Rapid Fabrication of ZSM-5/AlPO4-5 Composites via Microwave-Ionothermal Strategy for Enhanced Methanol-to-Olefins Catalysis
Abstract
1. Introduction
2. Results and Discussion
2.1. Effect of Microwave-Assisted Ion-Thermal Process Conditions on the Crystallization of ALPO4-5 Zeolite
2.2. Structural Characterization of ZSM-5/AlPO4-5 Zeolite with Different Kinds of Ionic Liquid
2.3. Catalyst Reaction Performance Test
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Gao, R.; Wang, L.; Zhang, C.; Jun, K.W.; Kim, S.K.; Zhao, T.; Wan, H.; Guan, G. Carbon-neutral light olefins production for energy decarbonization: Process development and techno-econo-environmental analysis. Chem. Eng. J. 2023, 471, 144611. [Google Scholar] [CrossRef]
- Ding, Y. Co2C nanoprisms for syngas conversion to lower olefins with high selectivity. Chin. J. Cat. 2017, 38, 1–4. [Google Scholar] [CrossRef]
- Xiang, D.; Li, P.; Yuan, X. Process optimization, exergy efficiency, and life cycle energy consumption-GHG emissions of the propane-to-propylene with/without hydrogen production process. J. Clean. Prod. 2022, 367, 133024. [Google Scholar] [CrossRef]
- Bai, R.; Song, X.; Yan, W.; Yu, J. Low-energy adsorptive separation by zeolites. Natl. Sci. Rev. 2022, 9, nwac064. [Google Scholar] [CrossRef] [PubMed]
- Xuan, L.; Wang, X.; Zhu, Y.; Li, Z. Synthesis of low-silica SAPO-34 at lower hydrothermal temperature by additional pressure and its enhanced catalytic performance for methanol to olefin. Micropor. Mesopor. Mat. 2021, 323, 111218. [Google Scholar] [CrossRef]
- Wang, Y.; Han, J.; Wang, N.; Li, B.; Yang, M.; Wu, Y.; Jiang, Z.; Wei, Y.; Tian, P.; Liu, Z. Conversion of methanol to propylene over SAPO-14: Reaction mechanism and deactivation. Chin. J. Cat. 2022, 43, 2259–2269. [Google Scholar] [CrossRef]
- Zhang, J.; Ji, P.; Ren, L.; Zhao, Y.; Li, S.; Xu, H.; Peng, H.; Jiang, J.-G.; Guan, Y.; Wu, P. New CHA-Type aluminoborosilicates as efficient catalysts for MTO and NH3-SCR of NOx reactions. Chem. Eng. J. 2022, 444, 136657. [Google Scholar] [CrossRef]
- Liu, S.; Yang, L.; Chen, B.; Yang, S.; Qian, Y. Comprehensive energy analysis and integration of coal-based MTO process. Energy 2021, 214, 119060. [Google Scholar] [CrossRef]
- Yanchao, W.; Yapeng, L.; Dongsheng, L.; Qiuju, H.; Yi, P.; Chengcheng, J.; Lei, L.; Jin, L.; Jian, H. Pyrolysis of Oil Shale Based on Electromagnetic Heating Technology—A Review. Chem. Technol. Fuels Oils 2023, 58, 1083–1093. [Google Scholar] [CrossRef]
- El Khaled, D.; Novas, N.; Gazquez, J.A.; Manzano-Agugliaro, F. Microwave dielectric heating: Applications on metals processing. Renew. Sust. Energ. Rev. 2018, 82, 2880–2892. [Google Scholar] [CrossRef]
- Makova, A.S.; Timofeeva, M.N.; Tkachenko, O.P.; Panchenko, V.N.; Leonov, A.V.; Kapustin, G.I.; Davshan, N.A.; Kalmykov, K.B.; Kustov, A.L.; Ter-Akopyan, M.N.; et al. Effect of microwave irradiation on the synthesis of zeolite with ferrierite structure: Study of acid and catalytic properties. Colloids Surf. A 2024, 703, 135321. [Google Scholar] [CrossRef]
- Zeng, X.; Hu, X.; Song, H.; Xia, G.; Shen, Z.-Y.; Yu, R.; Moskovits, M. Microwave synthesis of zeolites and their related applications. Micropor. Mesopor. Mat. 2021, 323, 111262. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Lin, Y.; Liu, C.; Liu, X.; Bai, L.; Hu, D.; Zeng, G.; Zhang, Y.; Wei, W.; et al. Synthesis and characterization of all-silica DDR zeolite by microwave heating. Micropor. Mesopor. Mat. 2016, 219, 103–111. [Google Scholar] [CrossRef]
- Li, Y.; Yang, W. Microwave synthesis of zeolite membranes: A review. J. Membrance. Sci. 2008, 316, 3–17. [Google Scholar] [CrossRef]
- Youssef, H.; Ibrahim, D.; Komarneni, S. Microwave-assisted versus conventional synthesis of zeolite A from metakaolinite. Micropor. Mesopor. Mat. 2008, 115, 527–534. [Google Scholar] [CrossRef]
- Zhang, T.; Doert, T.; Wang, H.; Zhang, S.; Ruck, M. Inorganic Synthesis Based on Reactions of Ionic Liquids and Deep Eutectic Solvents. Angew. Chem. Int. Ed. 2021, 60, 22148–22165. [Google Scholar] [CrossRef]
- Utchariyajit, K.; Wongkasemjit, S. Structural aspects of mesoporous AlPO4-5 (AFI) zeotype using microwave radiation and alumatrane precursor. Micropor. Mesopor. Mat. 2008, 114, 175–184. [Google Scholar] [CrossRef]
- Xia, S.; Chen, Y.; Xu, H.; Lv, D.; Yu, J.; Wang, P. Synthesis EMT-type zeolite by microwave and hydrothermal heating. Micropor. Mesopor. Mat. 2019, 278, 54–63. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, H.; Kang, C.; Sun, Z.; Li, G.; Wang, X. Ionothermal synthesis of mesoporous SAPO-5 zeolites by microwave heating and using eutectic solvent as structure-directing agent. Micropor. Mesopor. Mat. 2012, 151, 501–505. [Google Scholar] [CrossRef]
- Zhao, X.; Wen, J.; Zhao, J.; Li, A.; Li, G.; Wang, X. Hierarchically structured SAPO-5 zeolite catalysts with tailored mesoporosity for alkylation reaction. J. Porous. Mat. 2015, 22, 577–584. [Google Scholar] [CrossRef]
- Shen, Y.; Qin, Z.; Asahina, S.; Asano, N.; Zhang, G.; Qian, S.; Ma, Y.; Yan, Z.; Liu, X.; Mintova, S. The inner heterogeneity of ZSM-5 zeolite crystals. J. Mater. Chem. 2021, 9, 4203–4212. [Google Scholar] [CrossRef]
- Savu, S.V.; Marin, R.C.; David, A.; Olei, A.B.; Dumitru, I.; Tarnita, D.; Maternova, A.; Savu, I.D. Reducing NOx Emissions through Microwave Heating of Aftertreatment Systems for Sustainable Transport in the Inland Waterway Sector. Sustainability 2022, 14, 4156. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, J.; Wen, J.; Li, A.; Li, G.; Wang, X. Microwave synthesis of AFI-type aluminophosphate zeolite under solvent-free conditions. Micropor. Mesopor. Mat. 2015, 213, 192–196. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, X.; Sang, X.; Yang, G. Synthesis of a phosphomolybdic acid-modified AlPO4-5/SAPO-34 composite catalyst and its catalytic performance in the MTO reaction. Appl. Catal. A-Gen. 2024, 669, 119486. [Google Scholar] [CrossRef]
- Shalmani, F.M.; Halladj, R.; Askari, S. Effect of contributing factors on microwave-assisted hydrothermal synthesis of nanosized SAPO-34 zeolites. Powder Technol. 2012, 221, 395–402. [Google Scholar] [CrossRef]
- Xin-yan, Z.; Ting-ting, D.; Yao, W.; Jing-yue, Y.; Xue, W.; Yan-yan, G.; Qun, S.; Xin, Z.; Shao-qing, Z. Green synthesis of Cu-SSZ-13 zeolite by seed-assisted route for effective reduction of nitric oxide. J. Clean. Prod. 2019, 236, 117667. [Google Scholar] [CrossRef]
- Jhung, S.H.; Lee, J.H.; Chang, J.-S. Crystal size control of transition metal ion-incorporated aluminophosphate zeolites: Effect of ramping rate in the syntheses. Micropor. Mesopor. Mat. 2008, 112, 178–186. [Google Scholar] [CrossRef]
- Ni, Y.; Sun, A.; Wu, X.; Hai, G.; Hu, J.; Li, T.; Li, G. The preparation of nano-sized H[Zn, Al]ZSM-5 zeolite and its application in the aromatization of methanol. Micropor. Mesopor. Mat. 2011, 143, 435–442. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, H.; Yan, W. Strategies to Enhance the Catalytic Performance of ZSM-5 Zeolite in Hydrocarbon Cracking: A Review. Catalysts 2017, 7, 367. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, Y.; Chu, R.; Wu, J.; Wu, G.; Li, X.; Li, W.; Miao, Z.; Meng, X. Research on double template agents to regulate the grain growth behavior of SAPO-34. Micropor. Mesopor. Mat. 2023, 349, 112428. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, H.; Dong, B.; Sun, Z.; Li, G.; Wang, X. Facile synthesis of FeAlPO-5 zeolite in eutectic mixture via a microwave-assisted process. Micropor. Mesopor. Mat. 2012, 151, 56–63. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, X.; Chang, P.; Geng, S. Crystal morphology control of AlPO4-11 zeolites by microwave irradiation. Mater. Chem. Phys. 2009, 113, 899–904. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Liu, S.; Wang, T.; Liu, P.; Song, X.; Liang, Z. Ultrafast synthesis of SAPO-17 zeolites with excellent CO2/N2 and CO2/CH4 separation performance. Inorg. Chem. Front. 2023, 10, 4519–4525. [Google Scholar] [CrossRef]
- Han, L.; Jiang, X.-G.; Lu, T.-L.; Wang, B.-S.; Xu, J.; Zhan, Y.-Z.; Wang, J.-F.; Rawal, A.; Zhao, C. Preparation of composite zeolites in polymer hydrogels and their catalytic performances in the methanol-to-olefin reaction. Fuel Process. Technol. 2017, 165, 87–93. [Google Scholar] [CrossRef]
Catalyst | Atomic Number (%) | ||||
---|---|---|---|---|---|
C | O | Al | Si | P | |
Z/A-60 | 65.9% | 27.3% | 2.9% | 2.0% | 1.9% |
Catalyst | Atomic Number (%) | ||||
---|---|---|---|---|---|
C | O | Al | Si | P | |
[B]-Z/A | 65.6% | 27.6% | 2.9% | 2.1% | 1.8% |
Catalyst | Atomic Number (%) | ||||
---|---|---|---|---|---|
C | O | Al | Si | P | |
[H]-Z/A | 65.7% | 27.5% | 2.8% | 2.1% | 1.9% |
Catalyst | Methanol Conversion (%) | Product Yield (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C1 | C2= | C2 | C3= | C3 | C4= | C4 | C5 | C2=~ C4= | ||
Al-90 min | 27.23 | 6.43 | 0.63 | 0.68 | 1.56 | 0.32 | 1.75 | 0.61 | 1.36 | 3.94 |
ZSM-5 | 100 | 6.54 | 18.52 | 0.61 | 26.92 | 5.78 | 9.40 | 5.16 | 7.12 | 54.84 |
[H]-Z/A | 100 | 7.23 | 19.37 | 0.52 | 28.20 | 3.28 | 17.98 | 5.74 | 8.16 | 65.55 |
Z/A-60 min | 100 | 6.78 | 21.5 | 0.56 | 31.38 | 3.49 | 16.43 | 5.34 | 7.62 | 69.31 |
[B]-Z/A | 100 | 6.82 | 22.06 | 0.65 | 30.64 | 5.37 | 20.14 | 5.19 | 7.25 | 72.84 |
Catalysts | Acid Content (mmol·g−1) | |||
---|---|---|---|---|
Total | Strong | Weak | Strong/Weak | |
Z/A-60 min | 0.96 | 0.43 | 0.53 | 1.23 |
[B]-Z5/Al5 | 0.72 | 0.23 | 0.49 | 0.47 |
[H]-Z5/Al5 | 0.64 | 0.18 | 0.46 | 0.39 |
ZSM-5 | 0.55 | 0.45 | 0.10 | 4.5 |
AlPO4-5 | 0.48 | 0.10 | 0.38 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Zhang, M.; Li, H.; Ding, H.; Zhao, J.; Zhang, Y.; Wu, L.; Jiao, C.; Feng, J.; Peng, Z. Rapid Fabrication of ZSM-5/AlPO4-5 Composites via Microwave-Ionothermal Strategy for Enhanced Methanol-to-Olefins Catalysis. Catalysts 2025, 15, 605. https://doi.org/10.3390/catal15060605
Han L, Zhang M, Li H, Ding H, Zhao J, Zhang Y, Wu L, Jiao C, Feng J, Peng Z. Rapid Fabrication of ZSM-5/AlPO4-5 Composites via Microwave-Ionothermal Strategy for Enhanced Methanol-to-Olefins Catalysis. Catalysts. 2025; 15(6):605. https://doi.org/10.3390/catal15060605
Chicago/Turabian StyleHan, Li, Mengting Zhang, Hao Li, Huiru Ding, Jingjing Zhao, Yujia Zhang, Lang Wu, Changzhou Jiao, Jie Feng, and Zhikun Peng. 2025. "Rapid Fabrication of ZSM-5/AlPO4-5 Composites via Microwave-Ionothermal Strategy for Enhanced Methanol-to-Olefins Catalysis" Catalysts 15, no. 6: 605. https://doi.org/10.3390/catal15060605
APA StyleHan, L., Zhang, M., Li, H., Ding, H., Zhao, J., Zhang, Y., Wu, L., Jiao, C., Feng, J., & Peng, Z. (2025). Rapid Fabrication of ZSM-5/AlPO4-5 Composites via Microwave-Ionothermal Strategy for Enhanced Methanol-to-Olefins Catalysis. Catalysts, 15(6), 605. https://doi.org/10.3390/catal15060605