Relating Paramagnetic Properties to Molecular Parameters of Humic Acids Isolated from Permafrost Peatlands in the European Arctic
Abstract
:1. Introduction
2. Results and Discussion
2.1. The EPR Data of HAs
2.2. Principal Component Analysis
3. Materials and Methods
3.1. Study Area
3.2. Sampling Sites
3.2.1. Forest Tundra
3.2.2. South Tundra
3.2.3. Ecoton North Tundra—South Tundra
3.2.4. North Tundra
3.3. Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez-Perez, M.; Martin-Neto, L.; Saab, S.C.; Novotny, E.H.; Milori, D.M.B.P.; Bagnato, V.S.; Colnago, L.A.; Melo, W.J.; Knicker, H. Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy. Geoderma 2004, 118, 181–190. [Google Scholar] [CrossRef]
- Saab, S.C.; Martin-Neto, L. Studies of semiquinone free radicals by ESR in the whole soil, HA, FA and humin substances. J. Braz. Chem. Soc. 2004, 15, 34–37. [Google Scholar] [CrossRef]
- Sartakov, M.P.; Komissarov, D.; Shundrin, L.A. The peat humic acids electronic paramagnetism research for Ob-Irtysh flood plains. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 1685–1692. [Google Scholar]
- Schulten, H.-R.; Leinweber, P. New insights into organic-mineral particles: Composition, properties and models of molecular structure. Biol. Fertil. Soils 2000, 30, 399–432. [Google Scholar] [CrossRef]
- Chukov, S.N.; Ejarque, E.; Abakumov, E.V. Characterization of humic acids from tundra soils of northern Western Siberia by electron paramagnetic resonance spectroscopy. Eurasian Soil. Sci. 2017, 50, 30–33. [Google Scholar] [CrossRef]
- Lodygin, E.; Vasilevich, R.; Abakumov, E. Characterization of humic substances from taiga and tundra soils by EPR spectroscopy. Agronomy 2022, 12, 2806. [Google Scholar] [CrossRef]
- Barancikova, G.; Senesi, N.; Brunetti, G. Chemical and spectroscopic characterization of humic acids isolated from different Slovak soil types. Geoderma 1997, 78, 251–266. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, X.; Su, G.; Chen, X.; Meng, J.; Li, Q.; Wang, C.; Shi, B. Scientific and regulatory challenges of environmentally persistent free radicals: From formation theory to risk prevention strategies. J. Hazar. Mater. 2023, 456, 131674. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A.; Chukov, S.N. Paramagnetic properties of humus acids of podzolic and bog-podzolic soils. Eurasian Soil. Sci. 2007, 40, 726–728. [Google Scholar] [CrossRef]
- Tadini, A.M.; Bernardi, A.C.C.; Milori, D.M.B.P.; Oliveira, P.P.A.; Pezzopane, J.R.M.; Martin-Neto, L. Spectroscopic characteristics of humic acids extracted from soils under different integrated agricultural production systems in tropical regions. Geoderma Reg. 2022, 28, e00476. [Google Scholar] [CrossRef]
- Peng, X.-X.; Gai, S.; Cheng, K.; Yang, F. Roles of humic substances redox activity on environmental remediation. J. Hazard. Mater. 2022, 435, 129070. [Google Scholar] [CrossRef] [PubMed]
- Kurochkina, G.N.; Gaidalovich, V.G.; Khakimov, F.I. Paramagnetic activity of organic matter in soils of the Ubsu-Nur Depression. Eurasian Soil. Sci. 2006, 39, 727–737. [Google Scholar] [CrossRef]
- Zavarzina, A.G.; Kravchenko, E.G.; Konstantinov, A.I.; Perminova, I.V.; Demin, V.V.; Chukov, S.N. Comparison of the properties of humic acids extracted from soils by alkali in the presence and absence of oxygen. Eurasian Soil. Sci. 2019, 52, 880–891. [Google Scholar] [CrossRef]
- Zimov, S.A.; Schuur, E.A.G.; Chapin, F.S. Permafrost and the global carbon budget. Science 2006, 312, 1612–1613. [Google Scholar] [CrossRef] [PubMed]
- Schuur, E.A.; Bockheim, G.J.; Canadell, J.G.; Euskirchen, E.; Field, C.B.; Goryachkin, S.V.; Hagemann, S.; Kuhry, P.; Lafleur, P.M.; Lee, H. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience 2008, 58, 701–714. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Mcguire, A.D.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; Natali, S.M. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Elsakov, V.V.; Zuev, S.M.; Mylnikova, T.A. Estimation of green forage distribution in reindeer pastures using satellite imagery of different spatial resolution. Sovr. Probl. Distan. Zond. Zemli Kosm. 2022, 19, 155–168. [Google Scholar] [CrossRef]
- Jezierski, A.; Czechowski, F.; Jerzkiewicz, M.; Chen, Y.; Drozd, J. Electron paramagnetic resonance (EPR) studies on stable and transient radicals in humic acids from compost, soil, peat and brown coal. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2000, 56, 379–385. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A.; Vasilevich, R.S. Paramagnetic properties of humic substances in taiga and tundra soils of the European Northeast of Russia. Eurasian Soil. Sci. 2018, 51, 921–928. [Google Scholar] [CrossRef]
- Jia, H.Z.; Nulaji, G.; Gao, H.W.; Wang, F.; Zhu, Y.; Wang, C. Formation and stabilization of environmentally persistent free radicals induced by the interaction of anthracene with Fe(III)-modified clays. Environ. Sci. Technol. 2016, 50, 6310–6319. [Google Scholar] [CrossRef]
- Hales, B.J.; Case, E.E. Immobilized radicals. IV. biological semiquinone anions and neutral semiquinones. BBA-Bioenerg. 1981, 637, 291–302. [Google Scholar] [CrossRef]
- Scott, D.T.; Mcknight, D.M.; Blunt-Harris, E.L.; Kolesar, S.E.; Lovley, D.R. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducting microorganisms. Environ. Sci. Technol. 1998, 32, 2984–2989. [Google Scholar] [CrossRef]
- Senesi, G.S.; Senesi, N. Electron-spin resonance spectroscopy: Part I Historical Perspectives. In Encyclopedia of Soils in the Environment, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 519–532. [Google Scholar] [CrossRef]
- Sartakov, M.P.; Osnitskiy, Y.M.; Shpynova, N.V.; Komissarov, I.D. Electronic paramagnetic resonance of humic and hymatomelanic acids in sapropels of the lake of the middle Ob River. Khimiya Rastitel’nogo Syr’ya 2022, 2, 271–278. [Google Scholar] [CrossRef]
- Jarukas, L.; Ivanauskas, L.; Kasparaviciene, G.; Baranauskaite, J.; Marksa, M.; Bernatoniene, J. Determination of organic compounds, fulvic acid, humic acid, and humin in peat and sapropel alkaline extracts. Molecules 2021, 26, 2995. [Google Scholar] [CrossRef] [PubMed]
- Golonka, I.; Czechowski, F.; Jezierski, A. EPR characteristics of heat treated complexes of metals with demineralised humic brown coal in air and ammonia atmospheres. Geoderma 2005, 127, 237–252. [Google Scholar] [CrossRef]
- Jezierski, A.; Skrzypek, G.; Jezierski, P.; Paul, D.; Jedrysek, M.O. Electron paramagnetic resonance (EPR) and stable isotope records of paleoenvironmental conditions during peat formation. Spectrochim. Acta A 2008, 69, 1311–1316. [Google Scholar] [CrossRef] [PubMed]
- Trubetskoi, O.A.; Trubetskaya, O.E. 13C NMR analysis of components of chernozem humic acids and their fractions with different molecular sizes and electrophoretic mobilities. Eurasian Soil. Sci. 2011, 44, 281–285. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, C.; Liu, J.; Dai, Q.; Jiang, Y.; Xi, M.; Jia, H. Distribution of persistent free radicals in different molecular weight fractions from peat humic acids and their impact in reducing goethite. Sci. Total Environ. 2021, 797, 149173. [Google Scholar] [CrossRef]
- Gurova, O.A.; Sartakov, M.P.; Osnitsky, E.M. Electron spin resonance of humic and hymatomelanic acids, lipids and initial brown coal of the nether-polar Urals. Petroleum Coal 2023, 65, 295–301. [Google Scholar]
- Szajdak, L.W.; Jezierski, A.; Wegner, K.; Meysner, T.; Szczepański, M. Influence of drainage on peat organic matter: Implications for development, stability, and transformation. Molecules 2020, 25, 2587. [Google Scholar] [CrossRef]
- Knüpling, M.; Tiörring, J.T.; Un, S. The relationship between the molecular structure of semiquinone radicals and their g-values. Chem. Phys. 1997, 219, 291–304. [Google Scholar] [CrossRef]
- Witwicki, M.; Jezierska, J. Protonated o-semiquinone radical as a mimetic of the humic acids native radicals: A DFT approach to the molecular structure and EPR properties. Geochim. Cosmochim. Acta 2012, 86, 384–391. [Google Scholar] [CrossRef]
- Kaverin, D.A.; Pastukhov, A.V.; Lapteva, E.M.; Biasi, C.; Marushchak, M.; Martikainen, P. Morphology and properties of the soils of permafrost peatlands in the southeast of the Bol’shezemel’skaya tundra. Eurasian Soil. Sci. 2016, 49, 498–511. [Google Scholar] [CrossRef]
- Taskaev, A.I. (Ed.) Atlas of the Republic of Komi on Climate and Hydrology; Drofa: Moscow, Russia, 1997; p. 115. (In Russian) [Google Scholar]
- Mazhitova, G.G. Soil temperature regimes in the discontinuous permafrost zone in the east European Russian Arctic. Eurasian Soil. Sci. 2008, 41, 48–62. [Google Scholar] [CrossRef]
- Kaverin, D.A.; Panjukov, A.N.; Pastukhov, A.V. Analysis of remote spectral indices in the study of successional changes of tundra vegetation in postagrogenic biogeocenoses. Geogr. Nat. Resour. 2022, 43, 77–86. [Google Scholar] [CrossRef]
- Vasilevich, R.; Lodygin, E.; Abakumov, E. The molecular composition of humic acids in permafrost peats in the European Arctic as paleorecord of the environmental conditions of the Holocene. Agronomy 2022, 12, 2053. [Google Scholar] [CrossRef]
- IUSS Working Group WRB; World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; p. 236. [Google Scholar]
- Vasilevich, R.S.; Kuznetsov, O.L.; Lodygin, E.D.; Zazovskaya, E.P.; Panyukov, A.N. Evolution of organic matter in hummocky bogs on the Barents Sea coast in a changing climate. Eurasian Soil. Sci. 2022, 55, 940–956. [Google Scholar] [CrossRef]
- Swift, R.S. Organic matter characterization. In Methods of Soil Analysis: Part 3 Chemical Methods, 5.3; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1018–1020. [Google Scholar] [CrossRef]
Horizon | Depth, cm | CPC 1, ×1015 spin/g | g-Factor 2 |
---|---|---|---|
Forest–tundra subzone | |||
Hemic Folic Cryic Histosol (P-1) | |||
Hi | 0–10 | 3.76 | 2.00354 |
He1 | 10–20 | 2.41 | 2.00352 |
He2 | 20–40 | 1.88 | 2.00350 |
Hef1 | 40–60 | 1.32 | 2.00353 |
Hef2 | 60–80 | 1.34 | 2.00352 |
Hef3 | 80–100 | 5.79 | 2.00356 |
Hef4 | 100–150 | 6.03 | 2.00354 |
Hef5 | 150–175 | 1.97 | 2.00350 |
Chgf | 175–200 | 1.18 | 2.00351 |
South tundra | |||
Fibric Folic Cryic Histosol (P-2) | |||
O | 0–10 | 4.21 | 2.00360 |
Hi1 | 10–15 | 1.93 | 2.00356 |
Hi2 | 15–20 | 5.30 | 2.00366 |
Hi3 | 20–26 | 1.05 | 2.00363 |
Hif1 | 26–40 | 2.55 | 2.00360 |
Hif2 | 40–50 | 4.33 | 2.00366 |
Hif3 | 50–60 | 4.33 | 2.00362 |
Hef1 | 80–100 | 4.16 | 2.00358 |
Hef2 | 120–140 | 5.82 | 2.00356 |
Hef3 | 160–180 | 4.84 | 2.00363 |
Hif4 | 200–220 | 3.20 | 2.00360 |
Hif5 | 240–260 | 6.22 | 2.00362 |
Hif6 | 260–280 | 4.62 | 2.00359 |
Ecoton north tundra—south tundra | |||
Hemic Folic Cryic Histosol (P-3) | |||
Hi | 0–10 | 4.05 | 2.00360 |
He | 10–20 | 2.45 | 2.00365 |
Hi1 | 20–30 | 3.47 | 2.00363 |
Hi2 | 30–33 | 1.81 | 2.00362 |
Hif | 33–50 | 2.84 | 2.00358 |
Hef1 | 50–70 | 4.59 | 2.00359 |
Hef2 | 70–90 | 4.03 | 2.00356 |
Hef3 | 90–110 | 4.13 | 2.00360 |
Hif1 | 110–130 | 6.41 | 2.00355 |
Hif3 | 150–170 | 4.80 | 2.00355 |
Hif5 | 190–210 | 4.00 | 2.00359 |
Hif7 | 230–250 | 4.17 | 2.00353 |
Hif8 | 250–265 | 5.61 | 2.00356 |
North tundra | |||
Fibric Folic Cryic Histosol (P-4) | |||
O | 0–2 | 2.52 | 2.00362 |
Hi1 | 2–10 | 2.90 | 2.00366 |
Hi2 | 10–20 | 3.05 | 2.00367 |
He1 | 20–30 | 3.83 | 2.00372 |
Hif1 | 30–40 | 3.31 | 2.00371 |
Hif3 | 50–60 | 5.28 | 2.00357 |
Hef2 | 80–100 | 5.04 | 2.00359 |
Hef4 | 120–133 | 7.48 | 2.00358 |
Hef5 | 133–150 | 3.78 | 2.00355 |
Principal Components | Eigenvalues | % of Total Variance | Cumulative Eigenvalues | Cumulative % of Variance |
---|---|---|---|---|
PC1 | 8.80 | 46.34 | 8.80 | 46.34 |
PC2 | 3.21 | 16.87 | 12.01 | 63.21 |
PC3 | 1.55 | 8.14 | 13.56 | 71.35 |
Horizon and Depth, cm | Peat Soils Characteristics | HA Characteristics | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R 1, % | pH H2O | Eh 2, mV | C Atom Content of Molecular Fragments 3, % | Mole Fractions 4, % | Mn 5, kDa | Atomic Ratios | |||||||||||
C,H-alkyl | O-CH3 | O,N-alkyl | C,H-arom | O,N-arom | Carboxyl | Quinone | Carbonyl | x(HMF) | x(MMF) | x(LMF) | H/C | O/C | |||||
Forest tundra | |||||||||||||||||
Hemic Folic Cryic Histosol (P-1) | |||||||||||||||||
Hi 0–10 | 22.5 | 3.75 | 351 | 26.4 | 7.5 | 22.1 | 20.7 | 8.3 | 11.2 | 1.1 | 2.6 | 3.7 | 28.2 | 68.1 | 21.8 | 1.16 | 0.54 |
He1 10–20 | 37.5 | 3.70 | 358 | 27.3 | 7.5 | 20.5 | 21.6 | 8.9 | 11.1 | 1.1 | 2.0 | 3.0 | 27.2 | 69.8 | 18.5 | 1.10 | 0.55 |
He2 20–40 | 35.0 | 3.74 | 357 | 27.7 | 7.5 | 21.5 | 21.0 | 8.5 | 11.4 | 1.0 | 1.4 | 1.8 | 23.1 | 75.1 | 12.2 | 1.07 | 0.53 |
Hef1 40–60 | 32.5 | 4.34 | 304 | 23.9 | 7.4 | 19.8 | 23.4 | 9.8 | 11.4 | 1.3 | 3.1 | 1.2 | 22.8 | 76.0 | 9.3 | 1.06 | 0.56 |
Hef2 60–80 | 32.5 | 4.86 | 268 | 22.2 | 7.4 | 19.5 | 25.2 | 11.4 | 11.5 | 0.6 | 2.1 | 0.8 | 21.4 | 77.8 | 7.6 | 0.98 | 0.58 |
Hef3 80–100 | 37.5 | 4.94 | 248 | 19.7 | 8.2 | 19.7 | 26.1 | 12.0 | 10.4 | 1.3 | 2.5 | 1.0 | 19.2 | 79.9 | 7.4 | 0.92 | 0.41 |
Hef4 100–150 | 35.0 | 4.95 | 246 | 23.0 | 9.2 | 18.3 | 24.6 | 11.0 | 10.7 | 1.0 | 2.2 | 1.4 | 20.0 | 79.0 | 9.9 | 0.90 | 0.38 |
Hef5 150–175 | 37.5 | 5.37 | 273 | 22.4 | 8.2 | 17.7 | 25.4 | 11.2 | 10.9 | 1.7 | 2.4 | 1.7 | 28.6 | 69.7 | 12.6 | 0.94 | 0.48 |
Chfg 175–200 | 50.0 | 5.33 | 259 | 24.9 | 8.2 | 16.7 | 25.1 | 10.0 | 11.3 | 1.0 | 2.8 | 2.3 | 32.9 | 64.8 | 16.1 | 0.98 | 0.49 |
South tundra | |||||||||||||||||
Fibric Folic Cryic Histosol (P-2) | |||||||||||||||||
O 0–10 | 3.8 | 3.89 | 259 | 35.0 | 7.9 | 27.1 | 13.6 | 6.2 | 8.4 | 0.7 | 1.1 | 12.2 | 34.0 | 53.8 | 53.7 | 1.21 | 0.44 |
Hi1 10–15 | 10.0 | 3.62 | 275 | 33.3 | 7.9 | 26.5 | 15.0 | 6.6 | 8.7 | 0.8 | 1.2 | 8.6 | 33.1 | 58.3 | 37.9 | 1.21 | 0.44 |
Hi2 15–20 | 10.0 | 3.70 | 260 | 29.8 | 8.3 | 29.7 | 14.7 | 5.9 | 9.7 | 0.7 | 1.2 | 3.8 | 25.3 | 70.9 | 18.3 | 1.16 | 0.48 |
Hi3 20–26 | 10.0 | 3.71 | 275 | 24.5 | 7.3 | 32.7 | 15.4 | 6.3 | 10.7 | 1.2 | 1.9 | 3.8 | 27.0 | 69.1 | 18.8 | 1.03 | 0.52 |
Hif1 26–40 | 25.0 | 3.85 | 286 | 18.9 | 7.5 | 23.2 | 25.5 | 10.5 | 10.9 | 1.1 | 2.4 | 3.2 | 29.5 | 67.3 | 16.7 | 0.78 | 0.48 |
Hif2 40–50 | 27.5 | 4.15 | 270 | 18.5 | 7.9 | 23.6 | 25.4 | 10.6 | 10.7 | 1.1 | 2.2 | 1.8 | 17.9 | 80.3 | 9.6 | 0.87 | 0.47 |
Hif3 50–60 | 27.5 | 4.60 | 234 | 19.0 | 8.4 | 22.8 | 26.5 | 11.2 | 9.5 | 0.9 | 1.7 | 1.1 | 15.4 | 83.5 | 6.9 | 0.90 | 0.44 |
Hef1 80–100 | 35.0 | 5.19 | 200 | 16.9 | 8.7 | 22.0 | 28.4 | 11.9 | 9.5 | 0.9 | 1.7 | 0.6 | 13.1 | 86.3 | 4.9 | 0.92 | 0.43 |
Hef2 120–140 | 25.0 | 5.46 | 173 | 19.8 | 9.0 | 20.7 | 28.2 | 12.0 | 8.0 | 1.0 | 1.4 | 0.7 | 13.5 | 85.9 | 5.1 | 0.95 | 0.41 |
Hef3 160–180 | 22.5 | 5.30 | 186 | 20.0 | 9.4 | 21.4 | 27.0 | 11.7 | 8.4 | 0.8 | 1.4 | 1.4 | 17.4 | 81.2 | 8.2 | 1.01 | 0.42 |
Hif4 200–220 | 25.0 | 5.12 | 177 | 15.9 | 9.2 | 21.2 | 30.4 | 13.3 | 7.9 | 0.8 | 1.3 | 0.7 | 11.5 | 87.8 | 4.9 | 0.95 | 0.42 |
Hif5 240–260 | 50.0 | 5.19 | 163 | 22.0 | 9.5 | 20.2 | 27.1 | 10.3 | 9.6 | 0.6 | 0.8 | 0.9 | 23.7 | 80.8 | 7.6 | 0.95 | 0.46 |
Hif6 260–280 | 50.0 | 4.57 | 193 | 21.6 | 9.6 | 20.9 | 27.1 | 10.3 | 8.9 | 0.5 | 1.1 | 1.2 | 22.2 | 76.7 | 8.2 | 0.94 | 0.45 |
Ecoton north tundra—south tundra | |||||||||||||||||
Hemic Folic Cryic Histosol (P-3) | |||||||||||||||||
Hi 0–10 | 20.0 | 3.72 | 316.5 | 31.3 | 7.8 | 26.9 | 15.6 | 6.7 | 9.8 | 0.6 | 1.3 | 6.2 | 30.5 | 63.4 | 29.1 | 1.19 | 0.46 |
He 10–20 | 35.0 | 3.84 | 317 | 34.3 | 7.7 | 20.1 | 18.6 | 6.8 | 10.3 | 0.7 | 1.5 | 2.9 | 27.9 | 69.2 | 15.6 | 1.04 | 0.45 |
Hi1 20–30 | 22.5 | 3.84 | 285 | 35.5 | 8.0 | 16.4 | 20.5 | 7.4 | 10.3 | 0.6 | 1.3 | 2.4 | 27.6 | 69.9 | 14.1 | 0.99 | 0.44 |
Hi2 30–33 | 20.0 | 3.94 | 293 | 22.7 | 8.7 | 23.4 | 22.7 | 9.7 | 10.3 | 0.8 | 1.7 | 4.0 | 29.0 | 67.1 | 19.7 | 0.88 | 0.48 |
Hif 33–50 | 25.0 | 4.60 | 226 | 24.4 | 7.7 | 22.4 | 23.3 | 9.6 | 10.3 | 0.6 | 1.7 | 3.6 | 28.3 | 68.1 | 20.7 | 0.89 | 0.48 |
Hef1 50–70 | 40.0 | 5.23 | 188 | 21.3 | 8.1 | 22.0 | 25.2 | 10.1 | 10.6 | 0.9 | 1.9 | 3.4 | 27.6 | 69.0 | 19.7 | 0.89 | 0.47 |
Hef2 70–90 | 40.0 | 5.46 | 166 | 21.7 | 8.2 | 21.6 | 25.4 | 10.4 | 10.4 | 0.6 | 1.7 | 1.9 | 20.0 | 78.1 | 10.6 | 0.89 | 0.46 |
Hef3 90–110 | 40.0 | 5.50 | 160 | 24.6 | 8.8 | 22.3 | 23.4 | 8.9 | 10.2 | 0.7 | 1.2 | 3.7 | 29.8 | 66.5 | 18.7 | 0.93 | 0.47 |
Hif1 110–130 | 25.0 | 5.61 | 161 | 20.1 | 9.6 | 20.8 | 28.1 | 12.1 | 8.0 | 0.4 | 0.9 | 1.4 | 16.3 | 82.3 | 8.0 | 0.90 | 0.42 |
Hif3 150–170 | 20.0 | 5.52 | 196 | 19.6 | 10.2 | 21.4 | 28.7 | 12.2 | 7.0 | 0.2 | 0.6 | 1.2 | 16.8 | 82.0 | 7.2 | 0.94 | 0.40 |
Hif5 190–210 | 20.0 | 5.51 | 188 | 18.2 | 10.3 | 21.9 | 29.3 | 12.9 | 6.6 | 0.3 | 0.6 | 1.1 | 16.6 | 82.4 | 6.7 | 0.93 | 0.40 |
Hif7 230–250 | 25.0 | 5.73 | 185 | 18.0 | 10.1 | 20.6 | 28.8 | 12.7 | 7.9 | 0.7 | 1.1 | 1.2 | 17.6 | 81.2 | 7.5 | 0.96 | 0.37 |
Hif8 250–265 | 27.5 | 5.31 | 193 | 21.3 | 8.8 | 20.3 | 27.7 | 11.4 | 8.9 | 0.6 | 1.1 | 0.9 | 13.8 | 85.3 | 5.8 | 0.87 | 0.43 |
North tundra | |||||||||||||||||
Fibric Folic Cryic Histosol (P-4) | |||||||||||||||||
O 0–2 | 5.0 | 4.18 | 233 | 34.7 | 3.5 | 30.9 | 1.9 | 8.9 | 7.8 | 0.0 | 12.4 | 9.3 | 23.0 | 67.7 | 39.2 | 1.09 | 0.46 |
Hi1 2–10 | 15.0 | 4.20 | 233 | 28.9 | 6.8 | 29.2 | 15.8 | 7.0 | 9.8 | 0.9 | 1.6 | 5.7 | 27.7 | 66.6 | 25.7 | 1.10 | 0.47 |
Hi2 10–20 | 17.5 | 4.21 | 251 | 31.1 | 6.7 | 24.5 | 18.0 | 7.1 | 9.7 | 0.9 | 1.9 | 3.9 | 29.9 | 66.3 | 19.5 | 1.01 | 0.45 |
He1 20–30 | 37.5 | 4.24 | 260 | 30.6 | 6.8 | 23.4 | 18.5 | 7.1 | 10.2 | 1.1 | 2.3 | 3.5 | 30.2 | 66.3 | 17.9 | 1.06 | 0.44 |
Hif1 30–40 | 15.0 | 3.88 | 247 | 30.8 | 6.9 | 20.6 | 19.9 | 8.1 | 10.2 | 1.2 | 2.3 | 3.4 | 33.5 | 63.1 | 17.7 | 1.03 | 0.42 |
Hif3 50–60 | 17.5 | 3.92 | 232 | 36.2 | 7.4 | 19.9 | 17.5 | 6.6 | 9.6 | 1.1 | 1.6 | 4.1 | 31.0 | 67.1 | 20.1 | 1.09 | 0.42 |
Hef2 80–100 | 37.5 | 4.41 | 175 | 23.2 | 7.5 | 20.0 | 22.7 | 9.6 | 12.3 | 1.6 | 3.0 | 1.8 | 23.3 | 74.9 | 10.6 | 0.97 | 0.46 |
Hef4 120–133 | 42.5 | 5.37 | 121 | 21.6 | 7.5 | 18.3 | 25.8 | 11.6 | 11.5 | 1.4 | 2.4 | 1.4 | 20.2 | 78.4 | 8.8 | 0.88 | 0.46 |
Hef5 133–150 | 45.0 | 5.58 | 135 | 27.5 | 7.0 | 17.1 | 23.5 | 9.3 | 11.5 | 1.4 | 2.8 | 1.8 | 35.5 | 75.7 | 12.8 | 0.92 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lodygin, E.; Vasilevich, R.; Abakumov, E. Relating Paramagnetic Properties to Molecular Parameters of Humic Acids Isolated from Permafrost Peatlands in the European Arctic. Molecules 2024, 29, 104. https://doi.org/10.3390/molecules29010104
Lodygin E, Vasilevich R, Abakumov E. Relating Paramagnetic Properties to Molecular Parameters of Humic Acids Isolated from Permafrost Peatlands in the European Arctic. Molecules. 2024; 29(1):104. https://doi.org/10.3390/molecules29010104
Chicago/Turabian StyleLodygin, Evgeny, Roman Vasilevich, and Evgeny Abakumov. 2024. "Relating Paramagnetic Properties to Molecular Parameters of Humic Acids Isolated from Permafrost Peatlands in the European Arctic" Molecules 29, no. 1: 104. https://doi.org/10.3390/molecules29010104
APA StyleLodygin, E., Vasilevich, R., & Abakumov, E. (2024). Relating Paramagnetic Properties to Molecular Parameters of Humic Acids Isolated from Permafrost Peatlands in the European Arctic. Molecules, 29(1), 104. https://doi.org/10.3390/molecules29010104