Effect of Channel Height on CO2-to-CH4 Reduction in Microchannel Electrocatalysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Device Design
2.2. Fabrication Process
2.3. Measurement Setup
3. Results
4. Discussion
4.1. Effect of Channel Height on Conversion Efficiency
4.2. Gas–Liquid Mass Transfer and Interfacial Behavior
4.3. Energy Efficiency and Overpotential
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mota, F.M.; Kim, D.H. From CO2 methanation to ambitious long-chain hydrocarbons: Alternative fuels paving the path to sustainability. Chem. Soc. Rev. 2019, 48, 205–259. [Google Scholar]
- Dias, Y.R.; Perez-Lopez, O.W. Carbon dioxide methanation over Ni-Cu/SiO2 catalysts. Energy Conv. Manag. 2020, 203, 112214. [Google Scholar]
- Ahmed, S.; Hussain, M.S.; Khan, M.K.; Kim, J. Innovations in catalysis towards efficient electrochemical reduction of CO2 to C1 chemicals. J. Energy Chem. 2025, 107, 622–649. [Google Scholar] [CrossRef]
- Ahmed, S.; Khan, M.K.; Kim, J. Revolutionary advancements in carbon dioxide valorization via metal-organic framework-based strategies. Carbon Capture Sci. Technol. 2025, 15, 100405. [Google Scholar]
- Agliuzza, M.; Pirri, C.F.; Sacco, A. A comprehensive modeling for the CO2 electroreduction to CO. J. Phys. Energy 2023, 6, 015004. [Google Scholar] [CrossRef]
- Chang, B.; Pang, H.; Raziq, F.; Wang, S.; Huang, K.W.; Ye, J.; Zhang, H. Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: Challenges and perspectives. Energy Environ. Sci. 2023, 16, 4714–4758. [Google Scholar]
- Zhu, D.D.; Liu, J.L.; Qiao, S.Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452. [Google Scholar] [CrossRef]
- Hirunsit, P.; Soodsawang, W.; Limtrakul, J. CO2 electrochemical reduction to methane and methanol on copper-based alloys: Theoretical insight. J. Phys. Chem. C 2015, 119, 8238–8249. [Google Scholar] [CrossRef]
- Quan, W.; Lin, Y.; Luo, Y.; Huang, Y. Electrochemical CO2 reduction on Cu: Synthesis-controlled structure preference and selectivity. Adv. Sci. 2021, 8, 2101597. [Google Scholar]
- Matsuda, S.; Osawa, M.; Umeda, M. Progress of CO2 electrochemical methanation using a membrane electrode assembly. Electrocatalysis 2024, 15, 318–328. [Google Scholar] [CrossRef]
- Lai, W.; Qiao, Y.; Zhang, J.; Lin, Z.; Huang, H. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction. Energy Environ. Sci. 2022, 15, 3603–3629. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, Q.; Shan, J.; Jiang, Z.; Xu, P.; Hu, Y.; Zhou, J.; Wu, L.; Niu, Z.; Sun, J.; et al. Highly selective electrocatalytic reduction of CO2 into methane on Cu–Bi nanoalloys. J. Phys. Chem. Lett. 2020, 11, 7261–7266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, S.X.; Gandionco, K.A.; Bond, A.M.; Zhang, J. Electrocatalytic carbon dioxide reduction: From fundamental principles to catalyst design. Mater. Today Adv. 2020, 7, 100074. [Google Scholar] [CrossRef]
- Li, J.; Abbas, S.U.; Wang, H.; Zhang, Z.; Hu, W. Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 2021, 13, 216. [Google Scholar] [CrossRef]
- Lu, Q.; Jiao, F. Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering. Nano Energy 2016, 29, 439–456. [Google Scholar] [CrossRef]
- Zhi, X.; Jiao, Y.; Zheng, Y.; Vasileff, A.; Qiao, S.Z. Selectivity roadmap for electrochemical CO2 reduction on copper-based alloy catalysts. Nano Energy 2020, 71, 104601. [Google Scholar] [CrossRef]
- Suliman, M.H.; Yamani, Z.H.; Usman, M. Electrochemical reduction of CO2 to C1 and C2 liquid products on copper-decorated nitrogen-doped carbon nanosheets. Nanomaterials 2022, 13, 47. [Google Scholar]
- Zhao, R.; Ding, P.; Wei, P.; Zhang, L.; Liu, Q.; Luo, Y.; Li, T.; Lu, S.; Shi, X.; Gao, S.; et al. Recent progress in electrocatalytic methanation of CO2 at ambient conditions. Adv. Funct. Mater. 2021, 31, 2009449. [Google Scholar] [CrossRef]
- Xu, W.; Chen, J.; Liu, C.; Xu, J.; Wang, X.; Li, T.; Wand, J.; Xiao, R. Precise control of CO2 electroreduction pathways over copper foil through regulating the microenvironment between morphology and crystal plane. Appl. Catal. B Environ. Energy 2025, 363, 124825. [Google Scholar] [CrossRef]
- Chen, Y.; Kanan, M.W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 134, 1986–1989. [Google Scholar]
- Lei, Z.Y.; Van Toan, N.; Toda, M.; Voiculescu, I.; Ono, T. Electrocatalytic carbon dioxide reduction microchanneled with nanostructured electrodes. J. Sci. Adv. Mater. Dev. 2025, 10, 100897. [Google Scholar] [CrossRef]
- Pan, H.; Barile, C.J. Electrochemical CO2 reduction to methane with remarkably high Faradaic efficiency in the presence of a proton permeable membrane. Energy Environ. Sci. 2020, 13, 3567–3578. [Google Scholar] [CrossRef]
- Yang, H.; He, Q.; Liu, Y.; Li, H.; Zhang, H.; Zhai, T. On-chip electrocatalytic microdevice: An emerging platform for expanding the insight into electrochemical processes. Chem. Soc. Rev. 2020, 49, 2916–2936. [Google Scholar] [CrossRef] [PubMed]
- Van Toan, N.; Toda, M.; Ono, T. High aspect ratio silicon structures produced via metal-assisted chemical etching and assembly technology for cantilever fabrication. IEEE Trans. Nanotechnol. 2016, 16, 567–573. [Google Scholar] [CrossRef]
- Chartier, C.; Bastide, S.; Lévy-Clément, C. Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim. Acta 2008, 53, 5509–5516. [Google Scholar]
- Van Toan, N.; Wang, X.; Inomata, N.; Toda, M.; Voiculescu, I.; Ono, T. Low cost and high-aspect ratio micro/nano device fabrication by using innovative metal-assisted chemical etching method. Adv. Eng. Mater. 2019, 21, 1900490. [Google Scholar]
- Zong, Y.; Chakthranont, P.; Suntivich, J. Temperature effect of CO2 reduction electrocatalysis on copper: Potential dependency of activation energy. J. Electrochem. Energy Convers. Storage 2020, 17, 041007. [Google Scholar] [CrossRef]
- Tijani, A.S.; Kamarudin, N.A.B.; Mazlan, F.A.B. Investigation of the effect of charge transfer coefficient (CTC) on the operating voltage of polymer electrolyte membrane (PEM) electrolyzer. Int. J. Hydrogen Energy 2018, 43, 9119–9132. [Google Scholar]
- Salvatore, D.; Berlinguette, C.P. Voltage matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 2019, 5, 215–220. [Google Scholar] [CrossRef]
- Sedighian Rasouli, A.; Wang, X.; Wicks, J.; Lee, G.; Peng, T.; Li, F.; McCallum, C.; Dinh, C.T.; Ip, A.H.; Sinton, D.; et al. CO2 electroreduction to methane at production rates exceeding 100 mA/cm2. ACS Sustain. Chem. Eng. 2020, 8, 14668–14673. [Google Scholar] [CrossRef]
- Aghaseyedi, M.; Salehi, A.; Valijam, S.; Shooshtari, M. Gas selectivity enhancement using serpentine microchannel shaped with optimum dimensions in microfluidic-based gas sensor. Micromachines 2022, 13, 1504. [Google Scholar] [CrossRef]
- Xiang, H.; Lopez, J.E.; Hu, T.; Liu, S. Investigating on-chip micro-and nanodevices for engineering electrocatalysis. Curr. Opin. Electrochem. 2024, 49, 101610. [Google Scholar] [CrossRef]
- Abdul Ali, M.; Rodrigues Zanata, C.; Alves Martins, C. State-of-the-Art CO2 Reduction in Electrochemical Microfluidic Systems: A Short Review and New Perspectives. ChemNanoMat 2024, 10, e202300605. [Google Scholar] [CrossRef]
- Zhang, F.; Jin, Z.; Chen, C.; Tang, Y.; Mahyoub, S.A.; Yan, S.; Cheng, Z. Electrochemical conversion of CO2 to CO into a microchannel reactor system in the case of aqueous electrolyte. Ind. Eng. Chem. Res. 2020, 59, 5664–5674. [Google Scholar] [CrossRef]
- Ibrahim, O.A.; Navarro-Segarra, M.; Sadeghi, P.; Sabaté, N.; Esquivel, J.P.; Kjeang, E. Microfluidics for electrochemical energy conversion. Chem. Rev. 2022, 122, 7236–7266. [Google Scholar] [CrossRef]
- Wei, Z.; Yan, S.; Lin, J.; Hu, Q.; Cui, Y.; Wang, Q.; Li, Z.; Cheng, Z. Interiorly hydrophobic modification of electrodeposited self-supported ZnAg foam electrodes for CO2 electroreduction in a microchannel reactor. ACS Sustain. Chem. Eng. 2024, 12, 16453–16467. [Google Scholar] [CrossRef]
- Lu, S.; Wang, Y.; Xiang, H.; Lei, H.; Xu, B.B.; Xing, L.; Yu, E.H.; Liu, T.X. Mass transfer effect to electrochemical reduction of CO2: Electrode, electrocatalyst and electrolyte. J. Energy Storage 2022, 52, 104764. [Google Scholar] [CrossRef]
- Bagemihl, I.; Bhatraju, C.; Van Ommen, J.R.; Van Steijn, V. Electrochemical reduction of CO2 in tubular flow cells under gas–liquid taylor flow. ACS Sustain. Chem. Eng. 2022, 10, 12580–12587. [Google Scholar] [CrossRef]
- Moura de Salles Pupo, M.; Kortlever, R. Electrolyte effects on the electrochemical reduction of CO2. ChemPhysChem 2019, 20, 2926–2935. [Google Scholar] [CrossRef]
- Marcandalli, G.; Monteiro, M.C.; Goyal, A.; Koper, M.T. Electrolyte effects on CO2 electrochemical reduction to CO. Acc. Chem. Res. 2022, 55, 1900–1911. [Google Scholar] [CrossRef]
- Dong, R.; Chu, D.; Sun, Q.; Jin, Z. Numerical simulation of the mass transfer process of CO2 absorption by different solutions in a microchannel. Can. J. Chem. Eng. 2020, 98, 2648–2664. [Google Scholar] [CrossRef]
- Zhu, C.; Li, C.; Gao, X.; Ma, Y.; Liu, D. Taylor flow and mass transfer of CO2 chemical absorption into MEA aqueous solutions in a T-junction microchannel. Int. J. Heat Mass Transf. 2014, 73, 492–499. [Google Scholar] [CrossRef]
- Lefortier, S.G.; Hamersma, P.J.; Bardow, A.; Kreutzer, M.T. Rapid microfluidic screening of CO2 solubility and diffusion in pure and mixed solvents. Lab Chip 2012, 12, 3387–3391. [Google Scholar] [CrossRef] [PubMed]
- Dutta, N.; Bagchi, D.; Chawla, G.; Peter, S.C. A guideline to determine faradaic efficiency in electrochemical CO2 reduction. ACS Energy Lett. 2024, 9, 323–328. [Google Scholar] [CrossRef]
- Dunwell, M.; Lu, Q.; Heyes, J.M.; Rosen, J.; Chen, J.G.; Yan, Y.; Jiao, F.; Xu, B. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 2017, 139, 3774–3783. [Google Scholar] [CrossRef]
- Jiang, B.; He, C.; Zhan, W.; Li, S.; Zhu, C.; Ma, Y.; Fu, T. Mass transfer of chemical absorption of CO2/N2 mixed gas in a microchannel. Chem. Eng. Sci. 2023, 280, 118996. [Google Scholar] [CrossRef]
- Ma, S.; Kim, Y.; Zhang, Z.; Ren, S.; Donde, C.; Melo, L.; Williams, A.S.R.; Stolar, M.; Grant, E.R.; Berlinguette, C.P. Cathode surface pH modulates multicarbon product selectivity during the electrochemical conversion of CO2 capture solutions. ACS Energy Lett. 2024, 9, 2326–2332. [Google Scholar] [CrossRef]
- Ji, X.Y.; Ma, Y.G.; Fu, T.T.; Zhu, C.H.; Wang, D.J. Experimental investigation of the liquid volumetric mass transfer coefficient for upward gas-liquid two-phase flow in rectangular microchannels. Braz. J. Chem. Eng. 2010, 27, 573–582. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, X.; Zhu, C.; Fu, T.; Ma, Y. Hydrodynamics and gas-liquid mass transfer in a cross-flow T-junction microchannel: Comparison of two operation modes. Sep. Purif. Technol. 2021, 255, 117697. [Google Scholar] [CrossRef]













| CO2 Flow Rate (sccm) | Electrolyte Flow Rate (mL/min) | Inlet Bubble Size (cm) | P0 (kPa) | Outlet Bubble Size (cm) | Pout (kPa) |
|---|---|---|---|---|---|
| 1 | 0.1 | Too big bubble size | |||
| 0.25 | 4.14 | 0.598 | 2.71 | 0.085 | |
| 0.5 | 3.21 | 0.783 | 2.56 | 0.125 | |
| 0.75 | 2.18 | 1.073 | 1.17 | 0.068 | |
| 1 | No CO2 bubbles | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lei, Z.-Y.; Toan, N.V.; Toda, M.; Voiculescu, I.; Ono, T. Effect of Channel Height on CO2-to-CH4 Reduction in Microchannel Electrocatalysis. Micromachines 2026, 17, 148. https://doi.org/10.3390/mi17020148
Lei Z-Y, Toan NV, Toda M, Voiculescu I, Ono T. Effect of Channel Height on CO2-to-CH4 Reduction in Microchannel Electrocatalysis. Micromachines. 2026; 17(2):148. https://doi.org/10.3390/mi17020148
Chicago/Turabian StyleLei, Zheng-Yan, Nguyen Van Toan, Masaya Toda, Ioana Voiculescu, and Takahito Ono. 2026. "Effect of Channel Height on CO2-to-CH4 Reduction in Microchannel Electrocatalysis" Micromachines 17, no. 2: 148. https://doi.org/10.3390/mi17020148
APA StyleLei, Z.-Y., Toan, N. V., Toda, M., Voiculescu, I., & Ono, T. (2026). Effect of Channel Height on CO2-to-CH4 Reduction in Microchannel Electrocatalysis. Micromachines, 17(2), 148. https://doi.org/10.3390/mi17020148

