Towards a Monitoring Approach for Understanding Permafrost Degradation and Linked Subsidence in Arctic Peatlands
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Field Data Collection on Vegetation and Soil
3.2. Decadal Scale Permafrost Degradation and Palsa Contraction
3.3. UAV-Captured Data for Digital Elevation Models (DEMs) and Vegetation Mapping
3.4. Surface Motion from Sentinel-1 InSAR
3.5. Statistical Analysis
4. Results
4.1. Vegetation and Soil Field Data
4.2. Decadal Scale Permafrost Degradation and Palsa Contraction
4.3. UAV-Derived Mapping of Vegetation Types
4.4. Subsidence Determined from UAV Derived DEMs
4.5. Surface Motion as Determined from Sentinel-1 ASPIS-InSAR
4.6. Comparing Surface Motions Derived from Differential DEMs and ASPIS-InSAR
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorrepaal, E.; Toet, S.; van Logtestijn, R.S.P.; Swart, E.; van de Weg, M.J.; Callaghan, T.V.; Aerts, R. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 2009, 460, 616–619. [Google Scholar] [CrossRef]
- Hugelius, G.A.-O.; Loisel, J.A.-O.; Chadburn, S.A.-O.X.; Jackson, R.A.-O.; Jones, M.A.-O.; MacDonald, G.; Marushchak, M.; Olefeldt, D.A.-O.; Packalen, M.; Siewert, M.A.-O.; et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. USA 2020, 117, 20438–20446. [Google Scholar] [CrossRef] [PubMed]
- Mishra, U.; Hugelius, G.; Shelef, E.; Yang, Y.; Strauss, J.; Lupachev, A.; Harden Jennifer, W.; Jastrow Julie, D.; Ping, C.-L.; Riley William, J.; et al. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Sci. Adv. 2021, 7, eaaz5236. [Google Scholar] [CrossRef] [PubMed]
- Tarnocai, C.; Canadell, J.G.; Schuur, E.A.G.; Kuhry, P.; Mazhitova, G.; Zimov, S. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 2009, 23. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Vogel, J.G.; Crummer, K.G.; Lee, H.; Sickman, J.O.; Osterkamp, T.E. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 2009, 459, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, N.; Westermann, S.; Lamba, S.; Shurpali, N.; Sannel, A.B.K.; Schurgers, G.; Miller, P.A.; Smith, B. Modelling past and future peatland carbon dynamics across the pan-Arctic. Glob. Chang. Biol. 2020, 26, 4119–4133. [Google Scholar] [CrossRef] [Green Version]
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.G.; Grosse, G.; Kuhry, P.; Hugelius, G.; Koven, C.; et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- IPCC. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Sannel, A.B.K.; Kuhry, P. Warming-induced destabilization of peat plateau/thermokarst lake complexes. J. Geophys. Res.: Biogeosci. 2011, 116, 81. [Google Scholar] [CrossRef]
- Gibson, C.; Cottenie, K.; Gingras-Hill, T.; Kokelj, S.V.; Baltzer, J.L.; Chasmer, L.; Turetsky, M.R. Mapping and understanding the vulnerability of northern peatlands to permafrost thaw at scales relevant to community adaptation planning. Environ. Res. Lett. 2021, 16, 055022. [Google Scholar] [CrossRef]
- Grosse, G.; Goetz, S.; McGuire, A.D.; Romanovsky, V.E.; Schuur, E.A.G. Changing permafrost in a warming world and feedbacks to the Earth system. Environ. Res. Lett. 2016, 11, 040201. [Google Scholar] [CrossRef]
- Zuidhoff, F.S.; Kolstrup, E. Changes in palsa distribution in relation to climate change in Laivadalen, northern Sweden, especially 1960–1997. Permafr. Periglac. Processes 2000, 11, 55–69. [Google Scholar] [CrossRef]
- Sjögersten, S.; Caul, S.; Daniell, T.J.; Jurd, A.P.S.; O’Sullivan, O.S.; Stapleton, C.S.; Titman, J.J. Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands. Soil Biol. Biochem. 2016, 98, 42–53. [Google Scholar] [CrossRef]
- Sjöberg, Y.; Marklund, P.; Pettersson, R.; Lyon, S.W. Geophysical mapping of palsa peatland permafrost. Cryosphere 2015, 9, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Olvmo, M.; Holmer, B.; Thorsson, S.; Reese, H.; Lindberg, F. Sub-arctic palsa degradation and the role of climatic drivers in the largest coherent palsa mire complex in Sweden (Vissátvuopmi), 1955–2016. Sci. Rep. 2020, 10, 8937. [Google Scholar] [CrossRef]
- Zhang, Y.; Touzi, R.; Feng, W.; Hong, G.; Lantz, T.C.; Kokelj, S.V. Landscape-scale variations in near-surface soil temperature and active-layer thickness: Implications for high-resolution permafrost mapping. Permafr. Periglac. Processes 2021, 32, 627–640. [Google Scholar] [CrossRef]
- Johansson, M.; Åkerman, J.; Keuper, F.; Christensen, T.R.; Lantuit, H.; Callaghan, T.V. Past and present permafrost temperatures in the Abisko area: Redrilling of boreholes. AMBIO 2011, 40, 558. [Google Scholar] [CrossRef] [Green Version]
- Johansson, M.; Callaghan, T.V.; Bosiö, J.; Åkerman, H.J.; Jackowicz-Korczynski, M.; Christensen, T.R. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden. Environ. Res. Lett. 2013, 8, 035025. [Google Scholar] [CrossRef] [Green Version]
- Åkerman, H.J.; Johansson, M. Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafr. Periglac. Processes 2008, 19, 279–292. [Google Scholar] [CrossRef]
- Sannel, A.B.K.; Hugelius, G.; Jansson, P.; Kuhry, P. Permafrost warming in a subarctic peatland—Which meteorological controls are most important? Permafr. Periglac. Processes 2016, 27, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.E.; Douglas, T.A.; Barbato, R.A.; Saari, S.; Edwards, J.D.; Jones, R.M. Linking vegetation cover and seasonal thaw depths in interior Alaska permafrost terrains using remote sensing. Remote Sens. Environ. 2019, 233, 111363. [Google Scholar] [CrossRef]
- Kokfelt, U.; RosÉN, P.; Schoning, K.; Christensen, T.R.; FÖRster, J.; Karlsson, J.; Reuss, N.; Rundgren, M.; Callaghan, T.V.; Jonasson, C.; et al. Ecosystem responses to increased precipitation and permafrost decay in subarctic Sweden inferred from peat and lake sediments. Glob. Change Biol. 2009, 15, 1652–1663. [Google Scholar] [CrossRef]
- Sannel, A.B.K. Ground temperature and snow depth variability within a subarctic peat plateau landscape. Permafr. Periglac. Processes 2020, 31, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Varner, R.K.; Crill, P.M.; Frolking, S.; McCalley, C.K.; Burke, S.A.; Chanton, J.P.; Holmes, M.E.; Null, N.; Saleska, S.; Palace, M.W. Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2022, 380, 20210022. [Google Scholar] [CrossRef]
- Olefeldt, D.; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G.; Kuhry, P.; McGuire, A.D.; Romanovsky, V.E.; Sannel, A.B.K.; Schuur, E.A.G.; et al. Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 2016, 7, 13043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhongqiong, Z.; Qingbai, W.; Guanli, J.; Siru, G.; Ji, C.; Yongzhi, L. Changes in the permafrost temperatures from 2003 to 2015 in the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2020, 169, 102904. [Google Scholar] [CrossRef]
- Luoto, M.; Seppälä, M. Thermokarst ponds as indicators of the former distribution of palsas in Finnish Lapland. Permafr. Periglac. Processes 2003, 14, 19–27. [Google Scholar] [CrossRef]
- Vallée, S.; Payette, S. Collapse of permafrost mounds along a subarctic river over the last 100 years (northern Québec). Geomorphology 2007, 90, 162–170. [Google Scholar] [CrossRef]
- Liljedahl, A.K.; Boike, J.; Daanen, R.P.; Fedorov, A.N.; Frost, G.V.; Grosse, G.; Hinzman, L.D.; Iijma, Y.; Jorgenson, J.C.; Matveyeva, N.; et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Mamet, S.D.; Chun, K.P.; Kershaw, G.G.L.; Loranty, M.M.; Kershaw, G.P. Recent increases in permafrost thaw rates and areal loss of palsas in the Western Northwest territories, Canada. Permafr. Periglac. Processes 2017, 28, 619–633. [Google Scholar] [CrossRef]
- Touzi, R.; Omari, K.; Sleep, B.; Jiao, X. Scattered and received wave polarization optimization for enhanced peatland classification and fire damage assessment using polarimetric PALSAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4452–4477. [Google Scholar] [CrossRef]
- Douglas, T.A.; Jorgenson, M.T.; Brown, D.R.N.; Campbell, S.W.; Hiemstra, C.A.; Saari, S.P.; Bjella, K.; Liljedahl, A.K. Degrading permafrost mapped with electrical resistivity tomography, airborne imagery and LiDAR, and seasonal thaw measurements. Geophysics 2015, 81, WA71–WA85. [Google Scholar] [CrossRef]
- Douglas, T.A.; Hiemstra, C.A.; Anderson, J.E.; Barbato, R.A.; Bjella, K.L.; Deeb, E.J.; Gelvin, A.B.; Nelsen, P.E.; Newman, S.D.; Saari, S.P.; et al. Recent degradation of interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar. Cryosphere 2021, 15, 3555–3575. [Google Scholar] [CrossRef]
- van Huissteden, J.; Teshebaeva, K.; Cheung, Y.; Magnússon, R.Í.; Noorbergen, H.; Karsanaev, S.V.; Maximov, T.C.; Dolman, A.J. Geomorphology and InSAR-tracked surface displacements in an ice-rich yedoma landscape. Front. Earth Sci. 2021, 9, 587040. [Google Scholar] [CrossRef]
- Marshall, C.; Large, D.J.; Athab, A.; Evers, S.L.; Sowter, A.; Marsh, S.H.; Sjögersten, S. Monitoring tropical peat related settlement using ISBAS InSAR, Kuala Lumpur International Airport (KLIA). Eng. Geol. 2018, 244, 57–65. [Google Scholar] [CrossRef]
- Abe, T.; Iwahana, G.; Efremov, P.V.; Desyatkin, A.R.; Kawamura, T.; Fedorov, A.; Zhegusov, Y.; Yanagiya, K.; Tadono, T. Surface displacement revealed by L-band InSAR analysis in the Mayya area, Central Yakutia, underlain by continuous permafrost. Earth Planets Space 2020, 72, 138. [Google Scholar] [CrossRef]
- Short, N.; LeBlanc, A.-M.; Sladen, W.; Oldenborger, G.; Mathon-Dufour, V.; Brisco, B. RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit Airport, Baffin Island, Canada. Remote Sens. Environ. 2014, 141, 40–51. [Google Scholar] [CrossRef]
- Liu, L.; Jafarov, E.E.; Schaefer, K.M.; Jones, B.M.; Zebker, H.A.; Williams, C.A.; Rogan, J.; Zhang, T. InSAR detects increase in surface subsidence caused by an Arctic tundra fire. Geophys. Res. Lett. 2014, 41, 3906–3913. [Google Scholar] [CrossRef]
- Park, S.-E. Variations of microwave scattering properties by seasonal freeze/thaw transition in the permafrost active layer observed by ALOS PALSAR polarimetric data. Remote Sens. 2015, 7, 17135–17148. [Google Scholar] [CrossRef] [Green Version]
- Sowter, A.; Bin Che Amat, M.; Cigna, F.; Marsh, S.; Athab, A.; Alshammari, L. Mexico city land subsidence in 2014–2015 with sentinel-1 IW TOPS: Results using the intermittent SBAS (ISBAS) technique. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 230–242. [Google Scholar] [CrossRef]
- Bradley, A.V.; Andersen, R.; Marshall, C.; Sowter, A.; Large, D.J. Identification of typical eco-hydrological behaviours using InSAR allows landscape-scale mapping of peatland condition. Earth Surf. Dynam. Discuss. 2021, 2021, 1–28. [Google Scholar] [CrossRef]
- Siewert, M.B.; Lantuit, H.; Richter, A.; Hugelius, G. Permafrost causes unique fine-scale spatial variability across tundra soils. Glob. Biogeochem. Cycles 2021, 35, e2020GB006659. [Google Scholar] [CrossRef]
- Siewert, M.B. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: A case study in a sub-Arctic peatland environment. Biogeosciences 2018, 15, 1663–1682. [Google Scholar] [CrossRef] [Green Version]
- Abisko Scientific Research Station. Meteorological data from Abisko Observatory, daily mean 2018-01-01 – 2021-09-31. 2021. Available online: https://www.jstor.org/stable/20113179 (accessed on 13 January 2021).
- Gee, D.; Bateson, L.; Sowter, A.; Grebby, S.; Novellino, A.; Cigna, F.; Marsh, S.; Banton, C.; Wyatt, L. Ground motion in areas of abandoned mining: Application of the intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK. Geosciences 2017, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Cigna, F.; Sowter, A. The relationship between intermittent coherence and precision of ISBAS InSAR ground motion velocities: ERS-1/2 case studies in the UK. Remote Sens. Environ. 2017, 202, 177–198. [Google Scholar] [CrossRef]
- Alshammari, L.; Large, D.J.; Boyd, D.S.; Sowter, A.; Anderson, R.; Andersen, R.; Marsh, S. Long-term peatland condition assessment via surface motion monitoring using the ISBAS DInSAR technique over the flow country, Scotland. Remote Sens. 2018, 10, 1103. [Google Scholar] [CrossRef] [Green Version]
- Alshammari, L.; Boyd, D.S.; Sowter, A.; Marshall, C.; Andersen, R.; Gilbert, P.; Marsh, S.; Large, D.J. Use of surface motion characteristics determined by InSAR to assess peatland condition. J. Geophys. Res. Biogeosci. 2020, 125, e2018JG004953. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, T.; Wahr, J. InSAR measurements of surface deformation over permafrost on the north slope of Alaska. J. Geophys. Res.: Earth Surf. 2010, 115. [Google Scholar] [CrossRef]
- Saito, H.; Iijima, Y.; Basharin, N.I.; Fedorov, A.N.; Kunitsky, V.V. Thermokarst development detected from high-definition topographic data in Central Yakutia. Remote Sens. 2018, 10, 1579. [Google Scholar] [CrossRef] [Green Version]
- Sannel, A.B.K.; Brown, I.A. High-resolution remote sensing identification of thermokarst lake dynamics in a subarctic peat plateau complex. Can. J. Remote Sens. 2010, 36, S26–S40. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.G.; Loiko, S.V.; Pokrovsky, O.S. Sizable pool of labile organic carbon in peat and mineral soils of permafrost peatlands, western Siberia. Geoderma 2022, 409, 115601. [Google Scholar] [CrossRef]
- Hooijer, A.; Page, S.; Jauhiainen, J.; Lee, W.A.; Lu, X.X.; Idris, A.; Anshari, G. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 2012, 9, 1053–1071. [Google Scholar] [CrossRef] [Green Version]
Vegetation Type | Canopy Height (cm) | Soil Moisture (%) | Soil Temperature (°C) | |||
---|---|---|---|---|---|---|
Dry lichen | 4.3 | (1.0) | 38.9 | (2.1) | 3.5 | (0.11) |
Moist moss | 7.8 | (0.7) | 40.9 | (1.5) | 3.5 | (0.08) |
Dwarf shrub | 36.7 | (4.0) | 46.6 | (5.3) | 4.5 | (0.2) |
Sphagnum wetland | 24.9 | (1.5) | 98.3 | (0.8) | 4.3 | (0.1) |
Sedge wetland | 46.8 | (1.8) | 100 | (0) | 4.7 | (0.1) |
Willow wetland | 74.1 | (7.4) | 89.5 | (4.9) | 4.2 | (0.3) |
Forested wetland | 47.4 | (7.0) | 70.4 | (6.9) | 4.7 | (0.2) |
Vegetation Type | Tourist St. | Storflaket | Stordalen | |||
---|---|---|---|---|---|---|
Area (ha) | Proportion of Wetland Area (%) | Area (ha) | Proportion of Wetland Area (%) | Area (ha) | Proportion of Wetland Area (%) | |
Raised palsa | 1.0 | 18 | 8.2 | 44 | 10.1 | 24 |
Sphagnum wetland | 0.7 | 14 | 1.5 | 8 | 6.0 | 14 |
Sedge wetland | 0.4 | 7 | 4.2 | 22 | 6.1 | 14 |
Willow wetland | 0.4 | 8 | 1.3 | 7 | 7.1 | 16 |
Forested wetland | 1.4 | 25 | 1.9 | 10 | 6.0 | 14 |
Tourist St. (cm) | Storflaket (cm) | Stordalen (cm) | ||||
---|---|---|---|---|---|---|
Anthropogenic * | −0.1 | (0.059) | −0.091 | (0.026) | ||
Raised palsa | −0.389 | (0.05) | −0.255 | (0.019) | −0.58 | (0.018) |
Sphagnum wetland | −0.351 | (0.044) | −0.114 | (0.073) | −0.498 | (0.030) |
Sedge wetland | −0.455 | (0.053) | −0.331 | (0.019) | −0.501 | (0.021) |
Willow wetland | −0.144 | (0.052) | −0.385 | (0.022) | ||
Forested wetland | −0.263 | (0.038) | −0.117 | (0.032) | −0.431 | (0.018) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Barreda-Bautista, B.; Boyd, D.S.; Ledger, M.; Siewert, M.B.; Chandler, C.; Bradley, A.V.; Gee, D.; Large, D.J.; Olofsson, J.; Sowter, A.; et al. Towards a Monitoring Approach for Understanding Permafrost Degradation and Linked Subsidence in Arctic Peatlands. Remote Sens. 2022, 14, 444. https://doi.org/10.3390/rs14030444
de la Barreda-Bautista B, Boyd DS, Ledger M, Siewert MB, Chandler C, Bradley AV, Gee D, Large DJ, Olofsson J, Sowter A, et al. Towards a Monitoring Approach for Understanding Permafrost Degradation and Linked Subsidence in Arctic Peatlands. Remote Sensing. 2022; 14(3):444. https://doi.org/10.3390/rs14030444
Chicago/Turabian Stylede la Barreda-Bautista, Betsabe, Doreen S. Boyd, Martha Ledger, Matthias B. Siewert, Chris Chandler, Andrew V. Bradley, David Gee, David J. Large, Johan Olofsson, Andrew Sowter, and et al. 2022. "Towards a Monitoring Approach for Understanding Permafrost Degradation and Linked Subsidence in Arctic Peatlands" Remote Sensing 14, no. 3: 444. https://doi.org/10.3390/rs14030444
APA Stylede la Barreda-Bautista, B., Boyd, D. S., Ledger, M., Siewert, M. B., Chandler, C., Bradley, A. V., Gee, D., Large, D. J., Olofsson, J., Sowter, A., & Sjögersten, S. (2022). Towards a Monitoring Approach for Understanding Permafrost Degradation and Linked Subsidence in Arctic Peatlands. Remote Sensing, 14(3), 444. https://doi.org/10.3390/rs14030444