Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = arctic peatlands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 1393 KiB  
Article
The Tropical Peatlands in Indonesia and Global Environmental Change: A Multi-Dimensional System-Based Analysis and Policy Implications
by Yee Keong Choy and Ayumi Onuma
Reg. Sci. Environ. Econ. 2025, 2(3), 17; https://doi.org/10.3390/rsee2030017 - 1 Jul 2025
Viewed by 584
Abstract
Tropical peatlands store approximately 105 gigatons of carbon (GtC), serving as vital long-term carbon sinks, yet remain critically underrepresented in climate policy. Indonesia peatlands contain 57GtC—the largest tropical peatland carbon stock in the Asia–Pacific. However, decades of drainage, fires, and lax enforcement practices [...] Read more.
Tropical peatlands store approximately 105 gigatons of carbon (GtC), serving as vital long-term carbon sinks, yet remain critically underrepresented in climate policy. Indonesia peatlands contain 57GtC—the largest tropical peatland carbon stock in the Asia–Pacific. However, decades of drainage, fires, and lax enforcement practices have degraded vast peatland areas, turning them from carbon sinks into emission sources—as evidenced by the 1997 and 2015 peatland fires which emitted 2.57 Gt CO2eq and 1.75 Gt CO2eq, respectively. Using system theory validated against historical data (1997–2023), we develop a causal loop model revealing three interconnected feedback loops driving irreversible collapse: (1) drainage–desiccation–oxidation, where water table below −40 cm triggers peat oxidation (2–5 cm subsistence) and fires; (2) fire–climate–permafrost, wherein emissions intensify radiative forcing, destabilizing monsoons and accelerating Arctic permafrost thaw (+15% since 2000); and (2) economy–governance failure, perpetuated by palm oil’s economic dominance and slack regulatory oversight. To break these vicious cycles, we propose a precautionary framework featuring IoT-enforced water table (≤40 cm), reducing emissions by 34%, legally protected “Global Climate Stabilization Zones” for peat domes (>3 m depth), safeguarding 57 GtC, and ASEAN transboundary enforcement funded by a 1–3% palm oil levy. Without intervention, annual emissions may reach 2.869 GtCO2e by 2030 (Nationally Determined Contribution’s business-as-usual scenario). Conversely, rewetting 590 km2/year aligns with Indonesia’s FOLU Net Sink 2030 target (−140 Mt CO2e) and mitigates 1.4–1.6 MtCO2 annually. We conclude that integrating peatlands as irreplaceable climate infrastructure into global policy is essential for achieving Paris Agreement goals and SDGs 13–15. Full article
Show Figures

Figure 1

22 pages, 9253 KiB  
Article
New Method for Hydraulic Characterization of Variably Saturated Zone in Peatland-Dominated Permafrost Mires
by Radhakrishna Bangalore Lakshmiprasad, Stephan Peth, Susanne K. Woche and Thomas Graf
Land 2024, 13(12), 1990; https://doi.org/10.3390/land13121990 - 22 Nov 2024
Viewed by 1541
Abstract
Modeling peatland hydraulic processes in cold regions requires defining near-surface hydraulic parameters. The current study aims to determine the soil freezing and water characteristic curve parameters for organic soils from peatland-dominated permafrost mires. The three research objectives are as follows: (i) Setting up [...] Read more.
Modeling peatland hydraulic processes in cold regions requires defining near-surface hydraulic parameters. The current study aims to determine the soil freezing and water characteristic curve parameters for organic soils from peatland-dominated permafrost mires. The three research objectives are as follows: (i) Setting up an in situ soil freezing characteristic curve experiment by installing sensors for measuring volumetric water content and temperature in Storflaket mire, Abisko region, Sweden; (ii) Conducting laboratory evaporation experiments and inverse numerical modeling to determine soil water characteristic curve parameters and comparing three soil water characteristic curve models to the laboratory data; (iii) Deriving a relationship between soil freezing and water characteristic curves and optimizing this equation with sensor data from (i). A long-lasting in situ volumetric water content station has been successfully set up in sub-Arctic Sweden. The soil water characteristic curve experiments showed that bimodality also exists for the investigated peat soils. The optimization results of the bimodal relationship showed excellent agreement with the soil freezing cycle measurements. To the best of our knowledge, this is one of the first studies to establish and test bimodality for frozen peat soils. The estimated hydraulic parameters could be used to better simulate permafrost dynamics in peat soils. Full article
Show Figures

Figure 1

14 pages, 1567 KiB  
Article
Relating Paramagnetic Properties to Molecular Parameters of Humic Acids Isolated from Permafrost Peatlands in the European Arctic
by Evgeny Lodygin, Roman Vasilevich and Evgeny Abakumov
Molecules 2024, 29(1), 104; https://doi.org/10.3390/molecules29010104 - 23 Dec 2023
Cited by 3 | Viewed by 1329
Abstract
Free radicals (FRs) are intermediate participants in the transformation process of soil organic matter, and free radical activity is a fundamental property of humic substances. The aim of this work was to conduct a comparative study of the paramagnetic properties of humic acids [...] Read more.
Free radicals (FRs) are intermediate participants in the transformation process of soil organic matter, and free radical activity is a fundamental property of humic substances. The aim of this work was to conduct a comparative study of the paramagnetic properties of humic acids (HAs) isolated from Histosols by electron paramagnetic resonance (EPR) spectroscopy. The studied Histosols are found in permafrost peatlands in four natural geographic subzones of the European Arctic (from forest tundra to northern tundra). The results obtained showed that in anaerobic conditions on the peatlands in the tundra zone, the formation of semiquinone-type radicals occurs through the reduction of quinone fragments of HAs and leads to an increase in the concentration of paramagnetic centres within HAs. PCA analysis allowed us to reveal relationships between the properties of the initial raw peat samples, the molecular composition of the isolated HAs, and their paramagnetic parameters. It was found that FR localization occurs predominantly on aromatic fragments of lignin nature, which are confined to the low molecular weight fraction of HAs. The g-factor values of the EPR spectra of HAs indicate the presence of carbon- and oxygen-centred FRs in the HA structure, with a predominance of the latter. Full article
Show Figures

Figure 1

16 pages, 4717 KiB  
Article
One Step Closer to Enigmatic USCα Methanotrophs: Isolation of a Methylocapsa-like Bacterium from a Subarctic Soil
by Olga V. Danilova, Igor Y. Oshkin, Svetlana E. Belova, Kirill K. Miroshnikov, Anastasia A. Ivanova and Svetlana N. Dedysh
Microorganisms 2023, 11(11), 2800; https://doi.org/10.3390/microorganisms11112800 - 17 Nov 2023
Cited by 2 | Viewed by 2006
Abstract
The scavenging of atmospheric trace gases has been recognized as one of the lifestyle-defining capabilities of microorganisms in terrestrial polar ecosystems. Several metagenome-assembled genomes of as-yet-uncultivated methanotrophic bacteria, which consume atmospheric CH4 in these ecosystems, have been retrieved in cultivation-independent studies. In [...] Read more.
The scavenging of atmospheric trace gases has been recognized as one of the lifestyle-defining capabilities of microorganisms in terrestrial polar ecosystems. Several metagenome-assembled genomes of as-yet-uncultivated methanotrophic bacteria, which consume atmospheric CH4 in these ecosystems, have been retrieved in cultivation-independent studies. In this study, we isolated and characterized a representative of these methanotrophs, strain D3K7, from a subarctic soil of northern Russia. Strain D3K7 grows on methane and methanol in a wide range of temperatures, between 5 and 30 °C. Weak growth was also observed on acetate. The presence of acetate in the culture medium stimulated growth at low CH4 concentrations (~100 p.p.m.v.). The finished genome sequence of strain D3K7 is 4.15 Mb in size and contains about 3700 protein-encoding genes. According to the result of phylogenomic analysis, this bacterium forms a common clade with metagenome-assembled genomes obtained from the active layer of a permafrost thaw gradient in Stordalen Mire, Abisco, Sweden, and the mineral cryosol at Axel Heiberg Island in the Canadian High Arctic. This clade occupies a phylogenetic position in between characterized Methylocapsa methanotrophs and representatives of the as-yet-uncultivated upland soil cluster alpha (USCα). As shown by the global distribution analysis, D3K7-like methanotrophs are not restricted to polar habitats but inhabit peatlands and soils of various climatic zones. Full article
Show Figures

Figure 1

24 pages, 3434 KiB  
Article
Comparison of 210Pb Age Models of Peat Cores Derived from the Arkhangelsk Region
by Evgeny Yakovlev, Alina Kudryavtseva and Aleksandr Orlov
Appl. Sci. 2023, 13(18), 10486; https://doi.org/10.3390/app131810486 - 20 Sep 2023
Viewed by 1224
Abstract
Dating young peatlands using the 210Pb dating procedure is a challenging task. The traditional 210Pb age models assume an exponential decline in radioactivity in line with depth in the peat profile. Lead exhibits considerable migratory capacity in Arctic peatlands; hence, to [...] Read more.
Dating young peatlands using the 210Pb dating procedure is a challenging task. The traditional 210Pb age models assume an exponential decline in radioactivity in line with depth in the peat profile. Lead exhibits considerable migratory capacity in Arctic peatlands; hence, to perform precise peat dating, existing models should be enhanced to remove the effects of migration. Independent isotope chronometers, such as 137Cs, can verify this. The Monte Carlo method and IP-CRS were utilised, together with several CA, CF/CS, PF, and CF models, to analyse the peat core samples acquired in the Arkhangelsk region. Data analysis revealed that the height partitioning of 137Cs and 210Pb is associated with physical characteristics, like the peat ash and the bulk density of the bog. Comparison between the natural activity of 210Pb in the peat and the radioactivity of 137Cs measured at depths of 19–21 cm in relation to the global fallout in 1963 indicated that the CF/CS, CF, and IP-CRS models (1965, 1962 and 1964, respectively) gave the closest age to the reference point given. IP-CRS was found to be the preferred model of these three options, as it gave a rather closer correlation with the 137Cs activity specific to the reference layer, allowing the error. The core dating of 210Pb showed an age of 1963 for a depth of 17–19 cm, which was in agreement with the reference horizon 137Cs and ash content, thus validating the accuracy and sufficiency of the selected model turf profile chronology. The maximum content of man-made radioisotopes in the peatlands corresponded to the formulation of the Partial Test Ban Treaty of 1963. The rates of accumulation of peat and atmospheric flux of 210Pb are in good agreement with the values available for the bogs of Northern Europe and those previously estimated by the authors in the subarctic region of European Russia. Although the problems of the complex migration-related distribution of 210Pb in the peat layer were considered, the dating methods used were effective in our study and can be adapted in following studies to perform the age determination of different peat deposits. Full article
Show Figures

Figure 1

15 pages, 5061 KiB  
Article
A New Land Cover Map of Two Watersheds under Long-Term Environmental Monitoring in the Swedish Arctic Using Sentinel-2 Data
by Yves Auda, Erik J. Lundin, Jonas Gustafsson, Oleg S. Pokrovsky, Simon Cazaurang and Laurent Orgogozo
Water 2023, 15(18), 3311; https://doi.org/10.3390/w15183311 - 19 Sep 2023
Cited by 6 | Viewed by 2752
Abstract
A land cover map of two arctic catchments near the Abisko Scientific Research Station was obtained based on a classification from a Sentinel-2 satellite image and a ground survey performed in July 2022. The two contiguous catchments, Miellajokka and Stordalen, are covered by [...] Read more.
A land cover map of two arctic catchments near the Abisko Scientific Research Station was obtained based on a classification from a Sentinel-2 satellite image and a ground survey performed in July 2022. The two contiguous catchments, Miellajokka and Stordalen, are covered by various ecotypes, from boreal forest to alpine tundra and peatland. Two classification algorithms, support vector machine and random forest, were tested and gave very similar results. The percentage of correctly classified pixels was over 88% in both cases. The developed workflow relies solely on open-source software and acquired ground observations. Space organization was directed by the altitude as demonstrated by the intersection of the land cover with the topography. Comparison between this new land cover map and previous ones based on data acquired between 2008 and 2011 shows some trends in vegetation cover evolution in response to climate change in the considered area. This land cover map is key input data for permafrost modeling and, hence, for the quantification of climate change impacts in the studied area. Full article
Show Figures

Figure 1

14 pages, 2955 KiB  
Article
Zonal Patterns of Changes in the Taxonomic Composition of Culturable Microfungi Isolated from Permafrost Peatlands of the European Northeast
by Yulia A. Vinogradova, Vera A. Kovaleva, Evgenia M. Perminova, Olga V. Shakhtarova and Elena M. Lapteva
Diversity 2023, 15(5), 639; https://doi.org/10.3390/d15050639 - 9 May 2023
Cited by 3 | Viewed by 1965
Abstract
This paper provides the results of a study on fungal species diversity in the active and permafrost layers of peatlands within frozen peatbogs in the flatland areas of the cryolitozone, European Northeast of Russia (forest-tundra zone, southern and northern tundra subzones). Fungal taxonomic [...] Read more.
This paper provides the results of a study on fungal species diversity in the active and permafrost layers of peatlands within frozen peatbogs in the flatland areas of the cryolitozone, European Northeast of Russia (forest-tundra zone, southern and northern tundra subzones). Fungal taxonomic list includes eighty-three species from seventeen genera and two forms of Mycelia sterilia. The phylum Mucoromycota is represented by fifteen species (18% of total isolate number), and these species exhibit the following distribution by genus: Mucor (four), Mortierella (seven), Umbelopsis (three), Podila (one). Ascomycota is represented by sixty-eight species from thirteen genera. The genus Penicillium dominates the species saturation (thirty-seven species, 44%). Soil microfungal complex is represented by rare species (51%), random species (32%), frequent species (15%), and dominant species (2%). In peat soils, dominant species are Penicillium canescens (72%) and non-pigmented (albino) Mycelia sterilia (61%); abundant species are Talaromyces funiculosus (41%), Pseudogymnoascus pannorum (36%), albino Mycelia sterilia (29%), Umbelopsis vinacea (25%), Mortierella alpina (17%), Penicillium decumbens (21%), P. spinulosum (20%), and P. canescens (17%). In active layers of peat soils, abundant species are Penicillium thomii (14%), Mycelia sterilia (13%), Penicillium spinulosum (13%), Penicillium simplicissimum (13%) in forest-tundra; Talaromyces funiculosus (21%), albino Mycelia sterilia (15%), Umbelopsis vinacea (14%) in southern tundra; Penicillium decumbens (23%), P. canescens (17%), P. thomii (13%) in northern tundra. In permafrost peat layers, abundant species are Penicillium spinulosum (17%), Talaromyces funiculosus (34%), and Umbelopsis vinacea (15%) in forest-tundra; Pseudogymnoascus pannorum (30%) and Mortierella alpina (28%) in southern tundra; Pseudogymnoascus pannorum (80%) in northern tundra. Full article
(This article belongs to the Special Issue Soil Ecosystem Restoration after Disturbances)
Show Figures

Figure 1

19 pages, 2089 KiB  
Article
Mapping Fractional Vegetation Coverage across Wetland Classes of Sub-Arctic Peatlands Using Combined Partial Least Squares Regression and Multiple Endmember Spectral Unmixing
by Heidi Cunnick, Joan M. Ramage, Dawn Magness and Stephen C. Peters
Remote Sens. 2023, 15(5), 1440; https://doi.org/10.3390/rs15051440 - 4 Mar 2023
Cited by 8 | Viewed by 2826
Abstract
Vegetation communities play a key role in governing the atmospheric-terrestrial fluxes of water, carbon, nutrients, and energy. The expanse and heterogeneity of vegetation in sub-arctic peatland systems makes monitoring change at meaningful spatial resolutions and extents challenging. We use a field-collected spectral endmember [...] Read more.
Vegetation communities play a key role in governing the atmospheric-terrestrial fluxes of water, carbon, nutrients, and energy. The expanse and heterogeneity of vegetation in sub-arctic peatland systems makes monitoring change at meaningful spatial resolutions and extents challenging. We use a field-collected spectral endmember reference library to unmix hyperspectral imagery and map vegetation coverage at the level of plant functional type (PFT), across three wetland sites in sub-arctic Alaska. This study explores the optimization and parametrization of multiple endmember spectral mixture analysis (MESMA) models to estimate coverage of PFTs across wetland classes. We use partial least squares regression (PLSR) to identify a parsimonious set of critical bands for unmixing and compare the reference and modeled coverage. Unmixing, using a full set of 110-bands and a smaller set of 4-bands, results in maps that effectively discriminate between PFTs, indicating a small investment in fieldwork results in maps mirroring the true ground cover. Both sets of spectral bands differentiate between PFTs, but the 4-band unmixing library results in more accurate predictive mapping with lower computational cost. Reducing the unmixing reference dataset by constraining the PFT endmembers to those identified in the field-site produces only a small advantage for mapping, suggesting extensive fieldwork may not be necessary for MESMA to have a high explanatory value in these remote environments. Full article
(This article belongs to the Special Issue Application of Remote Sensing for Monitoring of Peatlands)
Show Figures

Figure 1

20 pages, 4915 KiB  
Article
Geochemical Characteristics of the Vertical Distribution of Heavy Metals in the Hummocky Peatlands of the Cryolithozone
by Roman Vasilevich, Mariya Vasilevich, Evgeny Lodygin and Evgeny Abakumov
Int. J. Environ. Res. Public Health 2023, 20(5), 3847; https://doi.org/10.3390/ijerph20053847 - 21 Feb 2023
Cited by 6 | Viewed by 2976
Abstract
One of the main reservoirs depositing various classes of pollutants in high latitude regions are wetland ecosystems. Climate warming trends result in the degradation of permafrost in cryolitic peatlands, which exposes the hydrological network to risks of heavy metal (HM) ingress and its [...] Read more.
One of the main reservoirs depositing various classes of pollutants in high latitude regions are wetland ecosystems. Climate warming trends result in the degradation of permafrost in cryolitic peatlands, which exposes the hydrological network to risks of heavy metal (HM) ingress and its subsequent migration to the Arctic Ocean basin. The objectives included: (1) carrying out a quantitative analysis of the content of HMs and As across the profile of Histosols in background and technogenic landscapes of the Subarctic region, (2) evaluating the contribution of the anthropogenic impact to the accumulation of trace elements in the seasonally thawed layer (STL) of peat deposits, (3) discovering the effect of biogeochemical barriers on the vertical distribution of HMs and As. The analyses of elements were conducted by atom emission spectroscopy with inductively coupled plasma, atomic absorption spectroscopy and scanning electron microscopy with an energy-dispersive X-ray detecting. The study focused on the characteristics of the layer-by-layer accumulation of HMs and As in hummocky peatlands of the extreme northern taiga. It revealed the upper level of microelement accumulation to be associated with the STL as a result of aerogenic pollution. Specifically composed spheroidal microparticles found in the upper layer of peat may serve as indicators of the area polluted by power plants. The accumulation of water-soluble forms of most of the pollutants studied on the upper boundary of the permafrost layer (PL) is explained by the high mobility of elements in an acidic environment. In the STL, humic acids act as a significant sorption geochemical barrier for elements with a high stability constant value. In the PL, the accumulation of pollutants is associated with their sorption on aluminum-iron complexes and interaction with the sulfide barrier. A significant contribution of biogenic element accumulation was shown by statistical analysis. Full article
Show Figures

Figure 1

18 pages, 9200 KiB  
Article
Microbial Communities of Peaty Permafrost Tundra Soils along the Gradient of Environmental Conditions and Anthropogenic Disturbance in Pechora River Delta in the Eastern European Arctic
by Irina Kravchenko, Denis Grouzdev, Marina Sukhacheva, Tatyana Minayeva and Andrey Sirin
Diversity 2023, 15(2), 251; https://doi.org/10.3390/d15020251 - 10 Feb 2023
Cited by 2 | Viewed by 2294
Abstract
Microbial communities play crucial roles in the global carbon cycle, particularly in peatland and tundra ecosystems experiencing climate change. The latest IPCC assessments highlight the anthropogenic changes in the Arctic peatlands and their consequences due to global climate change. These disturbances could trigger [...] Read more.
Microbial communities play crucial roles in the global carbon cycle, particularly in peatland and tundra ecosystems experiencing climate change. The latest IPCC assessments highlight the anthropogenic changes in the Arctic peatlands and their consequences due to global climate change. These disturbances could trigger permafrost degradation and intensification of the biogeochemical processes resulting in greenhouse gas formation. In this study, we describe the variation in diversity and composition of soil microbial communities from shallow peat tundra sites with different anthropogenic loads and applied restoration interventions in the landscape of remnant fragments of terraces in the Pechora River delta, the Russian Arctic, Nenets Autonomous Okrug. The molecular approaches, including quantitative real-time PCR and high-throughput Illumina sequencing of 16S RNA and ITS, were applied to examine the bacterial and fungal communities in the soil samples. Anthropogenic disturbance leads to a significant decrease in the representation of Acidobacteria and Verrucomicrobia, while the proportion and diversity of Proteobacteria increase. Fungal communities in undisturbed sites may be characterized as monodominant, and anthropogenic impact increases the fungal diversity. Only the verrucomicrobial methanotrophs Methyloacifiphilaceae were found in the undisturbed sites, but proteobacterial methanotrophs Methylobacterium-Methylorubrum, as well as different methylotrophs affiliated with Methylophilaceae, and Beijerinckiaceae (Methylorosula), were detected in disturbed sites. Full article
(This article belongs to the Special Issue Peatland Ecosystems under Climate Change)
Show Figures

Figure 1

16 pages, 6272 KiB  
Article
Microbial Community Structure in Ancient European Arctic Peatlands
by Alexander Pastukhov, Vera Kovaleva and Dmitry Kaverin
Plants 2022, 11(20), 2704; https://doi.org/10.3390/plants11202704 - 13 Oct 2022
Cited by 6 | Viewed by 2200
Abstract
Northern peatlands, which are crucial reservoirs of carbon and nitrogen (415 ± 150 and 10 ± 7 Pg, respectively), are vulnerable to microbial mineralization after permafrost thaw. This study was carried out in four key sites containing northern permafrost peatland, which are located [...] Read more.
Northern peatlands, which are crucial reservoirs of carbon and nitrogen (415 ± 150 and 10 ± 7 Pg, respectively), are vulnerable to microbial mineralization after permafrost thaw. This study was carried out in four key sites containing northern permafrost peatland, which are located along the southern cryolithozone. The aim of this study is to characterize amino acids and the microbial community composition in peat strata along a climate gradient. Amino acids and microbiota diversity were studied by liquid chromatography and a quantitative polymerase chain reaction. The share of amino acid fragments was 2.6–7.8, and it is highly significantly correlated (r = 0.87, −0.74 and 0.67, p ˂ 0.05) with the organic nitrogen concentration in the soil, the C/N ratio, and δ15N. The data shows the existence of a large pool of microorganisms concentrated in permafrost peatlands, and a vertical continuum of bacteria, archaea, and microscopic fungi along the peat profile, due to the presence of microorganisms in each layer, throughout all the peat strata. There is no significant correlation between microorganism distribution and the plant macrofossil composition of the peat strata. Determining factors for the development of microorganism abundance are aeration and hydrothermal conditions. The availability of nitrogen will limit the ability of plants and microorganisms to respond to changing environmental conditions; however, with the increased decomposition of organic matter, amino acids will be released as organic sources of nitrogen stored in the protein material of peat-forming plants and microbial communities, which can also affect the organic nitrogen cycle. Full article
(This article belongs to the Special Issue Arctic and Boreal Ecosystems Changes)
Show Figures

Figure 1

21 pages, 3780 KiB  
Article
The Molecular Composition of Humic Acids in Permafrost Peats in the European Arctic as Paleorecord of the Environmental Conditions of the Holocene
by Roman Vasilevich, Evgeny Lodygin and Evgeny Abakumov
Agronomy 2022, 12(9), 2053; https://doi.org/10.3390/agronomy12092053 - 28 Aug 2022
Cited by 14 | Viewed by 2270
Abstract
The purpose of our research is focused on examination of the transformation regularities of molecular composition of humic acids (HAs) in the hummocky frozen peatlands of the European Arctic as a marker of climatic changes in the Holocene, and assessment of the stabilization [...] Read more.
The purpose of our research is focused on examination of the transformation regularities of molecular composition of humic acids (HAs) in the hummocky frozen peatlands of the European Arctic as a marker of climatic changes in the Holocene, and assessment of the stabilization of soil organic matter under the conditions of modern climatic warming. Histosols located in the two subzones of the European Arctic served as the research subjects. This territory is actively used for reindeer breeding, which is a vital agricultural branch in the Far North of the Russian Federation. The data obtained reveal the main trends in the formation of HAs from Arctic peatlands under different environmental conditions. Modern peat sediments (top layers) in the middle and late Holocene period formed out of bryophyte residues and contained HAs with long-chain carbohydrate and paraffin structures in their composition. These structures enlarged the dynamic radii of HA molecules, and, thus, caused high average molecular weight values. The more favorable climatic conditions of the early Holocene (the Atlantic optimum) defined the botanical composition of peat, which was dominated by tree and sedge communities with high contents of lignin components and, as a consequence, a larger share of aromatic fragments, characterized by thermo-biodynamic resistance in HAs of horizons in the lower and central profile parts. The molecules of HAs are an archive of paleoclimatic records. The Subboreal and Subatlantic climatic conditions determined the specifics of vegetation precursors and, as a result, the molecular structure of HAs in seasonally thawed layers, with a predominance of long-chain aliphatic fragments. The conversion of HAs from Histosols led to an increase in the proportion of carbon in branched and short-chain paraffinic structures with their subsequent cyclization and aromatization. The results of this process are most clearly manifested in layers formed during the Holocene I and II climatic optima. Higher biologically active temperatures of the seasonally thawed layer of soils at bare spots (without vegetation) determined the accumulation of thermodynamically more stable HA molecules with a high content of aromatic fragments. This contributed to both the stabilization of the SOM and the conservation of peatlands in general. Full article
Show Figures

Figure 1

44 pages, 3089 KiB  
Review
Microbiogeochemical Traits to Identify Nitrogen Hotspots in Permafrost Regions
by Claudia Fiencke, Maija E. Marushchak, Tina Sanders, Rica Wegner and Christian Beer
Nitrogen 2022, 3(3), 458-501; https://doi.org/10.3390/nitrogen3030031 - 12 Aug 2022
Cited by 10 | Viewed by 5746
Abstract
Permafrost-affected tundra soils are large carbon (C) and nitrogen (N) reservoirs. However, N is largely bound in soil organic matter (SOM), and ecosystems generally have low N availability. Therefore, microbial induced N-cycling processes and N losses were considered negligible. Recent studies show that [...] Read more.
Permafrost-affected tundra soils are large carbon (C) and nitrogen (N) reservoirs. However, N is largely bound in soil organic matter (SOM), and ecosystems generally have low N availability. Therefore, microbial induced N-cycling processes and N losses were considered negligible. Recent studies show that microbial N processing rates, inorganic N availability, and lateral N losses from thawing permafrost increase when vegetation cover is disturbed, resulting in reduced N uptake or increased N input from thawing permafrost. In this review, we describe currently known N hotspots, particularly bare patches in permafrost peatland or permafrost soils affected by thermokarst, and their microbiogeochemical characteristics, and present evidence for previously unrecorded N hotspots in the tundra. We summarize the current understanding of microbial N cycling processes that promote the release of the potent greenhouse gas (GHG) nitrous oxide (N2O) and the translocation of inorganic N from terrestrial into aquatic ecosystems. We suggest that certain soil characteristics and microbial traits can be used as indicators of N availability and N losses. Identifying N hotspots in permafrost soils is key to assessing the potential for N release from permafrost-affected soils under global warming, as well as the impact of increased N availability on emissions of carbon-containing GHGs. Full article
(This article belongs to the Special Issue Nitrogen Cycling in Permafrost Soils)
Show Figures

Figure 1

18 pages, 5282 KiB  
Article
Fires on Ice: Emerging Permafrost Peatlands Fire Regimes in Russia’s Subarctic Taiga
by Vera Kuklina, Oleg Sizov, Elena Rasputina, Irina Bilichenko, Natalia Krasnoshtanova, Viktor Bogdanov and Andrey N. Petrov
Land 2022, 11(3), 322; https://doi.org/10.3390/land11030322 - 23 Feb 2022
Cited by 9 | Viewed by 4292
Abstract
Wildfires in permafrost areas, including smoldering fires (e.g., “zombie fires”), have increasingly become a concern in the Arctic and subarctic. Their detection is difficult and requires ground truthing. Local and Indigenous knowledge are becoming useful sources of information that could guide future research [...] Read more.
Wildfires in permafrost areas, including smoldering fires (e.g., “zombie fires”), have increasingly become a concern in the Arctic and subarctic. Their detection is difficult and requires ground truthing. Local and Indigenous knowledge are becoming useful sources of information that could guide future research and wildfire management. This paper focuses on permafrost peatland fires in the Siberian subarctic taiga linked to local communities and their infrastructure. It presents the results of field studies in Evenki and old-settler communities of Tokma and Khanda in the Irkutsk region of Russia in conjunction with concurrent remote sensing data analysis. The study areas located in the discontinuous permafrost zone allow examination of the dynamics of wildfires in permafrost peatlands and adjacent forested areas. Interviews revealed an unusual prevalence and witness-observed characteristics of smoldering peatland fires over permafrost, such as longer than expected fire risk periods, impacts on community infrastructure, changes in migration of wild animals, and an increasing number of smoldering wildfires including overwintering “zombie fires” in the last five years. The analysis of concurrent satellite remote sensing data confirmed observations from communities, but demonstrated a limited capacity of satellite imagery to accurately capture changing wildfire activity in permafrost peatlands, which may have significant implications for global climate. Full article
(This article belongs to the Topic Climate Change and Environmental Sustainability)
Show Figures

Figure 1

19 pages, 105265 KiB  
Article
Towards a Monitoring Approach for Understanding Permafrost Degradation and Linked Subsidence in Arctic Peatlands
by Betsabe de la Barreda-Bautista, Doreen S. Boyd, Martha Ledger, Matthias B. Siewert, Chris Chandler, Andrew V. Bradley, David Gee, David J. Large, Johan Olofsson, Andrew Sowter and Sofie Sjögersten
Remote Sens. 2022, 14(3), 444; https://doi.org/10.3390/rs14030444 - 18 Jan 2022
Cited by 23 | Viewed by 5499
Abstract
Permafrost thaw resulting from climate warming is threatening to release carbon from high latitude peatlands. The aim of this research was to determine subsidence rates linked to permafrost thaw in sub-Arctic peatlands in Sweden using historical orthophotographic (orthophotos), Unoccupied Aerial Vehicle (UAV), and [...] Read more.
Permafrost thaw resulting from climate warming is threatening to release carbon from high latitude peatlands. The aim of this research was to determine subsidence rates linked to permafrost thaw in sub-Arctic peatlands in Sweden using historical orthophotographic (orthophotos), Unoccupied Aerial Vehicle (UAV), and Interferometric Synthetic Aperture Radar (InSAR) data. The orthophotos showed that the permafrost palsa on the study sites have been contracting in their areal extent, with the greatest rates of loss between 2002 and 2008. The surface motion estimated from differential digital elevation models from the UAV data showed high levels of subsidence (maximum of −25 cm between 2017 and 2020) around the edges of the raised palsa plateaus. The InSAR data analysis showed that raised palsa areas had the greatest subsidence rates, with maximum subsidence rates of 1.5 cm between 2017 and 2020; however, all wetland vegetation types showed subsidence. We suggest that the difference in spatial units associated with each sensor explains parts of the variation in the subsidence levels recorded. We conclude that InSAR was able to identify the areas most at risk of subsidence and that it can be used to investigate subsidence over large spatial extents, whereas UAV data can be used to better understand the dynamics of permafrost degradation at a local level. These findings underpin a monitoring approach for these peatlands. Full article
(This article belongs to the Special Issue Application of Remote Sensing for Monitoring of Peatlands)
Show Figures

Graphical abstract

Back to TopTop