Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (177)

Search Parameters:
Keywords = assembly assistance system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 (registering DOI) - 1 Aug 2025
Viewed by 234
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

26 pages, 27333 KiB  
Article
Gest-SAR: A Gesture-Controlled Spatial AR System for Interactive Manual Assembly Guidance with Real-Time Operational Feedback
by Naimul Hasan and Bugra Alkan
Machines 2025, 13(8), 658; https://doi.org/10.3390/machines13080658 - 27 Jul 2025
Viewed by 247
Abstract
Manual assembly remains essential in modern manufacturing, yet the increasing complexity of customised production imposes significant cognitive burdens and error rates on workers. Existing Spatial Augmented Reality (SAR) systems often operate passively, lacking adaptive interaction, real-time feedback and a control system with gesture. [...] Read more.
Manual assembly remains essential in modern manufacturing, yet the increasing complexity of customised production imposes significant cognitive burdens and error rates on workers. Existing Spatial Augmented Reality (SAR) systems often operate passively, lacking adaptive interaction, real-time feedback and a control system with gesture. In response, we present Gest-SAR, a SAR framework that integrates a custom MediaPipe-based gesture classification model to deliver adaptive light-guided pick-to-place assembly instructions and real-time error feedback within a closed-loop interaction instance. In a within-subject study, ten participants completed standardised Duplo-based assembly tasks using Gest-SAR, paper-based manuals, and tablet-based instructions; performance was evaluated via assembly cycle time, selection and placement error rates, cognitive workload assessed by NASA-TLX, and usability test by post-experimental questionnaires. Quantitative results demonstrate that Gest-SAR significantly reduces cycle times with an average of 3.95 min compared to Paper (Mean = 7.89 min, p < 0.01) and Tablet (Mean = 6.99 min, p < 0.01). It also achieved 7 times less average error rates while lowering perceived cognitive workload (p < 0.05 for mental demand) compared to conventional modalities. In total, 90% of the users agreed to prefer SAR over paper and tablet modalities. These outcomes indicate that natural hand-gesture interaction coupled with real-time visual feedback enhances both the efficiency and accuracy of manual assembly. By embedding AI-driven gesture recognition and AR projection into a human-centric assistance system, Gest-SAR advances the collaborative interplay between humans and machines, aligning with Industry 5.0 objectives of resilient, sustainable, and intelligent manufacturing. Full article
(This article belongs to the Special Issue AI-Integrated Advanced Robotics Towards Industry 5.0)
Show Figures

Figure 1

31 pages, 3024 KiB  
Review
Synthetic and Functional Engineering of Bacteriophages: Approaches for Tailored Bactericidal, Diagnostic, and Delivery Platforms
by Ola Alessa, Yoshifumi Aiba, Mahmoud Arbaah, Yuya Hidaka, Shinya Watanabe, Kazuhiko Miyanaga, Dhammika Leshan Wannigama and Longzhu Cui
Molecules 2025, 30(15), 3132; https://doi.org/10.3390/molecules30153132 - 25 Jul 2025
Viewed by 359
Abstract
Bacteriophages (phages), the most abundant biological entities on Earth, have long served as both model systems and therapeutic tools. Recent advances in synthetic biology and genetic engineering have revolutionized the capacity to tailor phages with enhanced functionality beyond their natural capabilities. This review [...] Read more.
Bacteriophages (phages), the most abundant biological entities on Earth, have long served as both model systems and therapeutic tools. Recent advances in synthetic biology and genetic engineering have revolutionized the capacity to tailor phages with enhanced functionality beyond their natural capabilities. This review outlines the current landscape of synthetic and functional engineering of phages, encompassing both in-vivo and in-vitro strategies. We describe in-vivo approaches such as phage recombineering systems, CRISPR-Cas-assisted editing, and bacterial retron-based methods, as well as synthetic assembly platforms including yeast-based artificial chromosomes, Gibson, Golden Gate, and iPac assemblies. In addition, we explore in-vitro rebooting using TXTL (transcription–translation) systems, which offer a flexible alternative to cell-based rebooting but are less effective for large genomes or structurally complex phages. Special focus is given to the design of customized phages for targeted applications, including host range expansion via receptor-binding protein modifications, delivery of antimicrobial proteins or CRISPR payloads, and the construction of biocontained, non-replicative capsid systems for safe clinical use. Through illustrative examples, we highlight how these technologies enable the transformation of phages into programmable bactericidal agents, precision diagnostic tools, and drug delivery vehicles. Together, these advances establish a powerful foundation for next-generation antimicrobial platforms and synthetic microbiology. Full article
Show Figures

Figure 1

16 pages, 1420 KiB  
Article
Light-Driven Quantum Dot Dialogues: Oscillatory Photoluminescence in Langmuir–Blodgett Films
by Tefera Entele Tesema
Nanomaterials 2025, 15(14), 1113; https://doi.org/10.3390/nano15141113 - 18 Jul 2025
Viewed by 301
Abstract
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm [...] Read more.
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm laser illumination on the red absorption edge of the blue-emitting smaller QDs (QD450), the red-emitting larger QDs (QD645) exhibited oscillatory temporal dynamics in their photoluminescence (PL), characterized by a pronounced blueshift in the emission peak wavelength and an abrupt decrease in peak intensity. Conversely, excitation by a 405 nm laser on the blue absorption edge induced a drastic redshift in the emission wavelength over time. These significant shifts in emission spectra are attributed to photon- and anisotropic-strain-assisted interlayer atom transfer. The findings provide new insights into strain-driven atomic rearrangements and their impact on the photophysical behavior of QD systems. Full article
Show Figures

Graphical abstract

17 pages, 2003 KiB  
Review
Recent Advances in the Electrochemical Biosensing of DNA Methylation
by Sanu K. Anand and Robert Ziółkowski
Int. J. Mol. Sci. 2025, 26(13), 6505; https://doi.org/10.3390/ijms26136505 - 6 Jul 2025
Viewed by 395
Abstract
DNA methylation, as a critical epigenetic modification, plays a central role in gene regulation and has emerged as a powerful biomarker for early disease diagnostics, particularly in cancer. Owing to the limitations of traditional bisulfite sequencing—such as high cost, complexity, and chemical degradation—electrochemical [...] Read more.
DNA methylation, as a critical epigenetic modification, plays a central role in gene regulation and has emerged as a powerful biomarker for early disease diagnostics, particularly in cancer. Owing to the limitations of traditional bisulfite sequencing—such as high cost, complexity, and chemical degradation—electrochemical biosensors have gained substantial attention as promising alternatives. This review summarizes recent advancements in electrochemical platforms for bisulfite-free detection of DNA methylation, encompassing direct oxidation strategies, enzyme-assisted recognition (e.g., restriction endonucleases and methyltransferases), immunoaffinity-based methods, and a variety of signal amplification techniques such as rolling circle amplification and catalytic hairpin assembly. Additional approaches, including strand displacement, magnetic enrichment, and adsorption-based detection, are also discussed. These systems demonstrate exceptional sensitivity, often down to the attomolar or femtomolar level, as well as high selectivity, reproducibility, and suitability for real biological matrices. The integration of nanomaterials and redox-active probes further enhances analytical performance. Importantly, many of these biosensing platforms have been validated using clinical samples, reinforcing their translational relevance. The review concludes by outlining current challenges and future directions, emphasizing the potential of electrochemical biosensors as scalable, cost-effective, and minimally invasive tools for real-time epigenetic monitoring and early-stage disease diagnostics. Full article
(This article belongs to the Special Issue Application of Electrochemical Materials in Molecular Biology)
Show Figures

Figure 1

21 pages, 6598 KiB  
Article
LokAlp: A Reconfigurable Massive Wood Construction System Based on Off-Cuts from the CLT and GLT Industry
by Matteo Deval and Pierpaolo Ruttico
Sustainability 2025, 17(13), 6002; https://doi.org/10.3390/su17136002 - 30 Jun 2025
Viewed by 579
Abstract
This paper presents LokAlp, a modular timber construction system invented and developed by the authors, inspired by the traditional Blockbau technique, and designed for circularity and self-construction. LokAlp utilizes standardized interlocking blocks fabricated from CLT and GLT off-cuts to optimize material reuse and [...] Read more.
This paper presents LokAlp, a modular timber construction system invented and developed by the authors, inspired by the traditional Blockbau technique, and designed for circularity and self-construction. LokAlp utilizes standardized interlocking blocks fabricated from CLT and GLT off-cuts to optimize material reuse and minimize waste. The study explores the application of massive timber digital materials within an open modular system framework, offering an alternative to the prevailing focus on lightweight structural systems, which predominantly rely on primary engineered wood materials rather than reclaimed by-products. The research evaluates geometric adaptability, production feasibility, and on-site assembly efficiency within a computational design and digital fabrication workflow. The definition of the LokAlp system has gone through several iterations. A full-scale demonstrator constructed using the LokAlp final iteration (Mk. XII) incorporated topological enhancements, increasing connection variety and modular coherence. Comparative analyses of subtractive manufacturing via 6-axis robotic milling versus traditional CNC machining revealed a >45% reduction in cycle times with robotic methods, indicating significant potential for sustainable industrial fabrication; however, validation under operational conditions is still required. Augmented reality-assisted assembly improved accuracy and reduced cognitive load compared to traditional 2D documentation, enhancing construction speed. Overall, LokAlp demonstrates a viable circular and sustainable construction approach combining digital fabrication and modular design, warranting further research to integrate robotic workflows and structural optimization. Full article
Show Figures

Figure 1

12 pages, 3828 KiB  
Article
Convenient Preparation of PEDOT-Based Conductive Fabrics via a Green Strategy for Morse Code Recognition
by Hongjian Yu, Yifan Cui and Miao Miao
Polymers 2025, 17(13), 1816; https://doi.org/10.3390/polym17131816 - 29 Jun 2025
Viewed by 319
Abstract
With the rapid development of Internet of Things (IoT) and bioscience technology, wearable smart devices are developing toward advanced trends such as flexibility, convenience and environmental-friendliness. Poly (p-styrenesulfonic acid) (PSS), as a common template and dispersant, is indispensable in the polymerization of conductive [...] Read more.
With the rapid development of Internet of Things (IoT) and bioscience technology, wearable smart devices are developing toward advanced trends such as flexibility, convenience and environmental-friendliness. Poly (p-styrenesulfonic acid) (PSS), as a common template and dispersant, is indispensable in the polymerization of conductive polymers. However, the doping amount of PSS has a significant effect on the electrical conductivity of the polymer. Herein, different molar quantities of PSS were used to assist the polymerization of 3,4-ethylenedioxythiophene (EDOT) monomer in a horseradish peroxidase/hydrogen peroxide (HRP/H2O2) low-temperature system to obtain conductive finishing solutions with more excellent electrical properties. Then, the polyester nonwoven fabric was immersed in the conductive finishing solution, and when the addition ratio of EDOT and PSS was 1:2, the conductive performance was optimal (3.27 KΩ cm−1). Finally, the conductive fabric was assembled into a pressure sensor and a temperature sensor, which can transmit Morse code in the form of single-parameter (pressure response or temperature response) or collaboration. Overall, this research has great potential for production of poly(3,4-ethylenedioxythiophene) (PEDOT)-based composites and their applications in smart wearable device. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

11 pages, 1648 KiB  
Article
Solar-Driven Interfacial Evaporation Using Bumpy Gold Nanoshell Films with Controlled Shell Thickness
by Yoon-Hee Kim, Hye-Seong Cho, Kwanghee Yoo, Cho-Hee Yang, Sung-Kyu Lee, Homan Kang and Bong-Hyun Jun
Int. J. Mol. Sci. 2025, 26(13), 6160; https://doi.org/10.3390/ijms26136160 - 26 Jun 2025
Viewed by 272
Abstract
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal [...] Read more.
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal conversion efficiency. FDTD simulation of bumpy nanoshell modeling revealed that thinner nanoshells exhibited higher absorption efficiency across the visible–NIR spectrum. Photothermal films prepared by a three-phase self-assembly method exhibited superior photothermal conversion, with films using thinner nanoshells (11.7 nm) achieving higher surface temperatures and faster water evaporation under both laser and sunlight irradiation. Furthermore, evaporation performance was evaluated using different support layers. Films on PVDF membranes with optimized hydrophilicity and minimized heat convection achieved the highest evaporation rate of 1.067 kg m−2 h−1 under sunlight exposure (937.1 W/m2), outperforming cellulose and PTFE supports. This work highlights the critical role of nanostructure design and support layer engineering in enhancing photothermal conversion efficiency, offering a strategy for the development of efficient solar-driven desalination systems. Full article
Show Figures

Figure 1

12 pages, 2545 KiB  
Article
Rapid Fabrication of ZSM-5/AlPO4-5 Composites via Microwave-Ionothermal Strategy for Enhanced Methanol-to-Olefins Catalysis
by Li Han, Mengting Zhang, Hao Li, Huiru Ding, Jingjing Zhao, Yujia Zhang, Lang Wu, Changzhou Jiao, Jie Feng and Zhikun Peng
Catalysts 2025, 15(6), 605; https://doi.org/10.3390/catal15060605 - 19 Jun 2025
Viewed by 499
Abstract
Microwave-assisted ionothermal strategies offer an effective pathway for rapid zeolite crystallization under mild conditions, while conventional ionothermal approaches are still constrained by prolonged crystallization cycles that limit their industrial applicability. Herein, we report a microwave-activated, ionic liquid-mediated synthesis strategy that enables the precise [...] Read more.
Microwave-assisted ionothermal strategies offer an effective pathway for rapid zeolite crystallization under mild conditions, while conventional ionothermal approaches are still constrained by prolonged crystallization cycles that limit their industrial applicability. Herein, we report a microwave-activated, ionic liquid-mediated synthesis strategy that enables the precise modulation of crystallization kinetics and composite assembly. By introducing ZSM-5 seeds into the ionic liquid system, the nucleation and growth of AlPO4-5 were significantly accelerated, reducing crystallization time by up to 75% (optimal condition: 60 min). Among various imidazolium-based ionic liquids, [BMMIm]Br demonstrated an optimal balance of hydrophilic and hydrophobic interactions, yielding composite zeolites with high surface area (350 m2·g−1) and large pore volume (0.28 cm3·g−1). Comprehensive characterization (XRD, SEM-EDX, NH3-TPD) confirmed the formation of well-defined ZSM-5/AlPO4-5 core–shell structures and revealed tunable acid site distributions depending on the ionic liquid used. In methanol to olefins (MTO) reactions, the composite catalyst exhibited outstanding selectivity towards light olefins (C2=–C4=: 72.84%), markedly outperforming the individual ZSM-5 and AlPO4-5 components. The superior catalytic behavior is primarily attributed to the synergistic effect of hierarchical acid site tuning and the integrated core–shell architecture, which together optimize reaction selectivity. This strategy provides a promising route for the rational design of high-performance zeolites with significant industrial applicability. Full article
Show Figures

Graphical abstract

17 pages, 2621 KiB  
Article
May I Assist You?—Exploring the Impact of Telepresence System Design on the Social Perception of Remote Assistants in Collaborative Assembly Tasks
by Jennifer Brade, Sarah Mandl, Franziska Klimant, Anja Strobel, Philipp Klimant and Martin Dix
Robotics 2025, 14(6), 73; https://doi.org/10.3390/robotics14060073 - 28 May 2025
Viewed by 623
Abstract
Remote support in general is a method that saves time and resources. A relatively new and promising technology for remote support that combines video conferencing and physical mobility is that of telepresence systems. The remote assistant, that is, the user of said technology, [...] Read more.
Remote support in general is a method that saves time and resources. A relatively new and promising technology for remote support that combines video conferencing and physical mobility is that of telepresence systems. The remote assistant, that is, the user of said technology, gains both presence and maneuverability in the distant location. As telepresence systems vary greatly in their design, the question arises as to whether the design influences the perception of the remote assistant. Unlike pure design studies, the present work focuses not only on the design and evaluation of the telepresence system itself, but especially on its perception during a collaborative task involving a human partner visible through the telepresence system. This paper presents two studies in which participants performed an assembly task under the guidance of a remote assistant. The remote assistant was visible through differently designed telepresence systems that were evaluated in terms of social perception and trustworthiness. Four telepresence systems were evaluated in study 1 (N = 32) and five different systems in study 2 (N = 34). The results indicated that similarly designed systems showed only marginal differences, but a system that was designed to transport additional loads and was therefore less agile and rather bulky was rated significantly less positively regarding competence than the other systems. It is particularly noteworthy that it was not the height of the communication medium that was decisive for the rating, but above all, the agility and mobility of the system. These results provide evidence that the design of a telepresence system can influence the social perception of the remote assistant and therefore has implications for the acceptance and use of telepresence systems. Full article
(This article belongs to the Special Issue Extended Reality and AI Empowered Robots)
Show Figures

Figure 1

15 pages, 2677 KiB  
Article
Enzyme-Based Solid-Phase Electrochemiluminescence Sensors with Stable, Anchored Emitters for Sensitive Glucose Detection
by Chunyin Wei, Yanyan Zheng, Fei Yan and Lifang Xu
Biosensors 2025, 15(5), 332; https://doi.org/10.3390/bios15050332 - 21 May 2025
Cited by 2 | Viewed by 605
Abstract
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel [...] Read more.
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel array film (bp-SNA), enabling sensitive glucose detection. The sensor was constructed using an electrochemical-assisted self-assembly (EASA) method with various siloxane precursors to quickly modify the surface of indium tin oxide (ITO) electrodes with a bilayer SNA of different charge properties. The inner layer, including negatively charged SNA (n-SNA), attracted the positively charged ECL emitter tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via electrostatic interaction, while the outer layer, including positively charged SNA (p-SNA), repelled it, forming a barrier that efficiently concentrated the Ru(bpy)32+ emitter in a stable manner. After modifying the amine groups on the p-SNA surface with aldehyde groups, glucose oxidase (GOx) was covalently immobilized, forming the enzyme electrode. In the presence of glucose, GOx catalyzed the conversion of glucose to hydrogen peroxide (H2O2), which acted as a quencher for the Ru(bpy)32+/triethanolamine (TPA) system, reducing the ECL signal and enabling quantitative glucose analysis. The sensor exhibited a wide linear range from 10 μM to 7.0 mM and a limit of detection (LOD) of 1 μM (S/N = 3). Glucose detection in fetal bovine serum was realized. By replacing the enzyme type on the electrode surface, this sensing strategy holds the potential to provide a universal platform for the detection of different metabolites. Full article
(This article belongs to the Special Issue Recent Developments in Nanomaterial-Based Electrochemical Biosensors)
Show Figures

Figure 1

26 pages, 2125 KiB  
Article
Adaptive Augmented Reality Architecture for Optimising Assistance and Safety in Industry 4.0
by Ginés Morales Méndez and Francisco del Cerro Velázquez
Big Data Cogn. Comput. 2025, 9(5), 133; https://doi.org/10.3390/bdcc9050133 - 19 May 2025
Cited by 1 | Viewed by 820
Abstract
The present study proposes adaptive augmented reality (AR) architecture, specifically designed to enhance real-time operator assistance and occupational safety in industrial environments, which is representative of Industry 4.0. The proposed system addresses key challenges in AR adoption, such as the need for dynamic [...] Read more.
The present study proposes adaptive augmented reality (AR) architecture, specifically designed to enhance real-time operator assistance and occupational safety in industrial environments, which is representative of Industry 4.0. The proposed system addresses key challenges in AR adoption, such as the need for dynamic personalisation of instructions based on operator profiles and the mitigation of technical and cognitive barriers. Architecture integrates theoretical modelling, modular design, and real-time adaptability to match instruction complexity with user expertise and environmental conditions. A working prototype was implemented using Microsoft HoloLens 2, Unity 3D, and Vuforia and validated in a controlled industrial scenario involving predictive maintenance and assembly tasks. The experimental results demonstrated statistically significant enhancements in task completion time, error rates, perceived cognitive load, operational efficiency, and safety indicators in comparison with conventional methods. The findings underscore the system’s capacity to enhance both performance and consistency while concomitantly bolstering risk mitigation in intricate operational settings. This study proposes a scalable and modular AR framework with built-in safety and adaptability mechanisms, demonstrating practical benefits for human–machine interaction in Industry 4.0. The present study is subject to certain limitations, including validation in a simulated environment, which limits the direct extrapolation of the results to real industrial scenarios; further evaluation in various operational contexts is required to verify the overall scalability and applicability of the proposed system. It is recommended that future research studies explore the long-term ergonomics, scalability, and integration of emerging technologies in decision support within adaptive AR systems. Full article
Show Figures

Figure 1

21 pages, 20352 KiB  
Article
Handheld 3D Scanning-Based Robotic Trajectory Planning for Multi-Layer Multi-Pass Welding of a Large Intersecting Line Workpiece with Asymmetric Profiles
by Xinlei Li, Shida Yao, Jiawei Ma, Guanxin Chi and Guangjun Zhang
Symmetry 2025, 17(5), 738; https://doi.org/10.3390/sym17050738 - 11 May 2025
Cited by 1 | Viewed by 603
Abstract
Traditional offline programming has limitations for large parts with significant machining or assembly deviations. This study proposes a 3D scanning-assisted method that generates accurate STereoLithography (STL) models and enables multi-layer multi-bead welding trajectory planning for large intersecting line workpieces. The proposed framework implements [...] Read more.
Traditional offline programming has limitations for large parts with significant machining or assembly deviations. This study proposes a 3D scanning-assisted method that generates accurate STereoLithography (STL) models and enables multi-layer multi-bead welding trajectory planning for large intersecting line workpieces. The proposed framework implements a robust STL model processing pipeline incorporating Random Sample Consensus (RANSAC)-based cylindrical approximation, cross-sectional slicing, and automated feature detection to achieve high-precision groove feature recognition. For asymmetric variable-section grooves, a multi-layer and multi-pass path-planning algorithm based on template affine projection transformation is developed to ensure accurate deposition of welds along complex geometric contours. Experimental validation demonstrates sub-millimeter trajectory accuracy (positional errors < 1.0 mm), meeting stringent arc welding specifications and substantially expanding the applicability of offline programming systems. Full article
(This article belongs to the Special Issue Symmetry Application in Metals and Alloys)
Show Figures

Figure 1

15 pages, 5204 KiB  
Article
Bifunctional Chromium-Doped Phenolic Porous Hydrothermal Carbon Catalysts for the Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural
by Pize Xiao, Wei Mao, Zhiming Wu, Huimin Gao, Chutong Ling and Jinghong Zhou
Int. J. Mol. Sci. 2025, 26(8), 3648; https://doi.org/10.3390/ijms26083648 - 12 Apr 2025
Viewed by 361
Abstract
A sustainable and efficient approach for converting carbohydrates into 5-hydroxymethylfurfural (HMF) via heterogeneous catalysis is crucial for effectively utilizing biomass. In this study, we synthesized a series of CrX-polyphenol-formaldehyde resin (PTF) catalysts, which are composites of Cr-doped phenolic-resin-based hydrothermal carbon, using a chelation-assisted [...] Read more.
A sustainable and efficient approach for converting carbohydrates into 5-hydroxymethylfurfural (HMF) via heterogeneous catalysis is crucial for effectively utilizing biomass. In this study, we synthesized a series of CrX-polyphenol-formaldehyde resin (PTF) catalysts, which are composites of Cr-doped phenolic-resin-based hydrothermal carbon, using a chelation-assisted multicomponent co-assembly strategy. The performance of the synthesized catalysts was assessed through various analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, pyrolysis–Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller analysis. Cr incorporation into the catalysts enhanced the total and Lewis acidities. Notably, the optimized catalyst, designated as Cr0.6-PTF, achieved an effective glucose conversion into HMF, yielding a maximum of 69.5% at 180 °C for 180 min in a saturated NaCl solution (NaClaq)/dimethyl sulfoxide (2: 18) solvent system. Furthermore, Cr0.6-PTF maintained excellent catalytic activity and a stable chemical structure after nine cyclic reactions, resulting in a 63.8% HMF yield from glucose. This study revealed an innovative approach for utilizing metal-doped phenolic resin hydrothermal carbon to transform glucose into platform chemicals. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

19 pages, 6319 KiB  
Review
Histopathological Analysis of Vacuum-Assisted Breast Biopsy in Relation to Microcalcification Findings on Mammography: A Pictorial Review
by Jana Bebek, Nikolina Novak, Marina Dasović, Eugen Divjak, Čedna Tomasović-Lončarić, Boris Brkljačić and Gordana Ivanac
Biomedicines 2025, 13(3), 737; https://doi.org/10.3390/biomedicines13030737 - 18 Mar 2025
Viewed by 1172
Abstract
Mammography is an essential tool in breast screening, often revealing lesions that appear as microcalcifications with or without an associated mass. Decisions about biopsy requirements are guided by the BI-RADS system, aiming to confirm the histopathology of suspicious lesions while avoiding unnecessary procedures. [...] Read more.
Mammography is an essential tool in breast screening, often revealing lesions that appear as microcalcifications with or without an associated mass. Decisions about biopsy requirements are guided by the BI-RADS system, aiming to confirm the histopathology of suspicious lesions while avoiding unnecessary procedures. A vacuum-assisted breast biopsy (VABB) is a minimally invasive procedure for diagnosing breast abnormalities. Precise lesion targeting is ensured under stereotactic guidance, reducing the need for repeated procedures. Compared to traditional core needle biopsy (CNB) and fine-needle aspiration cytology (FNAC), it differs in using vacuum assistance to gather more tissue volume, increasing diagnostic accuracy and reducing the likelihood of histological underestimation. This is particularly crucial in cases where microcalcifications are the primary finding, as they are often the earliest signs of ductal carcinoma in situ (DCIS). Managing such findings requires precise diagnostic tools to differentiate benign from malignant lesions without subjecting patients to unnecessary surgical interventions. Building on several years of experience in our department, we have assembled a selection of ten interesting cases encountered in our clinical practice. Each case is documented with paired mammographic images and their corresponding image of histopathological findings, offering a comprehensive view of the diagnostic journey. These cases were selected for their educational value, highlighting the integration of imaging modalities, histopathological evaluation, and clinical decision-making. All cases underwent an extensive diagnostic workup at our facility. This compilation aims to provide valuable insights for both clinicians and researchers, offering a deeper understanding of advanced diagnostic techniques and their role in improving patient outcomes. Full article
(This article belongs to the Special Issue Breast Cancer: New Diagnostic and Therapeutic Approaches)
Show Figures

Figure 1

Back to TopTop