serum and liver levels (p < 0.05), alleviating the symptoms of cholestasis. The qPCR results show that AFB1 upregulated cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and cytochrome P450 family 8 subfamily B member 1 (CYP8B1) gene expression and downregulated ATP binding cassette subfamily B member 11 (BSEP) gene expression in the liver, and taurine and emodin downregulated CYP7A1 and CYP8B1 gene expression (p < 0.05). In summary, AFB1 negatively affects health and alters the expression of genes related to liver bile acid metabolism, leading to cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin can alleviate AFB1-induced cholestasis. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (3rd Edition))
Show Figures

Figure 1

11 pages, 1578 KiB  
Article
Improving the Current European Pharmacopoeia Enantio-Selective HPLC Method for the Determination of Enantiomeric Purity in Atorvastatin Calcium Salt Drug Substance
by Francesca Romana Mammone, Daniele Sadutto, Giulia D’Ettorre, Antonina Mosca and Roberto Cirilli
Separations 2024, 11(5), 154; https://doi.org/10.3390/separations11050154 - 16 May 2024
Cited by 2 | Viewed by 2456
Abstract
Atorvastatin (ATV) is a well-established lipid-lowering agent. ATV has two stereogenic centers, and of the four possible stereoisomers, only the (3R,5R) form is used therapeutically. The European Pharmacopoeia (EP) monograph 2022 for ATV calcium salt describes a normal-phase high-performance [...] Read more.
Atorvastatin (ATV) is a well-established lipid-lowering agent. ATV has two stereogenic centers, and of the four possible stereoisomers, only the (3R,5R) form is used therapeutically. The European Pharmacopoeia (EP) monograph 2022 for ATV calcium salt describes a normal-phase high-performance liquid chromatography (HPLC) method for the determination of enantiomeric purity in both drug substance and working standard samples, based on a 150 mm × 4.6 mm Chiralpak AD-H column. The main problems with this method are the very long analysis time and the high solvent consumption. Here, an alternative chromatographic protocol was developed using the Chiralpak AD-3 column (250 mm × 4.6 mm) packed with 3 μm silica particles instead of the 5 μm silica particles of the Chiralpak AD-H chiral stationary phase and characterized by the same polysaccharide selector, amylose-tris(3,5-dimethylphenylcarbamate). Using a mobile phase consisting of a mixture of n-hexane-ethanol-formic acid 90:10:0.1 (v/v/v) as the mobile phase and setting the flow rate and column temperature to 1.0 mL min−1 and 35 °C, respectively, a simultaneous stereo-selective separation was achieved within 35 min without observing any overlap between the enantiomeric impurity peak and peaks related to other ATV impurities. Compared to HPLC EP conditions, the analysis time to elute all the potentially related substances was faster and significantly less mobile phase volume was required. The linearity of the method has been demonstrated in the range of 4.4 μg mL−1 to 1000 μg mL−1 (R2 > 0.999). At a concentration of 4.4 μg mL−1, which is 0.075% of the test solution (5.8 mg mL−1, as ATV free acid), the signal-to-noise ratio was found to be 20. Full article
Show Figures

Figure 1

19 pages, 3470 KiB  
Article
Development of a Versatile Lipid Core for Nanostructured Lipid Carriers (NLCs) Using Design of Experiments (DoE) and Raman Mapping
by Carlos Alberto Rios, Roberta Ondei and Márcia Cristina Breitkreitz
Pharmaceutics 2024, 16(2), 250; https://doi.org/10.3390/pharmaceutics16020250 - 8 Feb 2024
Cited by 1 | Viewed by 1925
Abstract
The objective of this study was to develop a versatile lipid core for the ‘brick-dust type of drugs’ (poorly water-soluble and poorly lipid-soluble drugs). In the first step, excipients of different polarities were classified according to their behavior in aqueous solutions. Subsequently, binary [...] Read more.
The objective of this study was to develop a versatile lipid core for the ‘brick-dust type of drugs’ (poorly water-soluble and poorly lipid-soluble drugs). In the first step, excipients of different polarities were classified according to their behavior in aqueous solutions. Subsequently, binary mixtures were prepared with cetyl palmitate (Crodamol™ CP pharma, Campinas, São Paulo, Brazil) as the solid lipid, and its miscibility with other excipients was evaluated using Raman mapping and classical least squares (CLS). Based on the results, the excipients Crodamol™ CP pharma (hydrophobic), Super Refined™ DMI (dimethyl isosorbide; hydrophilic, Mill Hall, PA, USA), and Super Refined™ Lauryl Lactate (lauryl lactate, medium polarity, Mill Hall, PA, USA) were chosen to compose the lipid core. The ideal proportion of these excipients was determined using a mixture design and the standard deviation (STD) of image histograms as the response variables. After statistical evaluation of the DoE results, the final composition was determined, and drugs with different logP (0 to 10) and physicochemical characteristics were evaluated in the optimized mixture. The drugs butamben (Sigma-Aldrich Co., Spruce Street, St. Louis, MO, USA), tacrolimus (NutriFarm, São Paulo, Brazil), atorvastatin calcium, and resveratrol (Botica da Terra, Campinas, Brazil) presented a homogeneous distribution in the optimized lipid core, indicating that this is a promising system to be used in nanostructured lipid carrier (NLC) formulations of such types of drugs. Full article
Show Figures

Graphical abstract

8 pages, 3253 KiB  
Proceeding Paper
Development and Evaluation of Atorvastatin Calcium Nanovesicular Niosomal Gel for the Treatment of Periodontitis
by Nidhi S. Kate, Bhushan R. Rane and Ashish S. Jain
Eng. Proc. 2023, 56(1), 66; https://doi.org/10.3390/ASEC2023-15313 - 26 Oct 2023
Cited by 5 | Viewed by 1137
Abstract
Nowadays, smoking and tobacco-related habits (chewing tobacco) are recognized as the most frequent environmental risk factor for periodontal disorders. Atorvastatin calcium (ATV) is a well-known lipid-lowering drug, but recent studies have discussed its pleiotropic effects, including anti-inflammatory properties, anti-bacterial properties, etc. This anti-inflammatory [...] Read more.
Nowadays, smoking and tobacco-related habits (chewing tobacco) are recognized as the most frequent environmental risk factor for periodontal disorders. Atorvastatin calcium (ATV) is a well-known lipid-lowering drug, but recent studies have discussed its pleiotropic effects, including anti-inflammatory properties, anti-bacterial properties, etc. This anti-inflammatory effect can be studied as an adjunct for scaling and root planing (a non-surgical process to remove dental tartar and smooth root surfaces) for periodontic problems. The goal of the study is to formulate and evaluate ATV-niosomes, introduce them in a gel-based formulation by utilizing an appropriate gelling agent, and evaluate them for various parameters. The niosomal vesicles were prepared using the thin-film hydration method. Gel was prepared using the dispersion method, and an in vitro drug release study was conducted using a Franz diffusion cell. According to the results evaluated, ATV niosomal gels loaded with different concentrations of Carbopol 934 were effectively produced utilizing ATV-niosomes that were formulated through the thin-film hydration process using cholesterol and Span 60. The ATV-niosomes showed the highest entrapment efficiency, up to 84%, and the zeta potential (−18 mV) and PDI (0.106) showed stable and homogenous behavior in the vesicles formed. The performance of the optimized gel containing 1% Carbopol 934 showed in vitro release of up to 8 h following zero-order release. The gel also proved to have antimicrobial activity against S. aureus and P. aeruginosa. Therefore, we conclude that 1% Carbopol 934 gel comprising ATV-niosomes showed a prolonged effect compared to plain ATV and can effectively work to improve the periodontal condition as an adjunct to scaling and root planing. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

12 pages, 2198 KiB  
Article
Pitavastatin and Lovastatin Exhibit Calcium Channel Blocking Activity Which Potentiate Vasorelaxant Effects of Amlodipine: A New Futuristic Dimension in Statin’s Pleiotropy
by Wajid Ali, Niaz Ali, Abid Ullah, Shafiq Ur Rahman and Shujaat Ahmad
Medicina 2023, 59(10), 1805; https://doi.org/10.3390/medicina59101805 - 10 Oct 2023
Cited by 4 | Viewed by 2464
Abstract
Background and Objectives: We have recently reported that Fluvastatin, Atorvastatin, Simvastatin and Rosuvastatin have calcium channel antagonistic activities using rabbits’ intestinal preparations. The current study is focused on the effects of Pitavastatin and Lovastatin for possible inhibition of vascular L-Type calcium channels, [...] Read more.
Background and Objectives: We have recently reported that Fluvastatin, Atorvastatin, Simvastatin and Rosuvastatin have calcium channel antagonistic activities using rabbits’ intestinal preparations. The current study is focused on the effects of Pitavastatin and Lovastatin for possible inhibition of vascular L-Type calcium channels, which may have vasorelaxant effect(s). Combined effects of Pitavastatin and Lovastatin in the presence of Amlodipine were also tested for vasorelaxation. Materials and Methods: Possible relaxing effects of Pitavastatin and Lovastatin on 80 mM Potassium chloride (KCL)-induced contractions and on 1 µM norepinephrine (N.E)-induced contractions were studied in isolated rabbit’s aortic strips preparations. Relaxing effects on 80 mM KCL-induced vascular contractions were further verified by constructing Calcium Concentration Response Curves (CCRCs), in the absence and presence of three different concentrations of Pitavastatin and Lovastatin using CCRCs as negative control. Verapamil was used as a standard drug that has L-Type calcium channel binding activity. In other series of experiments, we studied drug interaction(s) among Pitavastatin, Lovastatin, and amlodipine. Results: The results of this study imply that Lovastatin is more potent than Pitavastatin for having comparatively lower EC50 (7.44 × 10−5 ± 0.16 M) in intact and (4.55 × 10−5 ± 0.10 M) in denuded aortae for KCL-induced contractions. Lovastatin amplitudes in intact and denuded aortae for KCL-induced contractions were, respectively, 24% and 35.5%; whereas amplitudes for Pitavastatin in intact and denuded aortae for KCL-induced contractions were 34% and 40%, respectively. A left shift in the EC50 values for the statins was seen when we added amlodipine in EC50 (Log Ca++ M). Right shift for CCRCs state that Pitavastatin and Lovastatin have calcium channel antagonistic effects. Lovastatin in test concentration (6.74 × 10−7 M) produced a right shift in relatively lower EC50 (−2.5 ± 0.10) Log Ca++ M as compared to Pitavastatin, which further confirms that lovastatin is relatively more potent. The right shift in EC50 resembles the right shift of Verapamil. Additive effect of Pitavastatin and Lovastatin was noted in presence of amlodipine (p < 0.05). Conclusions: KCL (80 mM)-induced vascular contractions were relaxed by Pitavastatin and Lovastatin via inhibitory effects on L-Type voltage-gated calcium channels. Lovastatin and Pitavastatin also relaxed Norepinephrine (1 µM)-induced contractions giving an insight for involvement of dual mode of action of Pitavastatin and Lovastatin. Full article
Show Figures

Figure 1

12 pages, 2783 KiB  
Article
Atorvastatin and Fluvastatin Potentiate Blood Pressure Lowering Effect of Amlodipine through Vasorelaxant Phenomenon
by Niaz Ali, Wajid Ali, Abid Ullah, Shujaat Ahmad, Ahad Amer Alsaiari, Mazen Almehmadi, Osama Abdulaziz, Mamdouh Allahyani and Abdulelah Aljuaid
Medicina 2023, 59(6), 1023; https://doi.org/10.3390/medicina59061023 - 25 May 2023
Cited by 5 | Viewed by 2258
Abstract
Background and Objectives: We have recently reported that stains have calcium channel blocking activity in isolated jejunal preparations. In this study, we examined the effects of atorvastatin and fluvastatin on blood vessels for a possible vasorelaxant effect. We also studied the possible additional [...] Read more.
Background and Objectives: We have recently reported that stains have calcium channel blocking activity in isolated jejunal preparations. In this study, we examined the effects of atorvastatin and fluvastatin on blood vessels for a possible vasorelaxant effect. We also studied the possible additional vasorelaxant effect of atorvastatin and fluvastatin, in the presence of amlodipine, to quantify its effects on the systolic blood pressure of experimental animals. Materials and Methods: Atorvastatin and fluvastatin were tested in isolated rabbits’ aortic strip preparations using 80mM Potassium Chloride (KCl) induced contractions and 1 micro molar Norepinephrine (NE) induced contractions. A positive relaxing effect on 80 mM KCl induced contractions were further confirmed in the absence and presence of atorvastatin and fluvastatin by constructing calcium concentration response curves (CCRCs) while using verapamil as a standard calcium channel blocker. In another series of experiments, hypertension was induced in Wistar rats and different test concentrations of atorvastatin and fluvastatin were administered in their respective EC50 values to the test animals. A fall in their systolic blood pressure was noted using amlodipine as a standard vasorelaxant drug. Results: The results show that fluvastatin is more potent than amlodipine as it relaxed NE induced contractions where the amplitude reached 10% of its control in denuded aortae. Atorvastatin relaxed KCL induced contractions with an amplitude reaching 34.4% of control response as compared to the amlodipine response, i.e., 39.1%. A right shift in the EC50 (Log Ca++ M) of Calcium Concentration Response Curves (CCRCs) implies that statins have calcium channel blocking activity. A right shift in the EC50 of fluvastatin with relatively less EC50 value (−2.8 Log Ca++ M) in the presence of test concentration (1.2 × 10−7 M) of fluvastatin implies that fluvastatin is more potent than atorvastatin. The shift in EC50 resembles the shift of Verapamil, a standard calcium channel blocker (−1.41 Log Ca++ M). Conclusions: Atorvastatin and fluvastatin relax the aortic strip preparations predominantly through the inhibition of voltage gated calcium channels in high molar KCL induced contractions. These statins also inhibit the effects of NE induced contractions. The study also confirms that atorvastatin and fluvastatin potentiate blood pressure lowering effects in hypertensive rats. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 4738 KiB  
Article
Atorvastatin Decreases Renal Calcium Oxalate Stone Deposits by Enhancing Renal Osteopontin Expression in Hyperoxaluric Stone-Forming Rats Fed a High-Fat Diet
by Chan Jung Liu, Yau Sheng Tsai and Ho Shiang Huang
Int. J. Mol. Sci. 2022, 23(6), 3048; https://doi.org/10.3390/ijms23063048 - 11 Mar 2022
Cited by 8 | Viewed by 5051
Abstract
Calcium oxalate (CaOx) is the major constituent of kidney stones. Growing evidence shows a close connection between hyperlipidemia, cardiovascular disease (CVD), and the formation of kidney stones. Owing to their antioxidant properties, statins control hyperlipidemia and may ameliorate CaOx stone formation. The present [...] Read more.
Calcium oxalate (CaOx) is the major constituent of kidney stones. Growing evidence shows a close connection between hyperlipidemia, cardiovascular disease (CVD), and the formation of kidney stones. Owing to their antioxidant properties, statins control hyperlipidemia and may ameliorate CaOx stone formation. The present study was designed to investigate the suppressive effects of statins on CaOx urolithiasis and their potential mechanism. We used rats fed a high-fat diet (HFD) to achieve hyperlipidemia (HL) and hydroxyproline (HP) water to establish a hyperoxaluric CaOx nephrolithiasis model; the animals were administered statins (A) for 28 days. The rats were divided into eight groups treated or not with A, i.e., Control, HP, HL, HL + HP. HL aggravated urinary calcium crystallization compared to the control. Due to increased expression of renal osteopontin (OPN), a key anti-lithic protein, and reduced free radical production, the calcium crystals in the urinary bladder increased as renal calcium deposition decreased. The levels of the ion activity product of CaOx (AP(CaOx)) decreased after statins administration, and AP(Calcium phosphate) (CaP) increased, which suggested the dominant calcium crystal composition changed from CaOx to CaP after statin administration. In conclusion, atorvastatin decreases renal CaOx stone deposits by restoring OPN expression in hyperoxaluric rats fed a HFD. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 2435 KiB  
Article
Fast-Dissolving Nifedipine and Atorvastatin Calcium Electrospun Nanofibers as a Potential Buccal Delivery System
by Hassa A. Alshaya, Ahmed J. Alfahad, Fatemah M. Alsulaihem, Alhassan H. Aodah, Abdullah A. Alshehri, Fahad A. Almughem, Haya A. Alfassam, Ahmad M. Aldossary, Abdulrahman A. Halwani, Haitham A. Bukhary, Moutaz Y. Badr, Salam Massadeh, Manal Alaamery and Essam A. Tawfik
Pharmaceutics 2022, 14(2), 358; https://doi.org/10.3390/pharmaceutics14020358 - 4 Feb 2022
Cited by 42 | Viewed by 5606
Abstract
Geriatric patients are more likely to suffer from multiple chronic diseases that require using several drugs, which are commonly ingested. However, to enhance geriatric patients’ convenience, the electrospun nanofiber system was previously proven to be a successful alternative for the existing oral dosage [...] Read more.
Geriatric patients are more likely to suffer from multiple chronic diseases that require using several drugs, which are commonly ingested. However, to enhance geriatric patients’ convenience, the electrospun nanofiber system was previously proven to be a successful alternative for the existing oral dosage forms, i.e., tablets and capsules. These nanofibers prepared either as single- or multi-layered fibers could hold at least one active compound in each layer. They might also be fabricated as ultra-disintegrated fibrous films for oral cavity administration, i.e., buccal or sublingual, to improve the bioavailability and intake of the administered drugs. Therefore, in this work, a combination of nifedipine and atorvastatin calcium, which are frequently prescribed for hypertension and hyperlipidemia patients, respectively, was prepared in a coaxial electrospinning system for buccal administration. Scanning electron microscopy image showed the successful preparation of smooth, non-beaded, and non-porous surfaces of the drug-loaded nanofibers with an average fiber diameter of 968 ± 198 nm. In contrast, transmission electron microscopy distinguished the inner and outer layers of those nanofibers. The disintegration of the drug-loaded nanofibers was ≤12 s, allowing the rapid release of nifedipine and atorvastatin calcium to 61% and 47%, respectively, after 10 min, while a complete drug release was achieved after 120 min. In vitro, a drug permeation study using Franz diffusion showed that the permeation of both drugs from the core–shell nanofibers was enhanced significantly (p < 0.05) compared to the drugs in a solution form. In conclusion, the development of drug-loaded nanofibers containing nifedipine and atorvastatin calcium can be a potential buccal delivery system. Full article
(This article belongs to the Special Issue Electrospun Materials for Biomedical Applications)
Show Figures

Figure 1

21 pages, 6571 KiB  
Article
Atorvastatin Modulates the Efficacy of Electroporation and Calcium Electrochemotherapy
by Wojciech Szlasa, Aleksander Kiełbik, Anna Szewczyk, Vitalij Novickij, Mounir Tarek, Zofia Łapińska, Jolanta Saczko, Julita Kulbacka and Nina Rembiałkowska
Int. J. Mol. Sci. 2021, 22(20), 11245; https://doi.org/10.3390/ijms222011245 - 18 Oct 2021
Cited by 10 | Viewed by 3746
Abstract
Electroporation is influenced by the features of the targeted cell membranes, e.g., the cholesterol content and the surface tension of the membrane. The latter is eventually affected by the organization of actin fibers. Atorvastatin is a statin known to influence both the cholesterol [...] Read more.
Electroporation is influenced by the features of the targeted cell membranes, e.g., the cholesterol content and the surface tension of the membrane. The latter is eventually affected by the organization of actin fibers. Atorvastatin is a statin known to influence both the cholesterol content and the organization of actin. This work analyzes the effects of the latter on the efficacy of electroporation of cancer cells. In addition, herein, electroporation was combined with calcium chloride (CaEP) to assess as well the effects of the statin on the efficacy of electrochemotherapy. Cholesterol-rich cell lines MDA-MB231, DU 145, and A375 underwent (1) 48 h preincubation or (2) direct treatment with 50 nM atorvastatin. We studied the impact of the statin on cholesterol and actin fiber organization and analyzed the cells’ membrane permeability. The viability of cells subjected to PEF (pulsed electric field) treatments and CaEP with 5 mM CaCl2 was examined. Finally, to assess the safety of the therapy, we analyzed the N-and E-cadherin localization using confocal laser microscopy. The results of our investigation revealed that depending on the cell line, atorvastatin preincubation decreases the total cholesterol in the steroidogenic cells and induces reorganization of actin nearby the cell membrane. Under low voltage PEFs, actin reorganization is responsible for the increase in the electroporation threshold. However, when subject to high voltage PEF, the lipid composition of the cell membrane becomes the regulatory factor. Namely, preincubation with atorvastatin reduces the cytotoxic effect of low voltage pulses and enhances the cytotoxicity and cellular changes induced by high voltage pulses. The study confirms that the surface tension regulates of membrane permeability under low voltage PEF treatment. Accordingly, to reduce the unfavorable effects of preincubation with atorvastatin, electroporation of steroidogenic cells should be performed at high voltage and combined with a calcium supply. Full article
(This article belongs to the Special Issue Molecular Advances in Prostate Cancer)
Show Figures

Figure 1

Back to TopTop