Fires on Ice: Emerging Permafrost Peatlands Fire Regimes in Russia’s Subarctic Taiga
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Local and Indigenous Knowledge Component
3.2. Landscape Component
3.3. Remote Sensing Component
4. Results
4.1. Local Taiga Landscapes and Wildfires
4.2. Local Accounts of Wildfire Occurrences and Management over Permafrost Areas
K. hunted there in Iryshki, there are swamps there. Back in January, well, or November, I won’t say for sure, the tundras were burning, they burned for a long time, well, there is such a layer of moss, the moss was moving away, they burned and burned, and they could also snuggle up to the ridge and jump out slowly, and the trees fall. They all went out by the spring, did not stay for another summer. We have swamps, there is still permafrost, it wouldn’t give [way to the next year burning] (male, 45, 5 August 2021, Tokma).
They see 300 km from fire to the settlement, and 50 km—to a river through which the fire will not pass. People can be thrown over 1000 km, and it still makes no sense. And if there is, first of all, permafrost, the number of swamps and streams. That is, there is a weak ground fire, vapors conceal this and do not cause significant harm, it reaches the limit to some larger stream of the river, it will stop. Basically, the permafrost begins to burn superficially, water begins to thaw, after all, it enters the Katangsky region: the hotter the summer, the more water. I have not seen peat fires there during my 4 years of work, when I was dealing with fires. Surface fires are going on, occasionally turning into crown fires somewhere to some distance, and turning again into surface one, that’s it. In the Katanga region there is not much dry peat, there is permafrost immediately (male, 60, 26 Jun 2021, Irkutsk).
4.3. Peatland Fires and Dynamics of Fire Activity in Permafrost Areas
There was snow, probably 40 cm, so there was a little bit of coal and I left. I should have at least raked in the snow, but the snow was everywhere… So, in 2 days I passed again by the place where tea was brewed. I felt smoke and decided to go back to this place where I brewed tea. I came, and there, e-my, there, probably, already 5–10 m, well, in diameter everything burned out. Where there were such small thin cedar and spruce trees, they fell. And, most importantly, there was a lowland and into the ridge it all goes. And there, under the moss from below, it began to smolder, smolder, smolder, and in 2 days, it all burned out. Well, instead of hunting I was there extinguishing that fire. Well, there is no such fire, where you can see that this edge is here, let’s say there is no snow, but somehow it has already melted, and then that snow lies, and there it smolders, too, that’s all, moss, yes, the roots are smoldering. I chop off with an axe, and there are coals, sparks like that (male, 65, Tokma, 5 August 2021).
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCarty, J.L.; Aalto, J.; Paunu, V.V.; Arnold, S.R.; Eckhardt, S.; Klimont, Z.; Wilson, S. Reviews and syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosciences 2021, 18, 5053–5083. [Google Scholar] [CrossRef]
- Irannezhad, M.; Liu, J.; Ahmadi, B.; Chen, D. The dangers of Arctic zombie wildfires. Science 2020, 369, 1171. [Google Scholar] [CrossRef] [PubMed]
- Scholten, R.C.; Jandt, R.; Miller, E.A.; Rogers, B.M.; Veraverbeke, S. Overwintering fires in boreal forests. Nature 2021, 593, 399–404. [Google Scholar] [CrossRef]
- Masrur, A.; Petrov, A.N.; DeGroote, J. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001–2015. Environ. Res. Lett. 2018, 13, 014019. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Jin, H.J.; Wang, H.W.; Marchenko, S.S.; Shan, W.; Luo, D.L.; Jia, N. Influences of forest fires on the permafrost environment: A review. Adv. Clim. Chang. Res. 2021, 12, 48–65. [Google Scholar] [CrossRef]
- French, H.M. The Periglacial Environment; John Wiley & Sons: Hoboken, NJ, USA, 2018; p. 515. [Google Scholar]
- Minsley, B.J.; Pastick, N.J.; Wylie, B.K.; Brown, D.R.N.; Kass, M.A. Evidence for nonuniform permafrost degradation after fire in boreal landscapes. J. Geophys. Res. Earth Surf. 2016, 121, 320–335. [Google Scholar] [CrossRef]
- Kirdyanov, A.V.; Saurer, M.; Siegwolf, R.; Knorre, A.A.; Prokushkin, A.S.; Churakova, O.V.; Büntgen, U. Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environ. Res. Lett. 2020, 15, 034061. [Google Scholar] [CrossRef]
- Witze, A. The Arctic is burning like never before—And that’s bad news for climate change. Nature 2020, 585, 336–337. [Google Scholar] [CrossRef]
- Huang, X.; Rein, G. Downward spread of smouldering peat fire: The role of moisture, density and oxygen supply. Int. J. Wildland Fire 2017, 26, 907–918. [Google Scholar] [CrossRef]
- Poulter, B.; Christensen, N.L., Jr.; Halpin, P.N. Carbon emissions from a temperate peat fire and its relevance to interannual variability of trace atmospheric greenhouse gases. J. Geophys. Res. Atmos. 2006, 111, D06301. [Google Scholar] [CrossRef]
- Sirin, A.A.; Makarov, D.A.; Gummert, I.; Maslov, A.A.; Gul’be Ya, I. Glubina progoraniya torfa i poteri ugleroda pri lesnom podzemnom pozhare (Depth of Peat Burning and Carbon Losses from an Underground Forest Fire). Lesovedeniye 2019, 5, 410–422. [Google Scholar]
- Mack, M.; Bret-Harte, M.; Hollingsworth, T.; Jandt, R.; Schuur, E.; Shaver, G.; Verbyla, D. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 2011, 475, 489–492. [Google Scholar] [CrossRef]
- Hu, Y.; Fernandez-Anez, N.; Smith, T.E.L.; Rein, G. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildland Fire 2018, 27, 293–312. [Google Scholar] [CrossRef]
- Minayeva, T.; Sirin, A.A.; Stracher, G.B. The peat fires of Russia. In Coal and Peat Fires: A Global Perspective; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 376–394. [Google Scholar]
- Sirin, A.; Minayeva, T.; Vozbrannaya, A.; Bartalev, S. Kak izbezhat’ torfyanykh pozharov? (How to avoid peat fires?). Nauka Ross. 2011, 2, 13–21. [Google Scholar]
- Parish, F.; Sirin, A.; Charman, D.; Joosten, H.; Minayeva, T.; Silvius, M.; Stringer, L. Assessment on Peatlands, Biodiversity and Climate Change; Main Report; Global Environment Centre, and Wageningen: Kuala Lumpur, Malaysia, 2008. [Google Scholar]
- Minayeva, T.Y.; Sirin, A.A. Biologicheskoye raznoobraziye bolot i izmeneniye klimata (Biological diversity of swamps and climate change). Uspekhi Sovrem. Biol. (Successes Curr. Biol.) 2011, 131, 393–406. [Google Scholar]
- Rounsevell, M.; Fischer, M.; Torre-Marin Rando, A.; Mader, A. (Eds.) The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2018. [Google Scholar]
- Kharuk, V.I.; Ponomarev, E.I.; Ivanova, G.A.; Dvinskaya, M.L.; Coogan, S.C.; Flannigan, M.D. Wildfires in the Siberian taiga. Ambio 2021, 50, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Kopoteva, T.A.; Kuptsova, V.A. Pyrogenic Factor on Marie Bogs of the Amur Region. Bull. North-Eastern Sci. Center Far Eastern Branch Russ. Acad. Sci. 2011, 3, 37–41. [Google Scholar]
- Swindles, G.T.; Morris, P.J.; Mullan, D.; Watson, E.J.; Turner, T.E.; Roland, T.P.; Amesbury, M.J.; Kokfelt, U.; Schoning, K.; Pratte, S.; et al. The long-term fate of permafrost peatlands under rapid climate warming. Sci. Rep. 2015, 5, 17951. [Google Scholar] [CrossRef] [Green Version]
- Akhmet’yeva, N.P.; Belova, S.E.; Dzhamalov, R.G.; Kulichevskaya, I.S.; Lapina, Y.Y.; Mikhaylova, A.V. Yestestvennoye vosstanovleniye bolot posle pozharov (Natural restoration of bogs after fires). Vodn. Resur. (Water Resour.) 2014, 41, 343–354. [Google Scholar]
- Ciavarella, A.; Cotterill, D.; Stott, P.; Kew, S.; Philip, S.; van Oldenborgh, G.J.; Skålevåg, A.; Lorenz, P.; Robin, Y.; Otto, F.; et al. Prolonged Siberian heat of 2020 almost impossible without human influence. Clim. Chang. 2021, 166, 9. [Google Scholar] [CrossRef]
- Flannigan, M.; Stocks, B.; Turetsky, M.; Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 2011, 4, 27–31. [Google Scholar] [CrossRef]
- Joosten, H.; Sirin, A.; Couwenberg, J.; Laine, J.; Smith, P. The role of peatlands in climate regulation. In Peatland Restoration and Ecosystem Services: Science, Policy and Practice; Cambridge University Press: Cambridge, UK, 2016; pp. 63–76. [Google Scholar] [CrossRef]
- Kirillina, K.; Shvetsov, E.G.; Protopopova, V.V.; Thiesmeyer, L.; Yan, W. Consideration of anthropogenic factors in boreal forest fire regime changes during rapid socio-economic development: Case study of forestry districts with increasing burnt area in the Sakha Republic, Russia. Environ. Res. Lett. 2020, 15, 035009. [Google Scholar] [CrossRef]
- Bondur, V.G.; Mokhov, I.I.; Voronova, O.S.; Sitnov, S.A. Satellite Monitoring of Siberian Wildfires and Their Effects: Features of 2019 Anomalies and Trends of 20-Year Changes. Dokl. Earth Sci. 2020, 492, 370–375. [Google Scholar] [CrossRef]
- Shvetsov, E.G.; Kukavskaya, E.A.; Shestakova, T.A.; Laflamme, J.; Rogers, B.M. Increasing fire and logging disturbances in Siberian boreal forests: A case study of the Angara region. Environ. Res. Lett. 2021, 16, 115007. [Google Scholar] [CrossRef]
- Kuklina, V.; Petrov, A.N.; Krasnoshtanova, N.; Bogdanov, V. Mobilizing Benefit-Sharing Through Transportation Infrastructure: Informal Roads, Extractive Industries and Benefit-Sharing in the Irkutsk Oil and Gas Region, Russia. Resources 2020, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Strack, M.; Softa, D.; Bird, M.; Xu, B. Impact of winter roads on boreal peatland carbon exchange. Glob. Chang. Biol. 2018, 24, e201–e212. [Google Scholar] [CrossRef]
- Reuters. Russia’s Yakutia Province Governor Warns of More Deadly Wildfires Next Year. Available online: https://www.reuters.com/world/russias-yakutia-province-governor-warns-more-deadly-wildfires-next-year-2021-09-09/ (accessed on 11 November 2021).
- Fletcher, M.-S.; Romano, A.; Connor, S.; Mariani, M.; Maezumi, S.Y. Catastrophic Bushfires, Indigenous Fire Knowledge and Reframing Science in Southeast Australia. Fire 2021, 4, 61. [Google Scholar] [CrossRef]
- Vorobiev, V. Atlas. Irkutsk Region: Ecological Conditions of Development; Roskartografiia, Institut geografii SO RAN: Irkutsk, Moscow, 2004. [Google Scholar]
- Suvorov, E.G.; Makarov, S.A. Ekologicheski Orientirovannoe Planirovanie Zemlepol’zo Vaniya v Baikal’skom Regione. Kovyktinskoe Gazokonden Satnoe Mestorozhdenie; Suvorov, E.G., Makarov, S.A., Eds.; Inst. Geogr. Sib. Otd. Ross. Akad. Nauk.: Irkutsk, Russia, 2004; p. 159. [Google Scholar]
- Nekrasov, I.A. Geocriological Map 1979 Baikal-Amur Mainline, 1:2500,000; Nekrasov, I.A., Ed.; GUGK: Moscow, Russia, 1979. [Google Scholar]
- Sirina, A. Evenki i Eveny v Sovremennom mire: Samosoznaniye, Prirodopol’zo-Vaniye, Mirovozzreniye; Vostochnaya Literature: Moscow, Russia, 2012; p. 604. (In Russian) [Google Scholar]
- Sirina, A.A. Evenki fire and forest ontology in the context of the wildfires in Siberia. Polar Sci. 2021, 29, 100726. [Google Scholar] [CrossRef]
- Gazprom. Kovyktinskoye. 2019. Available online: https://www.gazprom.ru/projects/kovyktinskoye/ (accessed on 7 October 2019). (In Russian).
- Forestry Agency of the Irkutsk Region. Order about the Structure of the Forestry Agencies of the Irkutsk Region. 2008. Available online: https://docs.cntd.ru/document/561506213 (accessed on 15 October 2021).
- Federal Forestry Agency, Control Zones. Available online: http://rosleshoz.gov.ru/activity/forest_security_and_protection/fires/zones (accessed on 15 May 2021).
- Markova, A. Ministr Lesnogo Kompleksa Irkutskoy oblasti: O Nelegal’nykh Vyrubkakh, Pozharakh i Lesovosstanovlenii. Available online: https://www.irk.ru/news/articles/20210927/wood/ (accessed on 7 October 2021).
- Government of the Russian Federation. Decree ‘Fire Safety Rules in Forests’; Government of the Russian Federation: Moscow, Russia, 2020.
- Rosleskhoz. Form of a Model Forest Land Lease Agreement. 26 July 2011; No. 319. Available online: http://government.ru/en/search/?q=Form%20of%20a%20Model%20Forest%20Land%20Lease%20Agreement&dt.till=22.02.2022&dt.since=7.05.2012&sort=rel&type= (accessed on 1 February 2022).
- Prishchepov, A.V.; Myachina, K.V.; Kamp, J.; Smelansky, I.; Dubrovskaya, S.; Ryakhov, R.; Grudinin, D.; Yakovlev, I.; Urazaliyev, R. Multiple trajectories of grassland fragmentation, degradation, and recovery in Russia’s steppes. Land Degrad. Dev. 2021, 32, 3220–3235. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- EarthData. Fire Information for Resource Management System (FIRMS). Available online: https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms (accessed on 15 February 2021).
- Fire Information for Resource Management System (FIRMS). Archive Download. Available online: https://firms.modaps.eosdis.nasa.gov/download/ (accessed on 15 October 2021).
- Wooster, M.J.; Zhukov, B.; Oertel, D. Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens. Environ. 2003, 86, 83–107. [Google Scholar] [CrossRef]
- Kuklina, V.; Bilichenko, I.; Bogdanov, V.; Kobylkin, D.; Petrov, A.; Shiklomanov, N. Informal road networks and sustainability of Siberian boreal forest landscapes: Case study of the Vershina Khandy taiga. Environ. Res. Lett. 2021, 16, 115001. [Google Scholar] [CrossRef]
- Mamontova, N.; Klyachko, E.; Thornton, T. ‘The track is never the same’: The fluidity of geographic terminology and conceptualisation of space among Ewenki. Hunt. Gatherer Res. 2020, 4, 311–337. [Google Scholar] [CrossRef]
- Xiong, X.; Angal, A.; Chang, T.; Chiang, K.; Lei, N.; Li, Y.; Sun, J.; Twedt, K.; Wu, A. MODIS and VIIRS Calibration and Characterization in Support of Producing Long-Term High-Quality Data Products. Remote Sens. 2020, 12, 3167. [Google Scholar] [CrossRef]
- Xiong, X.; Butler, J. MODIS and VIIRS Calibration History and Future Outlook. Remote Sens. 2020, 12, 2523. [Google Scholar] [CrossRef]
- McCarty, J.L.; Smith, T.E.L.; Turetsky, M.R. Arctic fires re-emerging. Nat. Geosci. 2020, 13, 658–660. [Google Scholar] [CrossRef]
- Buma, B.; Weiss, S.; Hayes, K.; Lucash, M. Wildland fire reburning trends across the US West suggest only short-term negative feedback and differing climatic effects. Environ. Res. Lett. 2020, 15, 034026. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Hollingsworth, T.N.; Chapin, F.S., III; Mack, M.C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 2010, 16, 1281–1295. [Google Scholar] [CrossRef]
- Nasrul, B. Program of Community Empowerment Prevents Forest Fires in Indonesian Peat Land. Procedia Environ. Sci. 2013, 17, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Greenpeace. Rekomendatsii po Tusheniyu Torfyanykh Pozharov na Osushennykh Bolotakh (Recommendations for Extinguishing Peat Fires in Drained Swamps). 2020. Available online: https://gfmc.online/wp-content/uploads/Greenpeace-Russia-Peat-Fire-Management-Recommendations-2nd-Edition-2020.pdf (accessed on 12 November 2021).
Class | Khanda | Tokma | ||||
---|---|---|---|---|---|---|
2013–2014, Square km | Change in Burned Areas from 2013 to 2019, Square km | Change in Burned Areas from 2013 to 2019, % | 2013–2014, Square km | Change in Burned Areas from 2013 to 2019, Square km | Change in Burned Areas from 2013 to 2019, % | |
Forest | 4055.2 | 257.8 | 6.36 | 16,311.7 | 2936.2 | 18.00 |
Woodland | 1169.6 | 113.1 | 9.67 | 466.7 | 145.7 | 31.22 |
Peatlands | 686.3 | 44.5 | 6.48 | 3796.8 | 1560 | 41.09 |
Anthropogenic landscape | 56 | 2.6 | 4.64 | 233.3 | 53.1 | 22.76 |
Burned areas | 140.1 | 35.9 | 25.62 | 381.8 | 183.3 | 48.01 |
Other * | 868.6 | 51.3 | 12.9 | 424.3 | 49.6 | 30.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuklina, V.; Sizov, O.; Rasputina, E.; Bilichenko, I.; Krasnoshtanova, N.; Bogdanov, V.; Petrov, A.N. Fires on Ice: Emerging Permafrost Peatlands Fire Regimes in Russia’s Subarctic Taiga. Land 2022, 11, 322. https://doi.org/10.3390/land11030322
Kuklina V, Sizov O, Rasputina E, Bilichenko I, Krasnoshtanova N, Bogdanov V, Petrov AN. Fires on Ice: Emerging Permafrost Peatlands Fire Regimes in Russia’s Subarctic Taiga. Land. 2022; 11(3):322. https://doi.org/10.3390/land11030322
Chicago/Turabian StyleKuklina, Vera, Oleg Sizov, Elena Rasputina, Irina Bilichenko, Natalia Krasnoshtanova, Viktor Bogdanov, and Andrey N. Petrov. 2022. "Fires on Ice: Emerging Permafrost Peatlands Fire Regimes in Russia’s Subarctic Taiga" Land 11, no. 3: 322. https://doi.org/10.3390/land11030322
APA StyleKuklina, V., Sizov, O., Rasputina, E., Bilichenko, I., Krasnoshtanova, N., Bogdanov, V., & Petrov, A. N. (2022). Fires on Ice: Emerging Permafrost Peatlands Fire Regimes in Russia’s Subarctic Taiga. Land, 11(3), 322. https://doi.org/10.3390/land11030322