Gest-SAR: A Gesture-Controlled Spatial AR System for Interactive Manual Assembly Guidance with Real-Time Operational Feedback
Abstract
1. Introduction
- (i)
- The development and implementation of a novel hand-gesture recognition mechanism tailored for SAR-based operator guidance systems, which enables gesture-driven control and real-time feedback for enhanced assembly quality;
- (ii)
- The introduction of a human-centric SAR workspace incorporating projected virtual controls (e.g., virtual buttons), thereby improving task navigation, instructional clarity, and user engagement during complex assembly tasks;
- (iii)
- The establishment of a systematic benchmarking through empirical field experiments involving human participants, enabling comparative analysis of different work instruction delivery modalities across multiple KPIs.
2. Literature Review
2.1. SAR in Manual Assembly
2.2. Comparative Analysis of Visualisation Methods and Interaction Techniques
2.3. Gesture Control in Assembly Systems
2.3.1. Gesture with Augmented Reality
2.3.2. Gesture with Spatial Augmented Reality
2.4. Error Tracking and Real-Time Feedback
2.5. Research Gap
3. Materials and Methods
3.1. Proposed In Situ SAR System
Runtime System Design Overview
3.2. Experimental Setup
3.3. Paper-Based Instructions
3.4. Tablet-Based Instruction
3.5. Gesture Classification Model
3.5.1. Assembly Tasks
3.5.2. Experimental Design Procedure
3.5.3. Participants
4. Results
4.1. Task Completion Times
4.2. Error Distribution
4.3. Cognitive Workload—NASA TLX
4.4. Instruction Method Comparisons
4.5. User Feedback on SAR and Its Features
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Gest-SAR | Gesture Spatial Augmented Reality |
Gest | Gesture |
KPI | Key Performance Indicator |
SAR | Spatial Augmented Reality |
HCI | Human Computer Interaction |
HMD | Head Mounted Displays |
AR | Augmented Reality |
AET | Assembly Error Tracking |
AP | Assembly Process |
OP | Order Picking |
PM | Progress Monitoring |
AE | Assembly Error |
PE | Picking Error |
GS | General Survey |
NASA-TLX | NASA Task Load Index |
PAR | Projected Augmented Reality |
DNN | Deep Neural Network |
ROI | Region of Interest |
FPS | Frame Per Second |
MLP | Multi-Layer Perceptron |
GATM | General Assembly Task Model |
TCT | Task Completion Time |
HC-ZDM | Human-Centric Zero Defect Manufacturing |
References
- Bortolini, M.; Faccio, M.; Galizia, F.G.; Gamberi, M.; Pilati, F. Adaptive Automation Assembly Systems in the Industry 4.0 Era: A Reference Framework and Full–Scale Prototype. Appl. Sci. 2021, 11, 1256. [Google Scholar] [CrossRef]
- Funk, M.; Schmidt, A. Cognitive Assistance in the Workplace. IEEE Pervasive Comput. 2015, 14, 53–55. [Google Scholar] [CrossRef]
- Alkan, B.; Vera, D.; Ahmad, M.; Ahmad, B.; Harrison, R. A model for complexity assessment in manual assembly operations through predetermined motion time systems. Procedia CIRP 2016, 44, 429–434. [Google Scholar] [CrossRef]
- Alkan, B. An experimental investigation on the relationship between perceived assembly complexity and product design complexity. Int. J. Interact. Des. Manuf. (IJIDeM) 2019, 13, 1145–1157. [Google Scholar] [CrossRef]
- European Commission. What Is Industry 5.0? Available online: https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/industry-50_en#what-is-industry-50 (accessed on 30 May 2025).
- Moraes, A.; Carvalho, A.M.; Sampaio, P. Lean and Industry 4.0: A Review of the Relationship, Its Limitations, and the Path Ahead with Industry 5.0. Machines 2023, 11, 443. [Google Scholar] [CrossRef]
- Wan, P.K.; Leirmo, T.L. Human-centric zero-defect manufacturing: State-of-the-art review, perspectives, and challenges. Comput. Ind. 2023, 144, 103792. [Google Scholar] [CrossRef]
- Eriksson, K.M.; Olsson, A.K.; Carlsson, L. Beyond Lean Production Practices and Industry 4.0 Technologies toward the Human-Centric Industry 5.0. Technol. Sustain. 2024, 3, 286–308. [Google Scholar] [CrossRef]
- Bertram, P.; Birtel, M.; Quint, F.; Ruskowski, M. Intelligent Manual Working Station through Assistive Systems. IFAC-PapersOnLine 2018, 51, 170–175. [Google Scholar] [CrossRef]
- Alkan, B.; Vera, D.; Ahmad, B.; Harrison, R. A method to assess assembly complexity of industrial products in early design phase. IEEE Access 2017, 6, 989–999. [Google Scholar] [CrossRef]
- Bovo, R.; Binetti, N.; Brumby, D.P.; Julier, S. Detecting Errors in Pick and Place Procedures: Detecting Errors in Multi-Stage and Sequence-Constrained Manual Retrieve-Assembly Procedures. In Proceedings of the 25th International Conference on Intelligent User Interfaces, Cagliari, Italy, 17–20 March 2020; pp. 536–545. [Google Scholar] [CrossRef]
- Pereira, A.C.; Alves, A.C.; Arezes, P. Augmented Reality in a Lean Workplace at Smart Factories: A Case Study. Appl. Sci. 2023, 13, 9120. [Google Scholar] [CrossRef]
- Bock, L.; Bohné, T.; Tadeja, S.K. Decision Support for Augmented Reality-Based Assistance Systems Deployment in Industrial Settings. Multimed Tools Appl. 2025, 84, 23617–23641. [Google Scholar] [CrossRef]
- Fani, V.; Antomarioni, S.; Bandinelli, R.; Ciarapica, F.E. Data Mining and Augmented Reality: An Application to the Fashion Industry. Appl. Sci. 2023, 13, 2317. [Google Scholar] [CrossRef]
- Werrlich, S.; Daniel, A.; Ginger, A.; Nguyen, P.A.; Notni, G. Comparing HMD-Based and Paper-Based Training. In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Munich, Germany, 16–20 October 2018; pp. 134–142. [Google Scholar] [CrossRef]
- Funk, M.; Kosch, T.; Schmidt, A. Interactive Worker Assistance: Comparing the Effects of in-Situ Projection, Head-Mounted Displays, Tablet, and Paper Instructions. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; pp. 934–939. [Google Scholar] [CrossRef]
- Grosse, E.H. Application of supportive and substitutive technologies in manual warehouse order picking: A content analysis. Int. J. Prod. Res. 2024, 62, 685–704. [Google Scholar] [CrossRef]
- Rupprecht, P.; Kueffner-Mccauley, H.; Trimmel, M.; Hornacek, M.; Schlund, S. Advanced Adaptive Spatial Augmented Reality Utilizing Dynamic In-Situ Projection in Industrial Site Assembly. Procedia CIRP 2022, 107, 937–942. [Google Scholar] [CrossRef]
- Kosch, T.; Funk, M.; Schmidt, A.; Chuang, L.L. Identifying Cognitive Assistance with Mobile Electroencephalography: A Case Study with In-Situ Projections for Manual Assembly. Proc. ACM Hum.-Comput. Interact. 2018, 2, 11. [Google Scholar] [CrossRef]
- Lucchese, A.; Panagou, S.; Sgarbossa, F. Investigating the Impact of Cognitive Assistive Technologies on Human Performance and Well-Being: An Experimental Study in Assembly and Picking Tasks. Int. J. Prod. Res. 2024, 63, 2038–2057. [Google Scholar] [CrossRef]
- Funk, M.; Bächler, A.; Bächler, L.; Kosch, T.; Heidenreich, T.; Schmidt, A. Working with Augmented Reality?: A Long-Term Analysis of In-Situ Instructions at the Assembly Workplace. In Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments, Island of Rhodes, Greece, 21–23 June 2017; pp. 222–229. [Google Scholar] [CrossRef]
- Cao, Z.; He, W.; Wang, S.; Zhang, J.; Wei, B.; Li, J. Research on Projection Interaction Based on Gesture Recognition. In HCI International 2021—Late Breaking Posters; Stephanidis, C., Antona, M., Ntoa, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 1498, pp. 311–317. [Google Scholar] [CrossRef]
- Funk, M.; Bächler, A.; Bächler, L.; Korn, O.; Krieger, C.; Heidenreich, T.; Schmidt, A. Comparing Projected In-Situ Feedback at the Manual Assembly Workplace with Impaired Workers. In Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 1–3 July 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Kalpagam Ganesan, R.; Rathore, Y.K.; Ross, H.M.; Ben Amor, H. Better Teaming Through Visual Cues: How Projecting Imagery in a Workspace Can Improve Human-Robot Collaboration. IEEE Robot. Autom. Mag. 2018, 25, 59–71. [Google Scholar] [CrossRef]
- Uva, A.E.; Gattullo, M.; Manghisi, V.M.; Spagnulo, D.; Cascella, G.L.; Fiorentino, M. Evaluating the Effectiveness of Spatial Augmented Reality in Smart Manufacturing: A Solution for Manual Working Stations. Int. J. Adv. Manuf. Technol. 2018, 94, 509–521. [Google Scholar] [CrossRef]
- Hietanen, A.; Changizi, A.; Lanz, M.; Kamarainen, J.; Ganguly, P.; Pieters, R.; Latokartano, J. Proof of concept of a projection-based safety system for human-robot collaborative engine assembly. In Proceedings of the 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Sand, O.; Büttner, S.; Paelke, V.; Röcker, C. smARt.Assembly—Projection-Based Augmented Reality for Supporting Assembly Workers. In Virtual, Augmented and Mixed Reality; Lackey, S., Shumaker, R., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 9740, pp. 643–652. [Google Scholar] [CrossRef]
- Bosch, T.; Van Rhijn, G.; Krause, F.; Könemann, R.; Wilschut, E.S.; De Looze, M. Spatial augmented reality: A tool for operator guidance and training evaluated in five industrial case studies. In Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 30 June–3 July 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Swenja, S.; Maximilian, P.; Thomas, S. Evolution of Pick-by-Light Concepts for Assembly Workstations to Improve the Efficiency in Industry 4.0. Procedia Comput. Sci. 2022, 204, 37–44. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; He, W.; Li, J.; Cao, Z.; Wei, B. Projected Augmented Reality Assembly Assistance System Supporting Multi-Modal Interaction. Int. J. Adv. Manuf. Technol. 2022, 123, 1353–1367. [Google Scholar] [CrossRef]
- Rupprecht, P.; Kueffner-McCauley, H.; Trimmel, M.; Schlund, S. Adaptive Spatial Augmented Reality for Industrial Site Assembly. Procedia CIRP 2021, 104, 405–410. [Google Scholar] [CrossRef]
- Oudah, M.; Al-Naji, A.; Chahl, J. Hand Gesture Recognition Based on Computer Vision: A Review of Techniques. J. Imaging 2020, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Tian, Z.; Li, D.; Pang, L.; Wang, T.; Hong, J. Projection-Based Augmented Reality System for Assembly Guidance and Monitoring. Assem. Autom. 2021, 41, 10–23. [Google Scholar] [CrossRef]
- Kosch, T.; Kettner, R.; Funk, M.; Schmidt, A. Comparing tactile, auditory, and visual assembly error-feedback for workers with cognitive impairments. In Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS), Reno, NV, USA, 23–26 October 2016; pp. 53–60. [Google Scholar] [CrossRef]
- Nazarova, E.; Sautenkov, O.; Altamirano Cabrera, M.; Tirado, J.; Serpiva, V.; Rakhmatulin, V.; Tsetserukou, D. CobotAR: Interaction with Robots Using Omnidirectionally Projected Image and DNN-based Gesture Recognition. In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 2590–2595. [Google Scholar] [CrossRef]
- Torres, W.; Santos, L.; Melo, G.; Oliveira, A.; Nascimento, P.; Carvalho, G.; Neves, T.; Martins, A.; Araújo, Í. A Framework for Real-Time Gestural Recognition and Augmented Reality for Industrial Applications. Sensors 2024, 24, 2407. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Billinghurst, M.; Yang, H.; Xu, P.; Li, Y. BeHere: A VR/SAR Remote Collaboration System Based on Virtual Replicas Sharing Gesture and Avatar in a Procedural Task. Virtual Real. 2023, 27, 1409–1430. [Google Scholar] [CrossRef]
- Fang, W.; Hong, J. Bare-Hand Gesture Occlusion-Aware Interactive Augmented Reality Assembly. J. Manuf. Syst. 2022, 65, 169–179. [Google Scholar] [CrossRef]
- Dong, J.; Xia, Z.; Zhao, Q. Augmented Reality Assisted Assembly Training Oriented Dynamic Gesture Recognition and Prediction. Appl. Sci. 2021, 11, 9789. [Google Scholar] [CrossRef]
- Vogiatzidakis, P.; Koutsabasis, P. Mid-Air Gesture Control of Multiple Home Devices in Spatial Augmented Reality Prototype. Multimodal Technol. Interact. 2020, 4, 61. [Google Scholar] [CrossRef]
- Lugaresi, C.; Tang, J.; Nash, H.; McClanahan, C.; Uboweja, E.; Hays, M.; Zhang, F.; Chang, C.L.; Yong, M.G.; Lee, J.; et al. MediaPipe: A framework for building perception pipelines. arXiv 2019, arXiv:1906.08172. [Google Scholar] [CrossRef]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. arXiv 2019, arXiv:1812.08008. [Google Scholar] [CrossRef]
- Weichert, F.; Bachmann, D.; Rudak, B.; Fisseler, D. Analysis of the Accuracy and Robustness of the Leap Motion Controller. Sensors 2013, 13, 6380–6393. [Google Scholar] [CrossRef]
- Sweigart, A. PyAutoGUI Documentation. Available online: https://pyautogui.readthedocs.io/en/latest/ (accessed on 15 June 2025).
- Intel. Intel® RealSense™ Depth Camera D435. Available online: https://www.intelrealsense.com/depth-camera-d435/ (accessed on 1 June 2025).
- Indriani, M.H.; Agoes, A.S. Applying Hand Gesture Recognition for User Guide Application Using MediaPipe. In Proceedings of the 2nd International Seminar of Science and Applied Technology (ISSAT 2021), Online, 12 October 2021. [Google Scholar] [CrossRef]
- Google Research. On-Device, Real-Time Hand Tracking with MediaPipe. Available online: https://research.google/blog/on-device-real-time-hand-tracking-with-mediapipe/ (accessed on 14 May 2025).
- Bannat, A.; Wallhoff, F.; Rigoll, G.; Friesdorf, F.; Bubb, H.; Stork, S.; Müller, H.J.; Schubö, A.; Wiesbeck, M.; Zäh, M.F. Towards optimal worker assistance: A framework for adaptive selection and presentation of assembly instructions. In Proceedings of the 1st International CoTeSys Workshop, Munich, Germany, 6–8 October 2008; p. 7. [Google Scholar]
- Funk, M.; Mayer, S.; Schmidt, A. Using in-situ projection to support cognitively impaired workers at the workplace. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility (ASSETS), Lisbon, Portugal, 26–28 October 2015; pp. 185–192. [Google Scholar] [CrossRef]
- Tang, A.; Owen, C.; Biocca, F.; Mou, W. Comparative effectiveness of augmented reality in object assembly. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’03), Ft. Lauderdale, FL, USA, 5–10 April 2003; pp. 73–80. [Google Scholar] [CrossRef]
- Sakata, N.; Kurata, T.; Kuzuoka, H. Visual Assist with a Laser Pointer and Wearable Display for Remote Collaboration. In Proceedings of the 2nd International Conference on Collaboration Technologies (CollabTech 2006), Tsukuba, Japan, 13–14 July 2006; pp. 66–71. [Google Scholar]
- Funk, M.; Kosch, T.; Greenwald, S.W.; Schmidt, A. A Benchmark for Interactive Augmented Reality Instructions for Assembly Tasks. In Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia, Linz, Austria, 30 November–2 December 2015; pp. 253–257. [Google Scholar] [CrossRef]
- Hart, S.G. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2006, 50, 904–908. [Google Scholar] [CrossRef]
Assistive Technology | Application | Performance | Cognitive Workload | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors | Year | SAR | Gest | AET | PM | AP | OP | TCT | AE | PE | GS | NASA-TLX |
Kosch et al. [34] | 2016 | * | * | * | * | * | * | * | * | |||
Funk et al. [21] | 2017 | * | * | * | * | * | * | * | * | |||
Vogiatzidakis & Koutsabasis [40] | 2020 | * | * | * | * | |||||||
Bosch et al. [28] | 2020 | * | * | * | * | * | * | * | ||||
Chen et al. [33] | 2021 | * | * | * | * | * | ||||||
Cao et al. [22] | 2021 | * | * | * | * | * | ||||||
Rupprecht et al. [18] | 2022 | * | * | * | * | * | * | * | ||||
Zhang et al. [30] | 2022 | * | * | * | * | * | ||||||
Swenja et al. [29] | 2022 | * | * | * | * | * | ||||||
Wang et al. [37] | 2023 | * | * | * | * | * | * | |||||
Lucchese et al. [20] | 2024 | * | * | * | * | * | * | * | * | |||
Presented Work | 2025 | * | * | * | * | * | * | * | * | * | * | * |
ID | Gesture Class | Actions |
---|---|---|
0 | Neutral | No action |
1 | Grab | Component pick |
2 | Right | Next step |
3 | Left | Previous step |
4 | DoubleClick | All other buttons including the Home button |
5 | Click | Click gesture for Back, Next buttons, Video and Gesture Information buttons |
6 | Pick | Component pick |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, N.; Alkan, B. Gest-SAR: A Gesture-Controlled Spatial AR System for Interactive Manual Assembly Guidance with Real-Time Operational Feedback. Machines 2025, 13, 658. https://doi.org/10.3390/machines13080658
Hasan N, Alkan B. Gest-SAR: A Gesture-Controlled Spatial AR System for Interactive Manual Assembly Guidance with Real-Time Operational Feedback. Machines. 2025; 13(8):658. https://doi.org/10.3390/machines13080658
Chicago/Turabian StyleHasan, Naimul, and Bugra Alkan. 2025. "Gest-SAR: A Gesture-Controlled Spatial AR System for Interactive Manual Assembly Guidance with Real-Time Operational Feedback" Machines 13, no. 8: 658. https://doi.org/10.3390/machines13080658
APA StyleHasan, N., & Alkan, B. (2025). Gest-SAR: A Gesture-Controlled Spatial AR System for Interactive Manual Assembly Guidance with Real-Time Operational Feedback. Machines, 13(8), 658. https://doi.org/10.3390/machines13080658