Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = atmospheric moisture transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6405 KiB  
Article
Rainy Season Onset in Northeast China: Characteristic Changes and Physical Mechanisms Before and After the 2000 Climate Regime Shift
by Hanchen Zhang, Weifang Wang, Shuwen Li, Qing Cao, Quanxi Shao, Jinxia Yu, Tao Zheng and Shuci Liu
Water 2025, 17(15), 2347; https://doi.org/10.3390/w17152347 - 7 Aug 2025
Abstract
The rainy season characteristics are directly modulated by atmospheric circulation and moisture transport dynamics. Focusing on the characteristics of the rainy season onset date (RSOD), this study aims to advance the understanding and prediction of climate change impacts on agricultural production and disaster [...] Read more.
The rainy season characteristics are directly modulated by atmospheric circulation and moisture transport dynamics. Focusing on the characteristics of the rainy season onset date (RSOD), this study aims to advance the understanding and prediction of climate change impacts on agricultural production and disaster mitigation strategies. Based on rainfall data from 66 meteorological stations in northeast China (NEC) from 1961 to 2020, this study determined the patterns of the RSOD in the region and established its mechanistic linkages with atmospheric circulation and water vapor transport mechanisms. This study identifies a climatic regime shift around 2000, with the RSOD transitioning from low to high interannual variability in NEC. Further analysis reveals a strong correlation between the RSOD and atmospheric circulation characteristics: cyclonic vorticity amplifies before the RSOD and dissipates afterward. Innovatively, this study reveals a significant transition in the water vapor transport paths during the early rainy season in NEC around 2000, shifting from eastern Mongolia–Sea of Japan to the northwestern Pacific region. Moreover, the advance or delay of the RSOD directly influences the water vapor transport intensity—an early (delayed) RSOD is associated with enhanced (weakened) water vapor transport. These findings provide a new perspective for predicting the RSOD in the context of climate change while providing critical theoretical underpinnings for optimizing agricultural strategies and enhancing disaster prevention protocols. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

19 pages, 14381 KiB  
Article
Temperature and Humidity Anomalies During the Summer Drought of 2022 over the Yangtze River Basin
by Dengao Li, Er Lu, Dian Yuan and Ruisi Liu
Atmosphere 2025, 16(8), 942; https://doi.org/10.3390/atmos16080942 - 6 Aug 2025
Abstract
In the summer of 2022, central and eastern China experienced prolonged extreme high temperatures and severe drought, leading to significant economic losses. To gain a more profound understanding of this drought event and furnish a reference for forecasting similar events in the future, [...] Read more.
In the summer of 2022, central and eastern China experienced prolonged extreme high temperatures and severe drought, leading to significant economic losses. To gain a more profound understanding of this drought event and furnish a reference for forecasting similar events in the future, this study examines the circulation anomalies associated with the drought. Employing a diagnostic method focused on temperature and moisture anomalies, this study introduces a novel approach to quantify and compare the relative significance of moisture transport and warm air dynamics in contributing to the drought. This study examines the atmospheric circulation anomalies linked to the drought event and compares the relative contributions of water vapor transport and warm air activity in causing the drought, using two parameters defined in the paper. The results show the following: (1) The West Pacific Subtropical High (WPSH) was more intense than usual and extended westward, consistently controlling the Yangtze River Basin. Simultaneously, the polar vortex area was smaller and weaker, the South Asian High area was larger and stronger, and it shifted eastward. These factors collectively led to weakened water vapor transport conditions and prevailing subsiding air motions in the Yangtze River Basin, causing frequent high temperatures. (2) By defining Iq and It to represent the contributions of moisture and temperature to precipitation, we found that the drought event in the Yangtze River Basin was driven by both reduced moisture supplies in the lower troposphere and higher-than-normal temperatures, with temperature playing a dominant role. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 4841 KiB  
Article
Nocturnal Convection Along a Trailing-End Cold Front: Insights from Ground-Based Remote Sensing Observations
by Kylie Hoffman, David D. Turner and Belay B. Demoz
Atmosphere 2025, 16(8), 926; https://doi.org/10.3390/atmos16080926 - 30 Jul 2025
Viewed by 120
Abstract
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with [...] Read more.
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with elevated divergence near 3 km AGL and moisture transport over both warm and cold sectors. Data from Raman lidar (RL), Atmospheric Emitted Radiance Interferometer (AERI), and Radar Wind Profilers (RWP) were used to characterize vertical profiles of the event, revealing the presence of a narrow moist updraft, horizontal moisture advection, and cloud development ahead of the front. Convection parameters, Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), were derived from collocated AERI and RL. Regions of high CAPE were aligned with areas of high moisture, indicating that convection was more favorable at moist elevated levels than near the surface. RWP observations revealed vorticity structures consistent with existing theories. This study highlights the value of high-resolution, continuous profiling from remote sensors to resolve mesoscale processes and evaluate convection potential. The event underscores the role of elevated moisture and wind shear in modulating convection initiation along a trailing-end cold front boundary where mesoscale and synoptic forces interact. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 4550 KiB  
Article
Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
by Degui Yao, Xiaohui Wang and Jinyu Wang
Atmosphere 2025, 16(7), 892; https://doi.org/10.3390/atmos16070892 - 21 Jul 2025
Viewed by 180
Abstract
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme [...] Read more.
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme precipitation in the YRB from 1981 to 2020 through the extreme precipitation metrics and Empirical Orthogonal Function (EOF) analysis. The results indicate that both the frequency and intensity of extreme precipitation exhibit an eastward and southward increasing pattern in terms of climate state, with regions of higher precipitation showing greater interannual variability. When precipitation in the YRB exhibits a spatially coherent enhancement pattern, high latitudes exhibits an Eurasian teleconnection wave train that facilitates the southward movement of cold air. Concurrently, the northward extension of the Western Pacific subtropical high (WPSH) enhances moisture transport from low latitudes to the YRB, against the backdrop of a transitioning SST pattern from El Niño to La Niña. When precipitation in the YRB shows a “south-increase, north-decrease” dipole pattern, the southward-shifted Ural high and westward-extended WPSH converge cold air and moist in the southern YRB region, with no dominant SST drivers identified. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

21 pages, 12628 KiB  
Article
Convection Parameters from Remote Sensing Observations over the Southern Great Plains
by Kylie Hoffman and Belay Demoz
Sensors 2025, 25(13), 4163; https://doi.org/10.3390/s25134163 - 4 Jul 2025
Viewed by 323
Abstract
Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), commonly used measures of the instability and inhibition within a vertical column of the atmosphere, serve as a proxy for estimating convection potential and updraft strength for an air parcel. In operational forecasting, CAPE [...] Read more.
Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), commonly used measures of the instability and inhibition within a vertical column of the atmosphere, serve as a proxy for estimating convection potential and updraft strength for an air parcel. In operational forecasting, CAPE and CIN are typically derived from radiosonde thermodynamic profiles, launched only twice daily, and supplemented by model-simulated equivalent values. This study uses remote sensing observations to derive CAPE and CIN from continuous data, expanding upon previous research by evaluating the performance of both passive and active profiling systems’ CAPE/CIN against in situ radiosonde CAPE/CIN. CAPE and CIN values are calculated from Atmospheric Emitted Radiance Interferometer (AERI), Microwave Radiometer (MWR), Raman LiDAR, and Differential Absorption LiDAR (DIAL) systems. Among passive sensors, results show significantly greater accuracy in CAPE and CIN from AERI than MWR. Incorporating water vapor profiles from active LiDAR systems further improves CAPE values when compared to radiosonde data, although the impact on CIN is less significant. Beyond the direct capability of calculating CAPE, this approach enables evaluation of the various relationships between the water vapor mixing ratio, CAPE, cloud development, and moisture transport. Full article
(This article belongs to the Special Issue Remote Sensing in Atmospheric Measurements)
Show Figures

Figure 1

17 pages, 1778 KiB  
Article
Stomatal–Hydraulic Coordination Mechanisms of Wheat in Response to Atmospheric–Soil Drought and Rewatering
by Lijuan Wang, Yanqun Zhang, Hao Li, Xinlong Hu, Pancen Feng, Yan Mo and Shihong Gong
Agriculture 2025, 15(13), 1375; https://doi.org/10.3390/agriculture15131375 - 27 Jun 2025
Viewed by 338
Abstract
Drought stress severely limits agricultural productivity, with atmospheric and soil water deficits often occurring simultaneously in field conditions. While plant responses to individual drought factors are well-documented, recovery mechanisms following combined atmospheric–soil drought remain poorly understood, hindering drought resistance strategies and irrigation optimization. [...] Read more.
Drought stress severely limits agricultural productivity, with atmospheric and soil water deficits often occurring simultaneously in field conditions. While plant responses to individual drought factors are well-documented, recovery mechanisms following combined atmospheric–soil drought remain poorly understood, hindering drought resistance strategies and irrigation optimization. We set up two VPD treatments (low and high vapor pressure deficit) and two soil moisture treatments (CK: control soil moisture with sufficient irrigation, 85–95% field capacity; drought: soil moisture with deficit irrigation, 50–60% field capacity) in the pot experiment. We investigated wheat’s hydraulic transport (leaf hydraulic conductance, Kleaf) and gas exchange (stomatal conductance, gs; photosynthetic rate, An) responses to combined drought stress from atmospheric and soil conditions at the heading stage, as well as rewatering 55 days after treatment initiation. The results revealed that: (1) high VPD and soil drought significantly reduced leaf hydraulic conductance (Kleaf), with a high VPD decreasing Kleaf by 31.6% and soil drought reducing Kleaf by 33.2%; The high VPD decreased stomatal conductance (gs) by 43.6% but the photosynthetic rate (An) by only 12.3%; (2) After rewatering, gs and An of atmospheric and soil drought recovered relatively rapidly, while Kleaf did not; (3) Atmospheric and soil drought stress led to adaptive changes in wheat’s stomatal regulation strategies, with an increasing severity of drought stress characterized by a shift from non-conservative to conservative water regulation behavior. These findings elucidate wheat’s hydraulic–stomatal coordination mechanisms under drought stress and their differential recovery patterns, providing theoretical foundation for improved irrigation management practices. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

20 pages, 14382 KiB  
Article
Exploring the Causes of Multicentury Hydroclimate Anomalies in the South American Altiplano with an Idealized Climate Modeling Experiment
by Ignacio Alonso Jara, Orlando Astudillo, Pablo Salinas, Limbert Torrez-Rodríguez, Nicolás Lampe-Huenul and Antonio Maldonado
Atmosphere 2025, 16(7), 751; https://doi.org/10.3390/atmos16070751 - 20 Jun 2025
Viewed by 350
Abstract
Paleoclimate records have long documented the existence of multicentury hydroclimate anomalies in the Altiplano of South America. However, the causes and mechanisms of these extended events are still unknown. Here, we present a climate modeling experiment that explores the oceanic drivers and atmospheric [...] Read more.
Paleoclimate records have long documented the existence of multicentury hydroclimate anomalies in the Altiplano of South America. However, the causes and mechanisms of these extended events are still unknown. Here, we present a climate modeling experiment that explores the oceanic drivers and atmospheric mechanisms conducive to long-term precipitation variability in the southern Altiplano (18–25° S; 70–65 W; >3500 masl). We performed a series of 100-year-long idealized simulations using the Weather Research and Forecasting (WRF) model, configured to repeat annually the oceanic and atmospheric forcing leading to the exceptionally humid austral summers of 1983/1984 and 2011/2012. The aim of these cyclical experiments was to evaluate if these specific conditions can sustain a century-long pluvial event in the Altiplano. Unlike the annual forcing, long-term negative precipitation trends are observed in the simulations, suggesting that the drivers of 1983/1984 and 2011/2012 wet summers are unable to generate a century-scale pluvial event. Our results show that an intensification of the anticyclonic circulation along with cold surface air anomalies in the southwestern Atlantic progressively reinforce the lower and upper troposphere features that prevent moisture transport towards the Altiplano. Prolonged drying is also observed under persistent La Niña conditions, which contradicts the well-known relationship between precipitation and ENSO at interannual timescales. Contrasting the hydroclimate responses between the Altiplano and the tropical Andes result from a sustained northward migration of the Atlantic trade winds, providing a useful analog for explaining the divergences in the Holocene records. This experiment suggests that the drivers of century-scale hydroclimate events in the Altiplano were more diverse than previously thought and shows how climate modeling can be used to test paleoclimate hypotheses, emphasizing the necessity of combining proxy data and numerical models to improve our understanding of past climates. Full article
(This article belongs to the Special Issue Extreme Climate in Arid and Semi-arid Regions)
Show Figures

Figure 1

21 pages, 5536 KiB  
Article
Synergistic Impact of Midlatitude Westerly and East Asian Summer Monsoon on Mid-Summer Precipitation in North China
by Ke Shang, Xiaodong Liu, Xiaoning Xie, Yingying Sha, Xuan Zhao, Jiahuimin Liu and Anqi Wang
Atmosphere 2025, 16(6), 658; https://doi.org/10.3390/atmos16060658 - 29 May 2025
Viewed by 411
Abstract
Midlatitude westerly and East Asian summer monsoon (EASM) are crucial circulation systems in the upper and lower troposphere of East Asia that significantly influence mid-summer precipitation pattern. However, their synergistic effect on mid-summer precipitation in North China (NC) remains unclear. In this study, [...] Read more.
Midlatitude westerly and East Asian summer monsoon (EASM) are crucial circulation systems in the upper and lower troposphere of East Asia that significantly influence mid-summer precipitation pattern. However, their synergistic effect on mid-summer precipitation in North China (NC) remains unclear. In this study, the concurrent variations of mid-summer westerly and EASM are categorized into two configurations: strong westerly–strong EASM (SS) and weak westerly–weak EASM (WW). At the synoptic timescale, the SS configuration significantly enhances precipitation in NC, whereas the WW configuration suppresses mid-summer rainfall. The underlying mechanism is that the SS pattern stimulates an anomalous quasi-barotropic cyclone–anticyclone pair over the Mongolian Plateau–Yellow Sea region. Two anomalous water vapor channels (westerly-driven and EASM-driven water vapor transport) are established in the southern and western peripheries of this cyclone–anticyclone pair, ensuring abundant moisture supply over NC. Meanwhile, frequently occurring westerly jet cores in northern NC form a jet entrance region, favoring strong upper-level divergent pumping and deep accents in its southern flank. This synergy between strong westerlies and EASM enhances both the moisture transports and ascending movements, thereby increasing precipitation over NC. Conversely, the atmospheric circulation associated with the WW pattern exhibits opposite characteristics, resulting in decreased NC rainfall. Our findings elucidate the synoptic-scale influences of westerly–monsoon synergy on mid-summer rainfall, through regulating moisture transports and westerly jet-induced dynamic uplift, potentially improving predictive capabilities for mid-summer precipitation forecasting. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

22 pages, 736 KiB  
Review
Application of Smart Packaging on the Preservation of Different Types of Perishable Fruits
by Andreas Panou, Dimitrios G. Lazaridis and Ioannis K. Karabagias
Foods 2025, 14(11), 1878; https://doi.org/10.3390/foods14111878 - 26 May 2025
Viewed by 1547
Abstract
The packaging of perishable products, such as fruits, contributes to their preservation during storage and safe transportation. The use of suitable packaging materials contributes to forming a desirable atmosphere inside the package so that the level of respiration, transpiration, and ethylene emission can [...] Read more.
The packaging of perishable products, such as fruits, contributes to their preservation during storage and safe transportation. The use of suitable packaging materials contributes to forming a desirable atmosphere inside the package so that the level of respiration, transpiration, and ethylene emission can be kept low. However, it would be useful for consumers to know relevant information on the deterioration rate of different types of fruit (tree fruits, berries, stone fruits, and aggregate accessory fruits). The technology of intelligent and active packaging systems (smart packaging) enables the provision of information related to the deterioration rate of fruits to consumers and, in parallel, extends the shelf life of fruits and other plant-based foods, maintaining a high quality. Intelligent packaging systems include biosensors and gas sensors, along with microbial, freshness, and time–temperature indicators. On the other hand, the active packaging system includes the use of moisture, odor, and gas absorbers, along with antioxidant and antimicrobial agents to maintain the quality of plant-based foods and extend their shelf life. This review article aims to make an in-depth evaluation of the most relevant literature on this topic by highlighting the challenges, trends, and future directions related to different types of fruits. Full article
Show Figures

Figure 1

16 pages, 11579 KiB  
Article
Characteristic Analysis of the Extreme Precipitation over South China During the Dragon-Boat Precipitation in 2022
by Meixia Chen, Yufeng Xue, Juliao Qiu, Chunlei Liu, Shuqin Zhang, Jianjun Xu and Ziye Zhu
Atmosphere 2025, 16(5), 619; https://doi.org/10.3390/atmos16050619 - 19 May 2025
Viewed by 476
Abstract
Using multi-source precipitation datasets including NASA GPM (IMERG), GPCP, ECMWF ERA5, and station precipitation data from the China Meteorological Administration (CMA), along with ERA5 reanalysis fields for atmospheric circulation analysis, this study investigates the extreme precipitation events during the “Dragon-Boat Precipitation” period from [...] Read more.
Using multi-source precipitation datasets including NASA GPM (IMERG), GPCP, ECMWF ERA5, and station precipitation data from the China Meteorological Administration (CMA), along with ERA5 reanalysis fields for atmospheric circulation analysis, this study investigates the extreme precipitation events during the “Dragon-Boat Precipitation” period from 20 May to 21 June over South China in 2022 using the synoptic diagnostic method. The results indicate that the total precipitation during this period significantly exceeded the climatological average, with multiple large-scale extreme rainfall events characterized by high intensity, extensive coverage, and prolonged duration. The spatial distribution of precipitation exhibited a north-more-south-less pattern, with the maximum rainfall center located in the Nanling Mountains, particularly in the Shaoguan–Qingyuan–Heyuan region of Guangdong Province, where peak precipitation exceeded 1100 mm, and the mean precipitation was approximately 1.7 times the climatology from the GPM data. The average daily precipitation throughout the period was 17.5 mm/day, which was 6 mm/day higher than the climatological mean, while the heaviest rainfall on 13 June reached 39 mm/day above the average, exceeding two standard deviations. The extreme precipitation during the “Dragon-Boat Precipitation” period in 2022 was associated with an anomalous deep East Asian trough, an intensified South Asian High, a stronger-than-usual Western Pacific Subtropical High, an enhanced South Asian monsoon and South China Sea monsoon, and the dominance of a strong Southwesterly Low-Level Jet (SLLJ) over South China. Two major moisture transport pathways were established: one from the Bay of Bengal to South China and another from the South China Sea, with the latter contributing a little higher amount of water vapor transport than the former. The widespread extreme precipitation on 13 June 2022 was triggered by the anomalous atmospheric circulation conditions. In the upper levels, South China was located at the northwestern periphery of the slightly stronger-than-normal Western Pacific Subtropical High, intersecting with the base of a deep trough associated with an anomalous intense Northeast China Cold Vortex (NCCV). At lower levels, the region was positioned along a shear line formed by anomalous southwesterly and northerly winds, where exceptionally strong southwesterly moisture transport, significant moisture convergence, and intense vertical updraft led to the widespread extreme rainfall event on that day. Full article
(This article belongs to the Special Issue Climate Change and Extreme Weather Disaster Risks (2nd Edition))
Show Figures

Figure 1

26 pages, 13439 KiB  
Article
A Case Study of a Hailstorm in the Shanghai Region: Leveraging Multisource Observational Data and a Novel Single-Polarization X-Band Array Weather Radar
by Xiaoqiong Zhen, Hongbin Chen, Hongrong Shi, Xuehua Fan, Haojun Chen, Jie Fu, Wanyi Wei, Shuqing Ma, Ling Yang and Jianxin He
Sensors 2025, 25(9), 2870; https://doi.org/10.3390/s25092870 - 1 May 2025
Viewed by 595
Abstract
This study investigates a severe summer convective hailstorm that occurred in Shanghai on 18 August 2019, using multisource meteorological datasets, with a particular focus on the innovative application of a single-polarization X-band array weather radar (AWR). Radiosonde data revealed high convective available potential [...] Read more.
This study investigates a severe summer convective hailstorm that occurred in Shanghai on 18 August 2019, using multisource meteorological datasets, with a particular focus on the innovative application of a single-polarization X-band array weather radar (AWR). Radiosonde data revealed high convective available potential energy and unstable atmospheric indices, while wind profiler radars (WPRs) showed initial easterly moisture transport near the ground and strong southwesterly flow aloft, both contributing significantly to intense convection. Ground-based automatic meteorological stations (AMSs) recorded abrupt temperature drops of approximately 10 °C and wind speed increases exceeding 20 m s−1, which aligned closely with the rapid expansion of the hailstorm. In addition, an integrated analysis of data from AWR, WPRs, and AMSs enabled detailed tracking of the storm’s evolution, providing deeper insights into the interplay between moisture transport and dynamic lifting. The AWR’s unique ability to capture divergence and vorticity fields at different altitudes revealed low-level convergence coupled with high-level divergence and cyclonic rotation, sustaining convective updrafts. This study underscores the value of high-resolution AWR data in capturing short-lived, intense precipitation processes, thereby enhancing our understanding of wind field structures and storm development. These findings highlight the comprehensive application of AWR data and the potential of this new high-spatiotemporal-resolution radar for investigating the mechanisms of short-lived severe convective processes. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

20 pages, 23461 KiB  
Article
Direct and Indirect Effects of Large-Scale Forest Restoration on Water Yield in China’s Large River Basins
by Yaoqi Zhang and Lu Hao
Remote Sens. 2025, 17(9), 1581; https://doi.org/10.3390/rs17091581 - 29 Apr 2025
Cited by 1 | Viewed by 527
Abstract
Emerging evidence indicates that large-scale forest restoration exhibits dual hydrological effects: direct reduction of local water availability through elevated evapotranspiration (ET) and indirect augmentation of water resources via enhanced atmospheric moisture recycling. However, the quantitative assessment of these counteracting effects remains challenging due [...] Read more.
Emerging evidence indicates that large-scale forest restoration exhibits dual hydrological effects: direct reduction of local water availability through elevated evapotranspiration (ET) and indirect augmentation of water resources via enhanced atmospheric moisture recycling. However, the quantitative assessment of these counteracting effects remains challenging due to the limited observational constraints on moisture transport. Here, we integrate the Budyko model with the Lagrangian-based UTrack moisture-tracking dataset to disentangle the direct (via ET) and indirect (via precipitation) large-scale hydrological impacts of China’s four-decade forest restoration campaign across eight major river basins. Multisource validation datasets, including gauged runoff records, hydrological reanalysis products, and satellite-derived forest cover maps, were systematically incorporated to verify the Budyko model at the nested spatial scales. Our scenario analyses reveal that during 1980–2015, extensive afforestation individually reduced China’s terrestrial water yield by −28 ± 25 mm yr−1 through dominant ET increases. Crucially, atmospheric moisture recycling mechanisms attenuated this water loss by 12 ± 5 mm yr−1 nationally, with marked spatial heterogeneity across the basins. In some moisture-limited watersheds in the Yellow River Basin, the negative ET effect was compensated for to a certain extent by precipitation recycling, demonstrating net positive hydrological outcomes. We conclude that China’s forest expansion imposes local water stress (direct effect) by elevating ET, while the concomitant strengthening of continental-scale moisture recycling generates compensatory water gains (indirect effect). These findings advance the mechanistic understanding of the vegetation-climate-water nexus, providing quantitative references for optimizing forestation strategies under atmospheric water connectivity constraints. Full article
Show Figures

Graphical abstract

17 pages, 4153 KiB  
Article
Cluster Analysis and Atmospheric Circulation Features of Springtime Compound Dry-Hot Events in the Pearl River Basin
by Ruixin Duan, Feng Wang, Jiannan Zhang and Xiong Zhou
Atmosphere 2025, 16(5), 516; https://doi.org/10.3390/atmos16050516 - 28 Apr 2025
Viewed by 407
Abstract
Compound dry–hot events refer to climate phenomena where drought and high temperatures occur simultaneously. Compared to single extreme events, compound dry–hot events may have greater adverse impacts. This study uses high-spatial-resolution observational data (i.e., temperature, precipitation, and climate water balance) to cluster and [...] Read more.
Compound dry–hot events refer to climate phenomena where drought and high temperatures occur simultaneously. Compared to single extreme events, compound dry–hot events may have greater adverse impacts. This study uses high-spatial-resolution observational data (i.e., temperature, precipitation, and climate water balance) to cluster and identify spring compound dry–hot events in the Pearl River Basin over the past nearly 50 years. It further investigates the associated large-scale atmospheric circulation conditions during compound dry–hot events. Using three clustering methods and twenty-six evaluation criteria, six events are identified. These events primarily exhibit negative anomalies in precipitation and climate water balance and positive anomalies in temperature. The spatial distribution results show that moisture deficits during compound events are mainly concentrated in the eastern Pearl River Basin, especially in the Pearl River Delta region. An atmospheric circulation analysis indicates that spring compound dry–hot events in the Pearl River Basin are commonly accompanied by persistent abnormal high-pressure systems, relatively weak westerly transport from subtropical regions such as the Indian Ocean and the Bay of Bengal (20–25 °N), and limited moisture input from the western Pacific region. The results of this study can help to better understand and analyze the risk changes of extreme events in the context of global warming. Full article
(This article belongs to the Special Issue Advances in Understanding Extreme Weather Events in the Anthropocene)
Show Figures

Figure 1

18 pages, 7773 KiB  
Article
Expanding Lake Area on the Changtang Plateau Amidst Global Lake Water Storage Declines: An Exploration of Underlying Factors
by Da Zhi, Yang Pu, Chuan Jiang, Jiale Hu and Yujie Nie
Atmosphere 2025, 16(4), 459; https://doi.org/10.3390/atmos16040459 - 16 Apr 2025
Viewed by 409
Abstract
The remarkable expansion of lake areas across the Changtang Plateau (CTP, located in the central Tibetan Plateau) since the late 1990s has drawn considerable scientific interest, presenting a striking contrast to the global decline in natural lake water storage observed during the same [...] Read more.
The remarkable expansion of lake areas across the Changtang Plateau (CTP, located in the central Tibetan Plateau) since the late 1990s has drawn considerable scientific interest, presenting a striking contrast to the global decline in natural lake water storage observed during the same period. This study systematically investigates the mechanisms underlying lake area variations on the CTP by integrating glacierized area changes derived from the Google Earth Engine (GEE) platform with atmospheric circulation patterns from the ERA5 reanalysis dataset. Our analysis demonstrates that the limited glacier coverage on the CTP exerted significant influence only on glacial lakes in the southern region (r = −0.65, p < 0.05). The widespread lake expansion across the CTP predominantly stems from precipitation increases (r = 0.74, p < 0.01) associated with atmospheric circulation changes. Enhanced Indian summer monsoon (ISM) activity facilitates anomalous moisture transport from the Indian Ocean to the southwestern CTP, manifesting as increased specific humidity (Qa) in summer. Simultaneously, the weakened westerly jet stream reinforces moisture convergence across the CTP, driving enhanced annual precipitation. By coupling glacier coverage variations with atmospheric processes, this research establishes that precipitation anomalies rather than glacial meltwater primarily govern the extensive lake expansion on the CTP. These findings offer critical insights for guiding ecological security strategies and sustainable development initiatives on the CTP. Full article
Show Figures

Figure 1

23 pages, 10230 KiB  
Article
Revisiting the Role of SMAP Soil Moisture Retrievals in WRF-Chem Dust Emission Simulations over the Western U.S.
by Pedro A. Jiménez y Muñoz, Rajesh Kumar, Cenlin He and Jared A. Lee
Remote Sens. 2025, 17(8), 1345; https://doi.org/10.3390/rs17081345 - 10 Apr 2025
Viewed by 516
Abstract
Having good replication of the soil moisture evolution is desirable to properly simulate the dust emissions and atmospheric dust load because soil moisture increases the cohesive forces of soil particles, modulating the wind erosion threshold above which emissions occur. To reduce errors, one [...] Read more.
Having good replication of the soil moisture evolution is desirable to properly simulate the dust emissions and atmospheric dust load because soil moisture increases the cohesive forces of soil particles, modulating the wind erosion threshold above which emissions occur. To reduce errors, one can use soil moisture retrievals from space-borne microwave radiometers. Here, we explore the potential of inserting soil moisture retrievals from the Soil Moisture Active Passive (SMAP) satellite into the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to improve dust simulations. We focus our analysis on the contiguous U.S. due to the presence of important dust sources and good observational networks. Our analysis extends over the first year of SMAP retrievals (1 April 2015–31 March 2016) to cover the annual soil moisture variability and go beyond extreme events, such as dust storms, in order to provide a statistically robust characterization of the potential added value of the soil moisture retrievals. We focus on the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model from the Air Force Weather Agency (GOCART-AFWA) dust emission parameterization that represents soil moisture modulations of the wind erosion threshold with a parameterization developed by fitting observations. The dust emissions are overestimated by the GOCART-AFWA parameterization and result in an overestimation of the aerosol optical depth (AOD). Sensitivity experiments show that emissions reduced to 25% in the GOCART-AFWA simulations largely reduced the AOD bias over the Southwest and lead to better agreement with the standard WRF-Chem parameterization of dust emissions (GOCART) and with observations. Comparisons of GOCART-AFWA simulations with emissions reduced to 25% with and without SMAP soil moisture insertion show added value of the retrievals, albeit small, over the dust sources. These results highlight the importance of accurate dust emission parameterizations when evaluating the impact of remotely sensed soil moisture data on numerical weather prediction models. Full article
Show Figures

Figure 1

Back to TopTop