Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (668)

Search Parameters:
Keywords = atmospheric CH4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2768 KB  
Article
Remote Sensing of Atmospheric Methane (XCH4) Concentrations over Lake Ecosystems: Seasonal Dynamics and Environmental Drivers in Eğirdir and Burdur Lakes of Türkiye
by Gül Nur Karal Nesil, Nebiye Musaoğlu, Meltem Kaçıkoç and Ayşe Gül Tanık
Sustainability 2026, 18(3), 1267; https://doi.org/10.3390/su18031267 - 27 Jan 2026
Abstract
As lakes contribute significant amounts of methane (CH4) to the atmosphere, they account for a significant share of the global greenhouse gases (GHGs) budget. Since lakes are ecosystems where physical and biological processes influencing CH4 formation are concentrated, the study [...] Read more.
As lakes contribute significant amounts of methane (CH4) to the atmosphere, they account for a significant share of the global greenhouse gases (GHGs) budget. Since lakes are ecosystems where physical and biological processes influencing CH4 formation are concentrated, the study focuses on atmospheric CH4 column concentrations over lake areas. This study aims to analyze the temporal variation in atmospheric CH4 column concentrations (XCH4) over Lake Eğirdir and Lake Burdur in Türkiye in 2023 and 2025 as well as the relationship between XCH4 and environmental parameters such as Water Surface Temperature (WST), Normalized Difference Chlorophyll Index (NDCI), and Floating Algae Index (FAI). The temporal variability of XCH4 observed over both lakes showed statistically significant positive correlations with lake-area-averaged WST, NDCI, and FAI (Pearson r = 0.49–0.65, p < 0.01). This outcome indicates consistent temporal patterns between XCH4 and environmental conditions at the lake scale. Furthermore, time-series graphs show that monthly average XCH4 values in both lakes reached their highest levels during the summer and autumn months. During these periods, XCH4 concentrations exceeded 1860 ppb in Lake Eğirdir and 1900 ppb in Lake Burdur. The areas of land use/land cover (LULC) classes surrounding the lakes were evaluated together with XCH4, and relatively higher XCH4 values were observed over agricultural areas, which constitute the dominant class in the basins of both lakes. The distribution of XCH4 throughout the lake depth showed higher values in the shallow and mid-depth zones and lower values in the deeper areas beyond 20 m, indicating that the distribution of XCH4 varies throughout lake depth. The results obtained underline the importance of remote sensing data in monitoring XCH4 in lake ecosystems. Full article
Show Figures

Figure 1

15 pages, 1942 KB  
Article
Measurements of Radical Reactivity with an Imine, (CF3)2CNH: Rate Constants for Chlorine Atoms and Hydroxyl Radicals and the Global Warming Potential
by Savi Savi and Paul Marshall
Molecules 2026, 31(3), 424; https://doi.org/10.3390/molecules31030424 - 26 Jan 2026
Abstract
The rate constant kOH for the reaction of 1,1,1,3,3,3-hexafluoroprop-2-imine with OH radicals was measured relative to two reference compounds, CH3F and CH3CHF2, to be kOH = (4.2 ± 1.1) × 10−14 cm3 molecule [...] Read more.
The rate constant kOH for the reaction of 1,1,1,3,3,3-hexafluoroprop-2-imine with OH radicals was measured relative to two reference compounds, CH3F and CH3CHF2, to be kOH = (4.2 ± 1.1) × 10−14 cm3 molecule−1 s−1 at 295 K. This implies an atmospheric lifetime with respect to consumption by OH of 0.75 years. Reaction with Cl atoms yielded kCl = (7.9 ± 1.7) × 10−16 cm3 molecule−1 s−1 at 295 K, and reaction with O3 has an upper limit of kO3 < 4 × 10−23 cm3 molecule−1 s−1, so that the atmospheric consumption by Cl and O3 is negligibly slow. Absolute infrared cross sections of the imine yield a radiative efficiency of 0.34 W m−2 ppb−1, which is corrected to 0.23 W m−2 ppb−1 for the effects of atmospheric lifetime. The imine’s corresponding 100-year global warming potential is 64 ± 19. This value is an upper limit, given that heterogenous atmospheric removal paths, such as hydrolysis in water droplets, are not included. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

24 pages, 2261 KB  
Article
Mesophilic Trickle-Bed Reactors for Enhanced Ex Situ Biogas Upgrading at Short Gas Retention Times: Process Performance and Microbial Insights
by Christina Karyofyllidou, Apostolos Spyridonidis, Vasileios Diamantis, Ioannis Galiatsatos, George Tsiamis, Panagiota Stathopoulou, Ioannis Kosmadakis, Alexandros Eftaxias and Katerina Stamatelatou
Fermentation 2026, 12(2), 69; https://doi.org/10.3390/fermentation12020069 - 26 Jan 2026
Abstract
Biological upgrading of biogas to biomethane is a promising power-to-gas technology with a low environmental footprint. However, due to the lower conversion rates, long-term investigations on mesophilic trickle-bed reactors (TBRs) remain scarce. This study systematically evaluated the performance of lab-scale mesophilic TBRs operated [...] Read more.
Biological upgrading of biogas to biomethane is a promising power-to-gas technology with a low environmental footprint. However, due to the lower conversion rates, long-term investigations on mesophilic trickle-bed reactors (TBRs) remain scarce. This study systematically evaluated the performance of lab-scale mesophilic TBRs operated for more than 600 days. A TBR packed with plastic media (Kaldnes K1) consistently achieved methane (CH4) concentrations > 96% at GRTs as short as 2.2 h, and down to 1 h under a mild overpressure (0.1 bar). Mild pressurization (0.1 bar) enabled methane production rates (MPRs) of up to 2.8 NL L−1 d−1 under a hydrogen loading rate (HLR) of 14.9 NL L−1 d−1. At atmospheric pressure, stable MPRs of approximately 2 NL L−1 d−1 were achieved under an HLR of 9 NL L−1 d−1. Microbial community analysis revealed strong enrichment of hydrogenotrophic Methanobacterium (>90% relative abundance) in both suspended and attached biomass, confirming the establishment of a stable methanation pathway. Overall, the results demonstrate that high-rate and stable biomethanation can be achieved under mesophilic conditions at GRTs as low as 1 h, providing new insights for cost-effective biomethane production. Full article
Show Figures

Figure 1

17 pages, 3206 KB  
Article
Effect of Channel Height on CO2-to-CH4 Reduction in Microchannel Electrocatalysis
by Zheng-Yan Lei, Nguyen Van Toan, Masaya Toda, Ioana Voiculescu and Takahito Ono
Micromachines 2026, 17(2), 148; https://doi.org/10.3390/mi17020148 - 23 Jan 2026
Viewed by 118
Abstract
Electrocatalytic CO2 reduction is a promising approach to mitigate rising atmospheric CO2 levels while converting CO2 into valuable products such as CH4. Conversion into other useful substances further expands its potential applications. However, the efficiency of the CO [...] Read more.
Electrocatalytic CO2 reduction is a promising approach to mitigate rising atmospheric CO2 levels while converting CO2 into valuable products such as CH4. Conversion into other useful substances further expands its potential applications. However, the efficiency of the CO2 reduction reaction (CO2RR) is strongly influenced by device geometry and CO2 mass transfer in the electrolyte. In this work, we present and evaluate microchannel electrocatalytic devices consisting of a porous Cu cathode and a Pt anode, fabricated via metal-assisted chemical etching (MACE). The porous surfaces generated through MACE enhanced reaction activity. To study the impact of the distance between electrodes, several devices with different channel heights were fabricated and tested. The device with the highest CH4 selectivity had a narrow inter-electrode gap of 50 μm and achieved a Faradaic efficiency of 56 ± 11% at an applied potential of −5 V versus an Ag/AgCl reference electrode. This efficiency was considerably higher than that of the device with larger inter-electrode gaps (300 and 480 μm). This reduced efficiency in the larger channel was attributed to limited CO2 availability at the cathode surface. Bubble visualization experiments further demonstrated that the electrolyte flow rate had a strong impact on supplied CO2 bubble morphology and mass transfer. At a flow rate of 0.75 mL/min, smaller CO2 bubbles were formed, increasing the gas–liquid interfacial area and thereby enhancing CO2 dissolution into the electrolyte. These results underline the critical role of electrode gap design and bubble dynamics in optimizing microchannel electrocatalytic devices for efficient CO2RR. Full article
Show Figures

Figure 1

24 pages, 5216 KB  
Article
Characterizing L-Band Backscatter in Inundated and Non-Inundated Rice Paddies for Water Management Monitoring
by Go Segami, Kei Oyoshi, Shinichi Sobue and Wataru Takeuchi
Remote Sens. 2026, 18(2), 370; https://doi.org/10.3390/rs18020370 - 22 Jan 2026
Viewed by 60
Abstract
Methane emissions from rice paddies account for over 11% of global atmospheric CH4, making water management practices such as Alternate Wetting and Drying (AWD) critical for climate change mitigation. Remote sensing offers an objective approach to monitoring AWD implementation and improving [...] Read more.
Methane emissions from rice paddies account for over 11% of global atmospheric CH4, making water management practices such as Alternate Wetting and Drying (AWD) critical for climate change mitigation. Remote sensing offers an objective approach to monitoring AWD implementation and improving greenhouse gas estimation accuracy. This study investigates the backscattering mechanisms of L-band SAR for inundation/non-inundation classification in paddy fields using full-polarimetric ALOS-2 PALSAR-2 data. Field surveys and satellite observations were conducted in Ryugasaki (Ibaraki) and Sekikawa (Niigata), Japan, collecting 1360 ground samples during the 2024 growing season. Freeman–Durden decomposition was applied, and relationships with plant height and water level were analyzed. The results indicate that plant height strongly influences backscatter, with backscattering contributions from the surface decreasing beyond 70 cm, reducing classification accuracy. Random forest models can classify inundated and non-inundated fields with up to 88% accuracy when plant height is below 70 cm. However, when using this method, it is necessary to know the plant height. Volume scattering proved robust to incidence angle and observation direction, suggesting its potential for phenological monitoring. These findings highlight the effectiveness of L-band SAR for water management monitoring and the need for integrating crop height estimation and regional adaptation to enhance classification performance. Full article
Show Figures

Figure 1

32 pages, 7360 KB  
Article
Analysis of Air Pollution in the Orontes River Basin in the Context of the Armed Conflict in Syria (2019–2024) Using Remote Sensing Data and Geoinformation Technologies
by Aleksandra Nikiforova, Vladimir Tabunshchik, Elena Vyshkvarkova, Roman Gorbunov, Tatiana Gorbunova, Anna Drygval, Cam Nhung Pham and Andrey Kelip
Atmosphere 2026, 17(1), 115; https://doi.org/10.3390/atmos17010115 - 22 Jan 2026
Viewed by 55
Abstract
Rapid urbanization and anthropogenic activities have led to a significant deterioration of air quality, adversely affecting human health and ecosystems. The study of transboundary river basins, where air pollution is exacerbated by political and socio-economic factors, is of particular relevance. This paper presents [...] Read more.
Rapid urbanization and anthropogenic activities have led to a significant deterioration of air quality, adversely affecting human health and ecosystems. The study of transboundary river basins, where air pollution is exacerbated by political and socio-economic factors, is of particular relevance. This paper presents the results of an analysis of the spatiotemporal distribution of pollutants (Aerosol Index (AI), Methane (CH4), Carbon Monoxide (CO), Formaldehyde (HCHO), Nitrogen Dioxide (NO2), Ozone (O3), Sulfur Dioxide (SO2)) in the ambient air within the Orontes River basin across Lebanon, Syria, and Turkey for the period 2019–2024. The research is based on satellite monitoring data (Copernicus Sentinel-5P), processed using the Google Earth Engine (GEE) cloud-based platform and GIS technologies (ArcGIS 10.8). The dynamics of population density (LandScan) and the impact of military operations in Syria on air quality were additionally analyzed using media content analysis. The results showed that the highest concentrations of pollutants were recorded in Syria, which is associated with the destruction of infrastructure, military operations, and unregulated emissions. The main sources of pollution were: explosions, fires, and destruction during the conflict (aerosols, CO, NO2, SO2); methane (CH4) leaks from damaged oil and gas facilities; the use of low-quality fuels and waste burning. Atmospheric circulation contributed to the eastward transport of pollutants, minimizing their spread into Lebanon. Population density dynamics are related to changes in concentrations of pollutants (e.g., nitrogen dioxide). The results of the study highlight the need for international cooperation to monitor and reduce air pollution in transboundary regions, especially in the context of armed conflicts. The obtained data can be used to develop measures to improve the environmental situation and protect public health. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing (2nd Edition))
Show Figures

Figure 1

17 pages, 1563 KB  
Article
Assessing Methane Emission Patterns and Sensitivities at High-Emission Point Sources in China via Gaussian Plume Modeling
by Haomin Li, Ning Wang, Lingling Ma, Yongguang Zhao, Jiaqi Hu, Beibei Zhang, Jingmei Li and Qijin Han
Environments 2026, 13(1), 62; https://doi.org/10.3390/environments13010062 - 22 Jan 2026
Viewed by 65
Abstract
Accurate quantification of methane (CH4) emissions from individual point sources is essential for understanding localized greenhouse gas dynamics and supporting mitigation strategies. This study employs satellite-based point-source emission rate data from the Carbon Mapper initiative, combined with ERA5 meteorological reanalysis, to [...] Read more.
Accurate quantification of methane (CH4) emissions from individual point sources is essential for understanding localized greenhouse gas dynamics and supporting mitigation strategies. This study employs satellite-based point-source emission rate data from the Carbon Mapper initiative, combined with ERA5 meteorological reanalysis, to simulate near-surface CH4 dispersion using a Gaussian plume model coupled with Monte Carlo simulations. This approach captures local dispersion characteristics around each emission source. Simulations driven by these emission inputs reveal a highly skewed, heavy-tailed concentration distribution (consistent with log-normal characteristics), where the 95th percentile (1292.1 ppm) significantly exceeds the mean (475.9 ppm), indicating the dominant influence of a small number of super-emitters. Sectoral analysis shows that coal mining contributes the most high-emission sites, while the solid waste and oil & gas sectors present higher per-source intensities, averaging 1931.1 ppm and 1647.6 ppm, respectively. Spatially, emissions are concentrated in North and Northwest China, particularly Shanxi Province, which hosts 62 high-emission sites with an average maximum of 1583.9 ppm. Sensitivity analysis reveals that emission rate perturbations produce nearly linear responses in concentration, whereas wind speed variations induce an inverse and asymmetric nonlinear response, with sensitivity amplified under low wind speed conditions (a ±30% change in wind speed results in more than ±25% variation in concentration). Under stable atmospheric conditions (Class E), concentrations are approximately 1.3 times higher than those under weakly unstable conditions (Class C). Monte Carlo simulations further indicate that output uncertainty peaks within 150–300 m downwind of emission sources. These results provide a quantitative basis for improving uncertainty characterization in satellite-based methane inversion and for prioritizing risk-based monitoring strategies. Full article
Show Figures

Figure 1

17 pages, 1796 KB  
Article
Ultrasonic–Laser Hybrid Treatment for Cleaning Gasoline Engine Exhaust: An Experimental Study
by Bauyrzhan Sarsembekov, Madi Issabayev, Nursultan Zharkenov, Altynbek Kaukarov, Isatai Utebayev, Akhmet Murzagaliyev and Baurzhan Zhamanbayev
Vehicles 2026, 8(1), 22; https://doi.org/10.3390/vehicles8010022 - 20 Jan 2026
Viewed by 235
Abstract
Vehicle exhaust gases remain one of the key sources of atmospheric air pollution and pose a serious threat to ecosystems and public health. This study presents an experimental investigation into reducing the toxicity of gasoline internal combustion engine exhaust using ultrasonic waves and [...] Read more.
Vehicle exhaust gases remain one of the key sources of atmospheric air pollution and pose a serious threat to ecosystems and public health. This study presents an experimental investigation into reducing the toxicity of gasoline internal combustion engine exhaust using ultrasonic waves and infrared (IR) laser exposure. An original hybrid system integrating an ultrasonic emitter and an IR laser module was developed. Four operating modes were examined: no treatment, ultrasound only, laser only, and combined ultrasound–laser treatment. The concentrations of CH, CO, CO2, and O2, as well as exhaust gas temperature, were measured at idle and under operating engine speeds. The experimental results show that ultrasound provides a substantial reduction in CO concentration (up to 40%), while IR laser exposure effectively decreases unburned hydrocarbons CH (by 35–40%). The combined treatment produces a synergistic effect, reducing CH and CO by 38% and 43%, respectively, while increasing the CO2 fraction and decreasing O2 content, indicating more complete post-oxidation of combustion products. The underlying physical mechanisms responsible for the purification were identified as acoustic coagulation of particulates, oxidation, and photodissociation of harmful molecules. The findings support the hypothesis that combined ultrasonic and laser treatment can enhance real-time exhaust gas purification efficiency. It is demonstrated that physical treatment of the gas phase not only lowers the persistence of by-products but also promotes more complete oxidation processes within the flow. Full article
(This article belongs to the Special Issue Intelligent Mobility and Sustainable Automotive Technologies)
Show Figures

Figure 1

19 pages, 7965 KB  
Article
An Open-Path Eddy-Covariance Laser Spectrometer for Simultaneous Monitoring of CO2, CH4, and H2O
by Viacheslav Meshcherinov, Iskander Gazizov, Bogdan Pravuk, Viktor Kazakov, Sergei Zenevich, Maxim Spiridonov, Shamil Gazizov, Gennady Suvorov, Olga Kuricheva, Yuri Lebedev, Imant Vinogradov and Alexander Rodin
Sensors 2026, 26(2), 462; https://doi.org/10.3390/s26020462 - 10 Jan 2026
Viewed by 266
Abstract
We present E-CAHORS—a compact mid-infrared open-path diode-laser spectrometer designed for the simultaneous measurement of carbon dioxide, methane, and water vapor concentrations in the near-surface atmospheric layer. These measurements, combined with simultaneous data from a three-dimensional anemometer, can be used to determine fluxes using [...] Read more.
We present E-CAHORS—a compact mid-infrared open-path diode-laser spectrometer designed for the simultaneous measurement of carbon dioxide, methane, and water vapor concentrations in the near-surface atmospheric layer. These measurements, combined with simultaneous data from a three-dimensional anemometer, can be used to determine fluxes using the eddy-covariance method. The instrument utilizes two interband cascade lasers operating at 2.78 µm and 3.24 µm within a novel four-pass M-shaped optical cell, which provides high signal power and long-term field operation without requiring active air sampling. Two detection techniques—tunable diode laser absorption spectroscopy (TDLAS) and a simplified wavelength modulation spectroscopy (sWMS)—were implemented and evaluated. Laboratory calibration demonstrated linear responses for all gases (R2 ≈ 0.999) and detection precisions at 10 Hz of 311 ppb for CO2, 8.87 ppb for CH4, and 788 ppb for H2O. Field tests conducted at a grassland site near Moscow showed strong correlations (R = 0.91 for CO2 and H2O, R = 0.74 for CH4) with commercial LI-COR LI-7200 and LI-7700 analyzers. The TDLAS mode demonstrated lower noise and greater stability under outdoor conditions, while sWMS provided baseline-free spectra but was more sensitive to power fluctuations. E-CAHORS combines high precision, multi-species sensing capability with low power consumption (10 W) and a compact design (4.2 kg). Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 1309 KB  
Article
The Influence of Vegetation and Snow Cover on Soil Greenhouse Gas Fluxes in the Permafrost Region of Northeast China
by Xiangwen Wu, Dalong Ma, Hongwei Ni and Shuying Zang
Atmosphere 2026, 17(1), 68; https://doi.org/10.3390/atmos17010068 - 7 Jan 2026
Viewed by 314
Abstract
Permafrost is an important carbon pool for terrestrial ecosystems and a significant source of atmospheric greenhouse gases, but the effects of ground vegetation and snow cover on permafrost greenhouse gas fluxes are still unclear. The soil–atmosphere exchange fluxes of greenhouse gases (mainly carbon [...] Read more.
Permafrost is an important carbon pool for terrestrial ecosystems and a significant source of atmospheric greenhouse gases, but the effects of ground vegetation and snow cover on permafrost greenhouse gas fluxes are still unclear. The soil–atmosphere exchange fluxes of greenhouse gases (mainly carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) occupy key roles during the winter snow and the vegetation growing seasons. Here, a typical Larix gmelinii forest, located in the permafrost region of the Daxing’an Mountains, northeast China, was studied. Using the static chamber-gas chromatograph method, the relationship between soil greenhouse gas emissions, ground vegetation, and snow cover was investigated. We found that the CO2, CH4, and N2O cumulative fluxes from vegetative soils had increased by 19.5%, 37.5%, and 10.7%, compared with fluxes from areas where the ground vegetation had been removed. Snow cover increased soil CO2 cumulative flux by 53.1% and soil N2O cumulative flux by 28.6%, and soil CH4 cumulative flux decreased by 39.3%. Our results show that snow cover and ground vegetation removal reduce CO2 and N2O emissions from permafrost soils. Ground vegetation removal also increases the absorption of CH4 in permafrost soils, while snow cover removal promotes CH4 emissions. These findings confirm the effects of ground vegetation and snow cover on the transformation processes of greenhouse gases from forest ecosystems in permafrost regions. Therefore, this research provides scientific data support for the improvement of land surface climate models and the mitigation of climate change in cold regions. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

26 pages, 378 KB  
Review
Airborne Radioiodine: A Comparative View of Chemical Forms in Medicine, Nuclear Industry, and Fallout Scenarios
by Klaus Schomäcker, Ferdinand Sudbrock, Thomas Fischer, Felix Dietlein, Markus Dietlein, Philipp Krapf and Alexander Drzezga
Int. J. Mol. Sci. 2026, 27(2), 590; https://doi.org/10.3390/ijms27020590 - 6 Jan 2026
Viewed by 407
Abstract
Airborne iodine-131 plays a pivotal role in both nuclear medicine and nuclear safety due to its radiotoxicity, volatility, and affinity for the thyroid gland. Although the total exhaled activity after medical I-131 therapy is minimal, over 95% of this activity appears in volatile [...] Read more.
Airborne iodine-131 plays a pivotal role in both nuclear medicine and nuclear safety due to its radiotoxicity, volatility, and affinity for the thyroid gland. Although the total exhaled activity after medical I-131 therapy is minimal, over 95% of this activity appears in volatile organic forms, which evade standard filtration and reflect metabolic pathways of iodine turnover. Our experimental work in patients and mice confirms the metabolic origin of these species, modulated by thyroidal function. In nuclear reactor environments, both under routine operation and during accidents, organic iodides such as [131I]CH3I have also been identified as major airborne components, often termed “penetrating iodine” due to their low adsorption to conventional filters. This review compares the molecular speciation, environmental persistence, and dosimetric impact of airborne I-131 across clinical, technical, and accidental release scenarios. While routine reactor emissions yield negligible doses (<0.1 µSv/year), severe nuclear incidents like Chernobyl and Fukushima have resulted in significant thyroid exposures. Doses from these events ranged from tens of millisieverts to several Sieverts, particularly in children. We argue that a deeper understanding of chemical forms is essential for effective risk assessment, filtration technology, and emergency preparedness. Iodine-131 exemplifies the dual nature of radioactive substances: in nuclear medicine its radiotoxicity is therapeutically harnessed, whereas in industrial or reactor contexts it represents an unwanted hazard. The same physicochemical properties that enable therapeutic efficacy also determine, in the event of uncontrolled release, the range, persistence, and the potential for unwanted radiotoxic exposure in the general population. In nuclear medicine, exhaled activity after radioiodine therapy is minute but largely organically bound, reflecting enzymatic and metabolic methylation processes. During normal reactor operation, airborne iodine levels are negligible and dominated by inorganic vapors efficiently captured by filtration systems. In contrast, major accidents released large fractions of volatile iodine, primarily as elemental [131I]I2 and organically bound iodine species like [131I]CH3I. The chemical nature of these compounds defined their atmospheric lifetime, transport distance, and deposition pattern, thereby governing the thyroid dose to exposed populations. Chemical speciation is the key determinant across all scenarios. Exhaled iodine in medicine is predominantly organic; routine reactor releases are negligible; severe accidents predominantly release elemental and organic iodine that drive environmental transport and exposure. Integrating these domains shows how chemical speciation governs volatility, mobility, and bioavailability. The novelty of this review lies not in introducing new iodine chemistry, but in the systematic comparative synthesis of airborne radioiodine speciation across medical therapy, routine nuclear operation, and severe accident scenarios, identifying chemical form as the unifying determinant of volatility, environmental transport, and dose. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
17 pages, 5644 KB  
Article
Investigation of CH4 Hydrate Formation Under the Synergistic Effects of Graphite Nanofluids and Cyclopentane and Its Storage Stability at Subzero Temperatures
by Zhansheng Tao, Jianwen Zhang, Ruogu Kuang, Wanming Bao, Dongliang Zhong and Liangmeng Wu
Energies 2026, 19(1), 273; https://doi.org/10.3390/en19010273 - 5 Jan 2026
Viewed by 202
Abstract
The solidified natural gas (SNG) technology presents a prospective strategy for CH4 storage and transportation. Low gas storage capacity and slow formation rate remain the key challenges for its field applications. This study suggested a compound system of cyclopentane (CP) + graphite [...] Read more.
The solidified natural gas (SNG) technology presents a prospective strategy for CH4 storage and transportation. Low gas storage capacity and slow formation rate remain the key challenges for its field applications. This study suggested a compound system of cyclopentane (CP) + graphite nanoparticle (GNP) nanofluid to enhance the formation kinetics of CH4 hydrate. Results indicated that both gas consumption and hydrate formation rate were higher at a higher CP concentration, peaking at 14 wt%, where t90 (the time to reach 90% of the final gas uptake) was 65.7 min, and the gas uptake reached 0.1346 mol/mol. However, an excessive CP (21 wt%) negatively affected CH4 hydrate generation kinetics due to the excessive cage occupancy of CP in 51264 cavities. A lower temperature was determined to be more favorable for CH4 hydrate formation within nanofluids, which was visually demonstrated by the denser hydrate crystals formed at 275.15 K. Moreover, storage stability analysis revealed that CH4 hydrate formed in CP + GNP nanofluids can be preserved at atmospheric pressure and 268.15 K without significant decomposition. This work provides a superior scheme for hydrate-based CH4 storage, offering great contributions to SNG technology advancement. Full article
Show Figures

Figure 1

17 pages, 3228 KB  
Article
Computational Investigation of Methoxy Radical-Driven Oxidation of Dimethyl Sulfide: A Pathway Linked to Methane Oxidation
by Bruce M. Prince, Daniel Vrinceanu, Mark C. Harvey, Michael P. Jensen, Maria Zawadowicz and Chongai Kuang
Gases 2026, 6(1), 2; https://doi.org/10.3390/gases6010002 - 2 Jan 2026
Viewed by 383
Abstract
Methoxy radicals (CH3O•), formed as intermediates during methane oxidation, may play an underexplored but locally significant role in the atmospheric oxidation of dimethyl sulfide (DMS), a key sulfur-containing compound emitted primarily by marine phytoplankton. This study presents a comprehensive computational investigation [...] Read more.
Methoxy radicals (CH3O•), formed as intermediates during methane oxidation, may play an underexplored but locally significant role in the atmospheric oxidation of dimethyl sulfide (DMS), a key sulfur-containing compound emitted primarily by marine phytoplankton. This study presents a comprehensive computational investigation of the reaction mechanisms and kinetics of DMS oxidation initiated by CH3O•, using density functional theory B3LYP-D3(BJ)/6-311++G(3df,3pd), CCSD(T)/6-311++G(3df,3pd), and UCBS-QB3 methods. Our calculations show that DMS reacts with CH3O• via hydrogen atom abstraction to form the methyl-thiomethylene radical (CH3SCH2•), with a rate constant of 3.05 × 10−16 cm3/molecule/s and a Gibbs free energy barrier of 14.2 kcal/mol, which is higher than the corresponding barrier for reaction with hydroxyl radicals (9.1 kcal/mol). Although less favorable kinetically, the presence of CH3O• in localized, methane-rich environments may still allow it to contribute meaningfully to DMS oxidation under specific atmospheric conditions. While the short atmospheric lifetime of CH3O• limits its global impact on large-scale atmospheric sulfur cycling, in marine layers where methane and DMS emissions overlap, CH3O• may play a meaningful role in forming sulfur dioxide and downstream sulfate aerosols. These secondary organic aerosols lead to cloud condensation nuclei (CCN) formation, subsequent changes in cloud properties, and can thereby influence local radiative forcing. The study’s findings underscore the importance of incorporating CH3O• driven oxidation pathways into atmospheric models to enhance our understanding of regional sulfur cycling and its impacts on local air quality, cloud properties and radiative forcing. These findings provide mechanistic insights that improve data interpretation for atmospheric models and extend predictions of localized variations in sulfur oxidation, aerosol formation, and radiative forcing in methane-rich environments. Full article
(This article belongs to the Section Natural Gas)
Show Figures

Graphical abstract

21 pages, 6041 KB  
Article
Unraveling the Drivers of Continuous Summer Ozone Pollution Episodes in Bozhou, China: Toward Targeted Control Strategies
by Ke Wu, Xuezhong Wang, Dandan Zhang, Hong Li, Fang Bi, Zhenhai Wu, Fanxiu Li, Wanghui Chu and Cong An
Toxics 2026, 14(1), 37; https://doi.org/10.3390/toxics14010037 - 29 Dec 2025
Viewed by 364
Abstract
Given the deteriorating situation of ambient ozone (O3) pollution in some areas of China, understanding the mechanisms driving O3 formation is essential for formulating effective control measures. This study examines O3 formation mechanisms and ROx (OH, HO2, [...] Read more.
Given the deteriorating situation of ambient ozone (O3) pollution in some areas of China, understanding the mechanisms driving O3 formation is essential for formulating effective control measures. This study examines O3 formation mechanisms and ROx (OH, HO2, and RO2) radical cycling driven by photochemical processes in Bozhou, located at the junction of Jiangsu–Anhui–Shandong–Henan (JASH), a region heavily affected by O3 pollution, by applying a zero-dimensional box model (Framework for 0-Dimensional Atmospheric Modeling, F0AM) coupled with the Master Chemical Mechanism (MCM v3.3.1) and Positive Matrix Factorization (PMF 5.0) to characterize O3 pollution, identify volatile organic compound (VOC) sources, and quantify radical budgets during pollution episodes. The results show that O3 episodes in Bozhou mainly occurred in June under conditions of high temperature and low wind speed. Oxygenated volatile organic compounds (OVOCs), alkanes, and halocarbons were the dominant VOCs groups. The CH3O2 + NO reaction accounted for 24.3% of O3 production, while photolysis contributed 68.7% of its removal. Elevated VOCs concentrations in Bozhou were largely maintained by anthropogenic sources such as vehicle exhaust, solvent utilization, and gasoline evaporation, which collectively enhanced O3 production. The findings indicate that O3 formation in the region is primarily regulated by NOx availability. Therefore, emission reductions targeting NOx, along with selective control of OVOCs and alkenes, would be the most effective strategies for lowering O3 levels. Model simulations further highlight Bozhou’s strong atmospheric oxidation capacity, with OVOC photolysis identified as the dominant contributor to ROx generation, accounting for 33% of the total. Diurnal patterns were evident: NOx-related reactions dominated radical sinks in the morning, while HO2 + RO2 reactions accounted for 28.5% in the afternoon. By clarifying the mechanisms of O3 formation in Bozhou, this study provides a scientific basis for designing ozone control strategies across the JASH junction region. In addition, ethanol was not directly measured in this study; given its potential to generate acetaldehyde and affect local O3 formation, its possible contribution introduces additional uncertainty that warrants further investigation. Full article
Show Figures

Graphical abstract

31 pages, 4459 KB  
Article
A Study on the Increase in Measured Methane Concentration Values During the 2024 Noto Peninsula Earthquake
by Ryosaku Kaji
Atmosphere 2026, 17(1), 39; https://doi.org/10.3390/atmos17010039 - 27 Dec 2025
Viewed by 274
Abstract
This study aims to demonstrate the presence of a pronounced coseismic increase in atmospheric methane concentrations during the 2024 Noto Peninsula Earthquake and to examine whether this increase may have originated from underground natural gas release. By analyzing hourly CH4 data from [...] Read more.
This study aims to demonstrate the presence of a pronounced coseismic increase in atmospheric methane concentrations during the 2024 Noto Peninsula Earthquake and to examine whether this increase may have originated from underground natural gas release. By analyzing hourly CH4 data from the Ministry of the Environment’s monitoring network, this study shows that significant methane increases occurred only in areas with seismic intensity of 6– or greater, and that an exceptional anomaly—reaching 29 times the standard deviation of the past year—was recorded at the Nanao station. The validity of this anomaly was confirmed through consultation with local atmospheric officer, and high-time-resolution data (6 min values) were provided, verifying continuous instrument operation. Detailed analysis further shows that two major methane peaks occurred, each rising not immediately after the main shock but synchronously with two large aftershocks approximately 8 and 44 min later. Geological and hydrogeological information indicates the presence of water-soluble gas and unsaturated hydrocarbons beneath the Nanao region, suggesting that seismic shaking may have ruptured clay layers and released accumulated gas. Analyses of public reports and interviews with local officials show that alternative explanations—such as fire smoke, pipeline rupture, instrument malfunction, and gas-cylinder damage—were unlikely. These findings indicate that the observed methane anomaly was most likely caused by earthquake-synchronous underground gas release, suggesting that methane-release risk should be considered in post-earthquake fire-hazard assessments. Full article
Show Figures

Figure 1

Back to TopTop