Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (495)

Search Parameters:
Keywords = asphalt pavement structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4287 KiB  
Article
Integrated Design of Materials and Structures for Flexible Base Asphalt Pavement
by Bin Huang, Qinxue Pan, Xiaolong Chen, Jia Hu and Songtao Lv
Materials 2025, 18(15), 3602; https://doi.org/10.3390/ma18153602 (registering DOI) - 31 Jul 2025
Abstract
Current asphalt pavement structural design methods often lack a strong quantitative link to materials’ mixtures and mechanical properties and typically ignore the significant tensile–compressive disparities of materials, resulting in notable analysis errors. This study employed the dual-modulus theory to numerically analyze flexible base [...] Read more.
Current asphalt pavement structural design methods often lack a strong quantitative link to materials’ mixtures and mechanical properties and typically ignore the significant tensile–compressive disparities of materials, resulting in notable analysis errors. This study employed the dual-modulus theory to numerically analyze flexible base asphalt pavements under varied configurations, revealing how critical structural responses and fatigue life evolve. This examination also determined optimal layer mixes through mechanical parameter modeling for integrated material–structure design. The results showed that fundamental responses and fatigue life vary nonlinearly with thickness and modulus. The effect of modulus outweighed that of thickness, with the effects of the tensile modulus being more pronounced than compressive ones, and surface transverse strain being most sensitive to both. The recommended compressive–tensile modulus ratios were about 1.5, 2.0, and 1.2 for upper, lower, and base layers, respectively. By using this integrated design method, the optimized pavement structures achieved superior stress distribution, significantly extending the base service life. As a result, more realistic design lifetimes were obtained. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 4901 KiB  
Article
Study on the Adaptability of FBG Sensors Encapsulated in CNT-Modified Gel Material for Asphalt Pavement
by Tengteng Guo, Xu Guo, Yuanzhao Chen, Chenze Fang, Jingyu Yang, Zhenxia Li, Jiajie Feng, Jiahua Kong, Haijun Chen, Chaohui Wang, Qian Chen and Jiachen Wang
Gels 2025, 11(8), 590; https://doi.org/10.3390/gels11080590 (registering DOI) - 31 Jul 2025
Abstract
To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects [...] Read more.
To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects of carboxylated carbon nanotubes on the mechanical properties of gel materials under different dosages were evaluated and the optimal dosage of carbon nanotubes was determined. Infrared spectrometer and scanning electron microscopy were used to compare and analyze the infrared spectra and microstructure of carbon nanotubes before and after carboxyl functionalization and modified gel materials. The results show that the incorporation of CNTs-COOH increased the tensile strength, elongation at break, and tensile modulus of the gel material by 36.2%, 47%, and 17.2%, respectively, and increased the flexural strength, flexural modulus, and flexural strain by 89.7%, 7.5%, and 63.8%, respectively. Through infrared spectrum analysis, it was determined that carboxyl (COOH) and hydroxyl (OH) were successfully introduced on the surface of carbon nanotubes. By analyzing the microstructure, it can be seen that the carboxyl functionalization of CNTs improved the agglomeration of carbon nanotubes. The tensile section of the modified gel material is rougher than that of the pure epoxy resin, showing obvious plastic deformation, and the toughness is improved. According to the data from the calibration experiment, the strain and temperature sensitivity coefficients of the packaged sensor are 1.9864 pm/μm and 0.0383 nm/°C, respectively, which are 1.63 times and 3.61 times higher than those of the bare fiber grating. The results of an applicability study show that the internal structure strain of asphalt rutting specimen changed linearly with the external static load, and the fitting sensitivity is 0.0286 με/N. Combined with ANSYS finite element analysis, it is verified that the simulation analysis results are close to the measured data, which verifies the effectiveness and monitoring accuracy of the sensor. The dynamic load test results reflect the internal strain change trend of asphalt mixture under external rutting load, confirming that the encapsulated FBG sensor is suitable for the long-term monitoring of asphalt pavement strain. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

31 pages, 10339 KiB  
Review
Performance of Asphalt Materials Based on Molecular Dynamics Simulation: A Review
by Chengwei Xing, Zhihang Xiong, Tong Lu, Haozongyang Li, Weichao Zhou and Chen Li
Polymers 2025, 17(15), 2051; https://doi.org/10.3390/polym17152051 - 27 Jul 2025
Viewed by 341
Abstract
With the rising performance demands in road engineering, traditional experiments often fail to reveal the microscopic mechanisms behind asphalt behavior. Molecular dynamics (MD) simulation has emerged as a valuable complement, enabling molecular-level insights into asphalt’s composition, structure, and aging mechanisms. This review summarizes [...] Read more.
With the rising performance demands in road engineering, traditional experiments often fail to reveal the microscopic mechanisms behind asphalt behavior. Molecular dynamics (MD) simulation has emerged as a valuable complement, enabling molecular-level insights into asphalt’s composition, structure, and aging mechanisms. This review summarizes the recent advances in applying MD to asphalt research. It first outlines molecular model construction approaches, including average models, three- and four-component systems, and modified models incorporating SBS, SBR, PU, PE, and asphalt–aggregate interfaces. It then analyzes how MD reveals the key performance aspects—such as high-temperature stability, low-temperature flexibility, self-healing behavior, aging processes, and interfacial adhesion—by capturing the molecular interactions. While MD offers significant advantages, challenges remain: idealized modeling, high computational demands, limited chemical reaction simulation, and difficulties in multi-scale coupling. This paper aims to provide theoretical insights and methodological support for future studies on asphalt performance and highlights MD simulation as a promising tool in pavement material science. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

23 pages, 5342 KiB  
Article
Analysis of Strain Transfer Characteristics of Fiber Bragg Gratings for Asphalt Pavement Health Monitoring
by Zhaojun Hou, Dianguang Cao, Peng Peng, Xunhao Ding, Tao Ma and Jianchuan Cheng
Materials 2025, 18(15), 3489; https://doi.org/10.3390/ma18153489 - 25 Jul 2025
Viewed by 213
Abstract
Fiber Bragg grating (FBG) exhibits strong resistance to electromagnetic interference and excellent linear strain response, making it highly promising for structural health monitoring (SHM) in pavement. This research investigates the strain transfer characteristics of embedded FBG in pavement structure and materials by using [...] Read more.
Fiber Bragg grating (FBG) exhibits strong resistance to electromagnetic interference and excellent linear strain response, making it highly promising for structural health monitoring (SHM) in pavement. This research investigates the strain transfer characteristics of embedded FBG in pavement structure and materials by using the relevant theoretical models. Results indicate adhesive layer thickness and sheath modulus are the primary factors influencing the strain transfer coefficient. A thinner adhesive layer and high modulus of sheath enhance the coefficient. Additionally, the strain distribution of sheath significantly affects the transfer efficiency. When the stress level near the grating region is lower than the both ends, the coefficient increases and even exceeds 1, which typically occurs under multi-axle conditions. As for asphalt mixture, high temperature leads to lower efficiency, while accumulated plastic strain improves it. Although the increased load frequency results a higher strain transfer coefficient, the magnitude of this change is negligible. By employing polynomial fitting to the sheath strain distribution, the boundary condition of theoretical equation could be removed. The theoretical and numerical results of strain transfer coefficient for pavement embedded FBG demonstrate good consistency, indicating the polynomial fitting is adoptable for the theoretical calculation with non-uniform strain distribution. This study utilizes the FEM to clarify the evolution of FBG strain transfer in pavement structures and materials, providing a theoretical basis for the design and implementation of embedded FBG in pavement. Full article
Show Figures

Figure 1

17 pages, 4500 KiB  
Article
Finite Element Model-Based Behavior Evaluation of Pavement Stiffness Influence on Shallowly Buried Precast Arch Structures Subjected to Vehicle Load
by Van-Toan Nguyen and Jungwon Huh
Geotechnics 2025, 5(3), 50; https://doi.org/10.3390/geotechnics5030050 - 25 Jul 2025
Viewed by 165
Abstract
In this study, the behavior of a three-hinged buried precast arch structure under the impact of the design truck was studied and evaluated based on the finite element method. A three-dimensional finite element analysis model of the buried precast arch structure has been [...] Read more.
In this study, the behavior of a three-hinged buried precast arch structure under the impact of the design truck was studied and evaluated based on the finite element method. A three-dimensional finite element analysis model of the buried precast arch structure has been meticulously established, considering arch segments’ joining and surface contact and interaction between surrounding soil and concrete structures. The behavior of the arch structure was examined and compared with the influence of pavement types, number of lanes, and axle spacings. The crucial findings indicate that arch structure behavior differs depending on design truck layouts and pavement stiffness and less on multi-lane vehicle loading effects. Furthermore, the extent of pressure propagation under the wheel depends not only on the magnitude of the axle load but also on the stiffness of the pavement structures. Cement concrete pavement (CCP) allows better dispersion of wheel track pressure on the embankment than asphalt concrete pavement (ACP). Therefore, the degree of increase in arch displacement with ACP is higher than that of CCP. To enhance the coverage of the vehicle influence zone, an extension of the backfill material width should be considered from the bottom of the arch and with the prism plane created at a 45-degree transverse angle. Full article
Show Figures

Figure 1

27 pages, 6279 KiB  
Article
Investigation of the Performance and Fuel Oil Corrosion Resistance of Semi-Flexible Pavement with the Incorporation of Recycled Glass Waste
by Ayman Hassan AL-Qudah, Suhana Koting, Mohd Rasdan Ibrahim and Muna M. Alibrahim
Materials 2025, 18(15), 3442; https://doi.org/10.3390/ma18153442 - 22 Jul 2025
Viewed by 277
Abstract
Semi-flexible pavement (SFP) is a durable and cost-effective alternative to conventional rigid and flexible pavement and is formed by permeating an open-graded asphalt (OGA) layer with high-fluidity cement grout. The degradation of SFP mattresses due to fuel oil spills can result in significant [...] Read more.
Semi-flexible pavement (SFP) is a durable and cost-effective alternative to conventional rigid and flexible pavement and is formed by permeating an open-graded asphalt (OGA) layer with high-fluidity cement grout. The degradation of SFP mattresses due to fuel oil spills can result in significant maintenance costs. Incorporating glass waste (GW) into the construction of SFPs offers an eco-friendly solution, helping to reduce repair costs and environmental impact by conserving natural resources and minimizing landfill waste. The main objective of this research is to investigate the mechanical performance and fuel oil resistance of SFP composites containing different levels of glass aggregate (GlaSFlex composites). Fine glass aggregate (FGA) was replaced with fine virgin aggregate at levels of 0%, 20%, 40%, 60%, 80%, and 100% by mass. The results indicated the feasibility of utilizing FGA as a total replacement (100%) for fine aggregate in the OGA structural layer of SFPs. At 100% FGA, the composite exhibited excellent mechanical performance and durability, including a compressive strength of 8.93 MPa, a Marshall stability exceeding 38 kN, and a stiffness modulus of 19,091 MPa. Furthermore, the composite demonstrated minimal permanent deformation (0.04 mm), a high residual stability of 94.7%, a residual compressive strength of 83.3%, and strong resistance to fuel spillage with a mass loss rate of less than 1%, indicating excellent durability. Full article
(This article belongs to the Special Issue Advanced Materials for Pavement and Road Infrastructure)
Show Figures

Graphical abstract

24 pages, 3928 KiB  
Article
Performance Degradation and Fatigue Life Prediction of Hot Recycled Asphalt Mixture Under the Coupling Effect of Ultraviolet Radiation and Freeze–Thaw Cycle
by Tangxin Xie, Zhongming He, Yuetan Ma, Huanan Yu, Zhichen Wang, Chao Huang, Feiyu Yang and Pengxu Wang
Coatings 2025, 15(7), 849; https://doi.org/10.3390/coatings15070849 - 19 Jul 2025
Viewed by 401
Abstract
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles [...] Read more.
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles and ultraviolet aging on the performance of recycled asphalt mixtures. Systematic indoor road performance tests were carried out, and a fatigue prediction model was established to explore the comprehensive effects of recycled asphalt pavement (RAP) content, environmental action (ultraviolet radiation + freeze–thaw cycle), and other factors on the performance of recycled asphalt mixtures. The results show that the high-temperature stability of recycled asphalt mixtures decreases with the increase in environmental action days, while higher RAP content contributes to better high-temperature stability. The higher the proportion of old materials, the more significant the environmental impact on the mixture; both the flexural tensile strain and flexural tensile strength decrease with the increase in environmental action time. When the RAP content increased from 30% to 50%, the bending strain continued to decline. With the extension of environmental action days, the decrease in the immersion Marshall residual stability and the freeze–thaw splitting strength became more pronounced. Although the increase in RAP content can improve the forming stability, the residual stability decreases, and the freeze–thaw splitting strength is lower than that before the freeze–thaw. Based on the fatigue test results, a fatigue life prediction model with RAP content and freeze–thaw cycles as independent variables was constructed using the multiple nonlinear regression method. Verification shows that the established prediction model is basically consistent with the change trend of the test data. The research results provide a theoretical basis and optimization strategy for the performance improvement and engineering application of recycled asphalt materials. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

15 pages, 2854 KiB  
Review
A Review on the Applications of Basalt Fibers and Their Composites in Infrastructures
by Wenlong Yan, Jianzhe Shi, Xuyang Cao, Meng Zhang, Lei Li and Jingyi Jiang
Buildings 2025, 15(14), 2525; https://doi.org/10.3390/buildings15142525 - 18 Jul 2025
Viewed by 302
Abstract
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or [...] Read more.
This article presents a review on the applications of basalt fibers and their composites in infrastructures. The characteristics and advantages of high-performance basalt fibers and their composites are firstly introduced. Then, the article discusses strengthening using basalt fiber sheets and BFRP bars or grids, followed by concrete structures reinforced with BFRP bars, asphalt pavements, and cementitious composites reinforced with chopped basalt fibers in terms of mechanical behaviors and application examples. The load-bearing capacity of the strengthened structures can be increased by up to 60%, compared with those without strengthening. The lifespan of the concrete structures reinforced with BFRP can be extended by up to 50 years at least in harsh environments, which is much longer than that of ordinary reinforced concrete structures. In addition, the fatigue cracking resistance of asphalt can be increased by up to 600% with basalt fiber. The newly developed technologies including anchor bolts using BFRPs, self-sensing BFRPs, and BFRP–concrete composite structures are introduced in detail. Furthermore, suggestions are proposed for the forward-looking technologies, such as long-span bridges with BFRP cables, BFRP truss structures, BFRP with thermoplastic resin matrix, and BFRP composite piles. Full article
Show Figures

Figure 1

33 pages, 4942 KiB  
Review
A Review of Crack Sealing Technologies for Asphalt Pavement: Materials, Failure Mechanisms, and Detection Methods
by Weihao Min, Peng Lu, Song Liu and Hongchang Wang
Coatings 2025, 15(7), 836; https://doi.org/10.3390/coatings15070836 - 17 Jul 2025
Viewed by 410
Abstract
Asphalt pavement cracking represents a prevalent form of deterioration that significantly compromises road performance and safety under the combined effects of environmental factors and traffic loading. Crack sealing has emerged as a widely adopted and cost-effective preventive maintenance strategy that restores the pavement’s [...] Read more.
Asphalt pavement cracking represents a prevalent form of deterioration that significantly compromises road performance and safety under the combined effects of environmental factors and traffic loading. Crack sealing has emerged as a widely adopted and cost-effective preventive maintenance strategy that restores the pavement’s structural integrity and extends service life. This paper presents a systematic review of the development of crack sealing technology, conducts a comparative analysis of conventional sealing materials (including emulsified asphalt, hot-applied asphalt, polymer-modified asphalt, and rubber-modified asphalt), and examines the existing performance evaluation methodologies. Critical failure mechanisms are thoroughly investigated, including interfacial bond failure resulting from construction defects, material aging and degradation, hydrodynamic scouring effects, and thermal cycling impacts. Additionally, this review examines advanced sensing methodologies for detecting premature sealant failure, encompassing both non-destructive testing techniques and active sensing technologies utilizing intelligent crack sealing materials with embedded monitoring capabilities. Based on current research gaps, this paper identifies future research directions to guide the development of intelligent and sustainable asphalt pavement crack repair technologies. The proposed research framework provides valuable insights for researchers and practitioners seeking to improve the long-term effectiveness of pavement maintenance strategies. Full article
Show Figures

Figure 1

16 pages, 1551 KiB  
Review
Cold Central Plant Recycling Mixtures for High-Volume Pavements: Material Design, Performance, and Design Implications
by Abhary Eleyedath, Ayman Ali and Yusuf Mehta
Materials 2025, 18(14), 3345; https://doi.org/10.3390/ma18143345 - 16 Jul 2025
Viewed by 290
Abstract
The cold recycling (CR) technique is gaining traction, with an increasing demand for sustainable pavement construction practices. Cold in-place recycling (CIR) and cold central plant recycling (CCPR) are two strategies under the umbrella of cold recycling. These techniques use reclaimed asphalt pavement (RAP) [...] Read more.
The cold recycling (CR) technique is gaining traction, with an increasing demand for sustainable pavement construction practices. Cold in-place recycling (CIR) and cold central plant recycling (CCPR) are two strategies under the umbrella of cold recycling. These techniques use reclaimed asphalt pavement (RAP) to rehabilitate pavement, and CCPR offers the added advantage of utilizing stockpiled RAP. While many agencies have expertise in cold recycling techniques including CCPR, the lack of pavement performance data prevented the largescale implementation of these technologies. Recent studies in high-traffic volume applications demonstrate that CCPR technology can be implemented on the entire road network across all traffic levels. This reignited interest in the widespread implementation of CCPR. Therefore, the purpose of this study is to provide agencies with the most up-to-date information on CCPR to help them make informed decisions. To this end, this paper comprehensively reviews the mix-design for CCPR, the structural design of pavements containing CCPR layers, best construction practices, and the agency experience in using this technology on high-traffic volume roads to provide in-depth information on the steps to follow from project selection to field implementation. The findings specify the suitable laboratory curing conditions to achieve the optimum mix design and specimen preparation procedures to accurately capture the material properties. Additionally, this review synthesizes existing quantitative data from previous studies, providing context for the comparison of findings, where applicable. The empirical and mechanistic–empirical design inputs, along with the limitations of AASHTOWare Pavement ME software for analyzing this non-conventional material, are also presented. Full article
Show Figures

Figure 1

24 pages, 5824 KiB  
Article
Evaluation of Highway Pavement Structural Conditions Based on Measured Crack Morphology by 3D GPR and Finite Element Modeling
by Zhonglu Cao, Dianguang Cao, Haolei Chang, Yaoguo Fu, Xiyuan Shen, Weiping Huang, Huiping Wang, Wanlu Bao, Chao Feng, Zheng Tong, Xiaopeng Lin and Weiguang Zhang
Materials 2025, 18(14), 3336; https://doi.org/10.3390/ma18143336 - 16 Jul 2025
Viewed by 295
Abstract
Structural cracks are internal distresses that cannot be observed from pavement surfaces. However, the existing evaluation methods for asphalt pavement structures lack the consideration of these cracks, which are crucial for accurate pavement assessment and effective maintenance planning. This study develops a novel [...] Read more.
Structural cracks are internal distresses that cannot be observed from pavement surfaces. However, the existing evaluation methods for asphalt pavement structures lack the consideration of these cracks, which are crucial for accurate pavement assessment and effective maintenance planning. This study develops a novel framework combining a three-dimensional (3D) ground penetrating radar (GPR) and finite element modeling (FEM) to evaluate the severity of structural cracks. First, the size and depth development of structural cracks on a four-layer asphalt pavement were determined using the 3D GPR. Then, the range of influence of the structural crack on structural bearing capacity was analyzed based on 3D FEM simulation model. Structural cracks have a distance-dependent diminishing influence on the deflection in the horizontal direction, with the most pronounced effects within a 20-cm width zone surrounding the cracks. Finally, two indices have been proposed: the pavement structural crack index (PSCI) to assess the depth of crack damage and the structural crack reflection ratio (SCRR) to evaluate surface reflection. Besides, PSCI and SCRR are used to classify the severities of structural cracks: none, low, and high. The threshold between none/low damage is a structural crack damage rate of 0.19%, and the threshold between low/high damage is 0.663%. An experiment on a 132-km expressway indicated that the proposed method achieved 94.4% accuracy via coring. The results also demonstrate the strong correlation between PSCI and pavement deflection (R2 = 0.92), supporting performance-based maintenance strategies. The results also demonstrate the correlation between structural and surface cracks, with 65.8% of the cracked sections having both structural and surface cracks. Full article
Show Figures

Figure 1

23 pages, 11832 KiB  
Article
Investigation of Flexibility Enhancement Mechanisms and Microstructural Characteristics in Emulsified Asphalt and Latex-Modified Cement
by Wen Liu, Yong Huang, Yulin He, Hanyu Wei, Ruyun Bai, Huan Li, Qiushuang Cui and Sining Li
Sustainability 2025, 17(14), 6317; https://doi.org/10.3390/su17146317 - 9 Jul 2025
Viewed by 430
Abstract
The inherent limitations of ordinary cement mortar—characterized by its high brittleness and low flexibility—result in a diminished load-bearing capacity, predisposing concrete pavements to cracking. A novel approach has been proposed to enhance material performance by incorporating emulsified asphalt and latex into ordinary cement [...] Read more.
The inherent limitations of ordinary cement mortar—characterized by its high brittleness and low flexibility—result in a diminished load-bearing capacity, predisposing concrete pavements to cracking. A novel approach has been proposed to enhance material performance by incorporating emulsified asphalt and latex into ordinary cement mortar, aiming to improve the flexibility and durability of concrete pavements effectively. To further validate the feasibility of this proposed approach, a series of comprehensive experimental investigations were conducted, with corresponding conclusions detailed herein. As outlined below, the flexibility properties of the modified cement mortar were systematically evaluated at curing durations of 3, 7, and 28 days. The ratio of flexural to compressive strength can be increased by up to 38.9% at 8% emulsified asphalt content at the age of 28 days, and by up to 50% at 8% latex content. The mechanism of emulsified asphalt and latex-modified cement mortar was systematically investigated using a suite of analytical techniques: X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG-DTG), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Through comprehensive analyses of microscopic morphology, hydration products, and elemental distribution, the enhancement in cement mortar toughness can be attributed to two primary mechanisms. First, Ca2+ ions combine with the carbonyl groups of emulsified asphalt to form a flexible film structure during cement hydration, thereby reducing the formation of brittle hydrates. Second, active functional groups in latex form a three-dimensional network, regulating internal expansion-contraction tension in the modified mortar and extending its service life. Full article
Show Figures

Figure 1

20 pages, 1363 KiB  
Article
A Three-Dimensional Optimization Framework for Asphalt Mixture Design: Balancing Skeleton Stability, Segregation Control, and Mechanical Strength
by Jinfei Su, Linhao Fan, Lei Zhang, Shenduo Hu, Jicong Xu, Guanxian Li and Shihao Dong
Coatings 2025, 15(7), 807; https://doi.org/10.3390/coatings15070807 - 9 Jul 2025
Viewed by 346
Abstract
The composition design of asphalt mixtures plays a pivotal role in determining pavement performance and durability. To improve skeleton stability, paving uniformity, and mechanical strength, this research proposes a three-dimensional optimization framework for asphalt mixture design, focusing on aggregate gradation and optimum asphalt [...] Read more.
The composition design of asphalt mixtures plays a pivotal role in determining pavement performance and durability. To improve skeleton stability, paving uniformity, and mechanical strength, this research proposes a three-dimensional optimization framework for asphalt mixture design, focusing on aggregate gradation and optimum asphalt content. A skeleton-dense and anti-segregation gradation optimization method was developed by integrating a previously established skeleton-dense model with a segregation tendency prediction approach. In parallel, a mechanically driven method for determining optimum asphalt content was proposed by introducing the maximum migration shear stress as a performance-based alternative to the conventional Marshall stability parameter. Research results show that asphalt mixtures designed and compacted with the optimized gradation exhibit significantly enhanced high-temperature stability, while maintaining satisfactory low-temperature cracking resistance and moisture susceptibility. Field validation was conducted through the construction of a trial pavement section using the optimized gradation under recommended mixing and compaction temperatures. The resulting pavement demonstrated excellent compaction, strong resistance to segregation, and a highly stable spatial structure. These findings confirm the effectiveness of the proposed methodology in enhancing the high-temperature deformation resistance and overall structural integrity of asphalt mixtures. Full article
Show Figures

Figure 1

25 pages, 11157 KiB  
Review
Reuse of Retired Wind Turbine Blades in Civil Engineering
by Xuemei Yu, Changbao Zhang, Jing Li, Xue Bai, Lilin Yang, Jihao Han and Guoxiang Zhou
Buildings 2025, 15(14), 2414; https://doi.org/10.3390/buildings15142414 - 9 Jul 2025
Viewed by 350
Abstract
The rapid growth of the wind energy sector has led to a rising number of retired wind turbine blades (RWTBs) globally, posing significant environmental and logistical challenges for sustainable waste management. Handling enormous RWTBs at their end of life (EoL) has a significant [...] Read more.
The rapid growth of the wind energy sector has led to a rising number of retired wind turbine blades (RWTBs) globally, posing significant environmental and logistical challenges for sustainable waste management. Handling enormous RWTBs at their end of life (EoL) has a significant negative impact on resource conservation and the environment. Conventional disposal methods, such as landfilling and incineration, raise environmental concerns due to the non-recyclable composite material used in blade manufacturing. This study explores the upcycling potential of RWTBs as innovative construction materials, addressing both waste reduction and resource efficiency in the construction industry. By exploring recent advancements in recycling techniques, this research highlights applications such as structural components, lightweight aggregates for concrete, and reinforcement elements in asphalt pavements. The key findings demonstrate that repurposing blade-derived materials not only reduces landfill dependency but also lowers carbon emissions associated with conventional construction practices. However, challenges including material compatibility, economic feasibility, and standardization require further investigation. This study concludes that upcycling wind turbine blades into construction materials offers a promising pathway toward circular economy goals. To improve technical methods and policy support for large-scale implementation, it recommends collaboration among different fields, such as those related to cementitious and asphalt materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 5228 KiB  
Article
From Conventional to Electrified Pavements: A Structural Modeling Approach for Spanish Roads
by Gustavo Boada-Parra, Ronny Romero, Federico Gulisano, Freddy Apaza-Apaza, Damaris Cubilla, Andrea Serpi, Rafael Jurado-Piña and Juan Gallego
Coatings 2025, 15(7), 801; https://doi.org/10.3390/coatings15070801 - 9 Jul 2025
Viewed by 340
Abstract
The accelerated growth of the transport sector has increased oil consumption and greenhouse gas (GHG) emissions, intensifying global environmental challenges. The electrification of transportation has emerged as a key strategy to achieve sustainability targets, with electric vehicles (EVs) expected to account for 50% [...] Read more.
The accelerated growth of the transport sector has increased oil consumption and greenhouse gas (GHG) emissions, intensifying global environmental challenges. The electrification of transportation has emerged as a key strategy to achieve sustainability targets, with electric vehicles (EVs) expected to account for 50% of global car sales by 2035. However, widespread adoption requires smart infrastructure capable of enabling dynamic in-motion charging. In this context, Electric Road Systems (ERSs), particularly those based on Wireless Power Transfer (WPT) technologies, offer a promising solution by transferring energy between road-embedded transmitters and vehicle-mounted receivers. This study assesses the structural response and service life of conventional and electrified asphalt pavement sections representative of the Spanish road network. Several standard pavement configurations were analyzed under heavy traffic (dual axles, 13 tons) using a hybrid approach combining mechanistic–empirical multilayer modeling and three-dimensional Finite Element Method (FEM) simulations. The electrified designs integrate prefabricated charging units (CUs) placed at a 9 cm depth, disrupting the structural continuity of the pavement. The results reveal stress concentrations at the CU–asphalt interface and service life reductions of up to 50% in semiflexible pavements. Semirigid sections performed better, with average reductions close to 40%. These findings are based on numerical simulations of standard Spanish sections and do not include experimental validation. Full article
(This article belongs to the Special Issue Recent Research in Asphalt and Pavement Materials)
Show Figures

Graphical abstract

Back to TopTop