Mapping Fractional Vegetation Coverage across Wetland Classes of Sub-Arctic Peatlands Using Combined Partial Least Squares Regression and Multiple Endmember Spectral Unmixing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Workflow Overview
2.3. Data Acquisition
2.4. Data Processing
2.4.1. Plant Functional Type Grouping
2.4.2. Ordination and Partial Least Squares Regression (PLSR)
2.4.3. Ordination-Isomap Dimensionality Reduction
2.4.4. PLSR Relates Spectral Profiles to Isomap Axes
2.5. MESMA Library and Spectral Unmixing
2.5.1. Building a Spectral Library
2.5.2. Spectral Unmixing
2.6. Model Fit and Accuracy Assessment
3. Results
3.1. Spectral Separability
3.2. Ordination, Isomap Dimensionality Reduction
3.3. Feature Selection: Partial Least Squares Regression Results
3.4. Calculation of Imagery Endmember Fractional Coverage Using MESMA
3.5. Accuracy Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGL | Above ground level |
AVC | Alaskan Vegetation Classification |
BAR | Bridge Access Road |
BC | Beaver Creek |
CoB | Count-based selection |
EAR | Endmember average root mean square error |
ENVI | Environment for Visualizing Images |
EWM | Existing Wetland Map |
FWHM | Full Width Half Maximum |
G-LiHT | Goddard’s LiDAR Hyperspectral Thermal Imager |
HHDS | Handheld Data Set |
IES | Iterative Endmember Selection |
IFMO | Isometric Feature Mapping Ordination |
LL | Lily Lake |
LOO | Leave One Out |
LV | Latent Variables |
MDPI | Multidisciplinary Digital Publishing Institute |
MESMA | Multiple Endmember Spectral Mixture Analysis |
MIROC-ES2L | Model for Interdisciplinary Research on Climate, |
Earth System version 2 for Long-term | |
NIR | Near infrared |
NPV | Non photosynthetic vegetation |
PFT | Plant Functional Type |
PLSR | Partial Least Squares Regression |
REP | Red Edge Position |
RMSE | Root Mean Square Error |
SMA | Spectral Mixture Analysis |
Appendix A
AVC Level I | AVC Level II | AVC Level III | AVC Level IV | Taxa in This AVC Level | EWM Class | Site (This Study) |
---|---|---|---|---|---|---|
I. Forest | A. Needleleaf | (2) Open needleleaf woodland (canopy 10-25 percent) | d. Black spruce on wet boggy sites, often with Sphagnum mosses | Picea mariana; P. glauca; Alnus crispa; Betula glandulosa; Pleurozium schreberei; Rubus camaemorus; edum decumbens; Vaccinium spp. | Black Spruce Peatland | Beaver Creek, Transect 2 |
II. Scrub | C. Low scrub | (1) Open low scrub | e. Shrub birch-ericaceous shrub bogs | Ledub decumbens; Sphagnum spp.; Emepetrian nigrum; Kalmia polifolia; Andromeda polifolia; Vaccinium vitis idaea | Low Shrub Peatland | Lily Lake |
III. Herbaceous | A. Graminoid | (3) Wet graminoid herbaceous | k. Subarctic lowland sedge-moss bog meadow | Carex aquatilis, Sphagnum spp. Eriophorum russeolum, Equisetum fluvatile | Sedge Peatland | Beaver Creek, Transect 1 |
III. Herbaceous | A. Graminoid | (3) Wet graminoid herbaceous | f. Subarctic lowland herb wet meadow | Carex spp. | Wet Herbaceous Peatland | Bridge Access Road |
Taxa | Profiles Measured | Wetland-Peatland Type from Which Spectra Were Collected |
---|---|---|
Sphagnum | 6 | Low shrub peatland, Sedge peatland |
Forbs | 6 | Wet herbaceous peatland |
Conifer | 7 | Low shrub peatland, Black spruce peatland |
Deciduous | 6 | Low shrub peatland, Sedge peatland |
Carex | 6 | Low shrub peatland, Sedge peatland |
Ericaceae | 6 | Sedge peatland, Black spruce peatland |
Poaceae | 6 | Wet herbaceous peatland |
Species | V1 | V2 | V3 | V4 | V5 | V6 |
---|---|---|---|---|---|---|
Deciduous | 0.01 | −0.14 | −0.04 | 0.05 | −0.02 | −0.01 |
Carex | 0.14 | 0.00 | −0.01 | −0.01 | 0.02 | −0.02 |
Forb | 0.09 | 0.09 | 0.10 | 0.04 | −0.07 | −0.07 |
Bryophyte non-Sphagnum | 0.19 | 0.06 | −0.07 | −0.11 | −0.08 | 0.00 |
Poaceae | −0.08 | −0.01 | −0.10 | 0.11 | 0.03 | 0.07 |
Ericaceae | −0.23 | −0.07 | 0.02 | −0.03 | −0.01 | 0.02 |
Conifer | −0.32 | 0.23 | 0.03 | −0.12 | 0.09 | 0.00 |
Sphagnum | −0.07 | 0.00 | −0.02 | 0.01 | 0.00 | 0.00 |
References
- Fenner, N.; Freeman, C. Drought-induced carbon loss in peatlands. 895. Nat. Geosci. 2011, 4, 895–896. [Google Scholar] [CrossRef]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Malik, A.A.; Roy, J.; Scheu, S.; et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef] [Green Version]
- Luthin, J.; Guymon, G. Soil moisture-vegetation-temperature relationships in central Alaska. J. Hydrol. 1974, 23, 233–246. [Google Scholar] [CrossRef]
- Cleve, K.V.; Yarie, J. Interaction of temperature, moisture, and soil chemistry in controlling nutrient cycling and ecosystem development in the taiga of Alaska. In Forest Ecosystems in the Alaskan Taiga; Springer: Berlin/Heidelberg, Germany, 1986; pp. 160–189. [Google Scholar]
- Hobbie, S.; Schimel, J.; Trumbore, S.; Randerson, J. A mechanistic understanding of carbon storage and turnover in high-latitude soil. Glob. Chang. Biol. 2000, 6, 196–210. [Google Scholar] [CrossRef] [Green Version]
- Limpens, J.; Berendse, F.; Blodau, C.; Canadell, J.; Freeman, C.; Holden, J.; Roulet, N.; Rydin, H.; Schaepman-Strub, G. Peatlands and the carbon cycle: From local processes to global implications—A synthesis. Biogeosciences 2008, 5, 1475–1491. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Miller, P.A.; Persson, A.; Olefeldt, D.; Pilesjö, P.; Heliasz, M.; Jackowicz-Korczynski, M.; Yang, Z.; Smith, B.; Callaghan, T.V.; et al. Carbon budget estimation of a subarctic catchment using a dynamic ecosystem model at high spatial resolution. Biogeosciences 2015, 12, 2791–2808. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, A.; Brice, D.J.; Childs, J.; Graham, J.D.; Hobbie, E.A.; Vander Stel, H.; Feron, S.C.; Hanson, P.J.; Iversen, C.M. Peatland warming strongly increases fine root growth. Proc. Natl. Acad. Sci. USA 2020, 117, 17627–17634. [Google Scholar] [CrossRef]
- Hajima, T.; Watanabe, M.; Yamamoto, A.; Tatebe, H.; Noguchi, M.A.; Abe, M.; Ohgaito, R.; Ito, A.; Yamazaki, D.; Okajima, H.; et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 2020, 13, 2197–2244. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J. Spectral Unmixing. IEEE Signal Process Mag. 2002, 19, 44. [Google Scholar] [CrossRef]
- Wetherley, E.B.; Roberts, D.A.; McFadden, J.P. Mapping spectrally similar urban materials at sub-pixel scales. Remote Sens. Environ. 2017, 195, 170–183. [Google Scholar] [CrossRef]
- Lantz, T.C.; Gergel, S.E.; Kokelj, S.V. Spatial heterogeneity in the shrub tundra ecotone in the Mackenzie Delta region, Northwest Territories: Implications for Arctic environmental change. Ecosystems 2010, 13, 194–204. [Google Scholar] [CrossRef]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site. J. Geophys. Res. Solid Earth 1986, 91, 8098–8112. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember variability in spectral mixture analysis: A review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Fangju, W. Fuzzy supervised classification of remotely sensing images. IEEE Trans. Geosci. Remote Sens. 1999, 28, 194–201. [Google Scholar]
- Roberts, D.A.; Gardner, M.E.; Church, R.; Ustin, S.L.; Green, R.O. Optimum strategies for mapping vegetation using multiple-endmember spectral mixture models. In Imaging Spectrometry III; SPIE: Bellingham, WA, USA, 1997; Volume 3118, pp. 108–119. [Google Scholar]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Roberts, D.; Halligan, K.; Dennison, P.; Dudley, K.; Somers, B.; Crabbé, A. VIPER TOOLS. 2017. Available online: https://sites.google.com/site/ucsbviperlab/viper-tools (accessed on 10 October 2019).
- Karlstrom, T.N. Quaternary Geology of the Kenai Lowland and Glacial History of the Cook Inlet Region, Alaska; Technical Report; US Government Printing Office: Washington, DC, USA, 1964. [Google Scholar]
- Magness, D.R.; Morton, J.M. Using climate envelope models to identify potential ecological trajectories on the Kenai Peninsula, Alaska. PLoS ONE 2018, 13, e0208883. [Google Scholar] [CrossRef] [Green Version]
- Gracz, M.; Noyes, K.; North, P.; Tande, G. Wetland Mapping and Classification of the Kenai Lowland, Alaska. 2008. Available online: http://www.kenaipeatlands.net/ (accessed on 10 March 2019).
- Jonasson, S. Evaluation of the point intercept method for the estimation of plant biomass. Oikos 1988, 52, 101–106. [Google Scholar] [CrossRef]
- Caratti, J.F. The LANDFIRE prototype project reference database. In The LANDFIRE Prototype Project: Nationally Consistent and Locally Relevant Geospatial Data for Wildland Fire Management Gen. Tech. Rep. RMRS-GTR-175; Matthew, G.R., Christine, K.F., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; Volume 175, pp. 69–98. [Google Scholar]
- Schaepman-Strub, G.; Limpens, J.; Menken, M.; Bartholomeus, H.; Schaepman, M.E. Towards spatial assessment of carbon sequestration in peatlands: Spectroscopy based estimation of fractional cover of three plant functional types. Biogeosciences 2009, 6, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Bonham, C.D. Measurements for Terrestrial Vegetation; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Rochefort, L.; Isselin-Nondedeu, F.; Boudreau, S.; Poulin, M. Comparing survey methods for monitoring vegetation change through time in a restored peatland. Wetl. Ecol. Manag. 2013, 21, 71–85. [Google Scholar] [CrossRef]
- Viereck, L.; Dyrness, C.; Batten, A.; Wenzlick, K. The Alaska Vegetation Classification; USDA Forest Service General Technical Report PNW-GTR-286; Pacific Northwest Research Station: Portland, OR, USA, 1992. [Google Scholar]
- Cook, B.D.; Corp, L.A.; Nelson, R.F.; Middleton, E.M.; Morton, D.C.; McCorkel, J.T.; Masek, J.G.; Ranson, K.J.; Ly, V.; Montesano, P.M. NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sens. 2013, 5, 4045–4066. [Google Scholar] [CrossRef] [Green Version]
- DeFries, R.S.; Field, C.B.; Fung, I.; Justice, C.O.; Los, S.; Matson, P.A.; Matthews, E.; Mooney, H.A.; Potter, C.S.; Prentice, K.; et al. Mapping the land surface for global atmosphere-biosphere models: Toward continuous distributions of vegetation’s functional properties. J. Geophys. Res. Atmos. 1995, 100, 20867–20882. [Google Scholar] [CrossRef]
- Ustin, S.L.; Gamon, J.A. Remote sensing of plant functional types. Remote Sens. Plant Funct. Types New Phytol. 2010, 186, 795–816. [Google Scholar] [CrossRef]
- Schweiger, A.K.; Schütz, M.; Risch, A.C.; Kneubühler, M.; Haller, R.; Schaepman, M.E. How to predict plant functional types using imaging spectroscopy: Linking vegetation community traits, plant functional types and spectral response. Methods Ecol. Evol. 2017, 8, 86–95. [Google Scholar] [CrossRef]
- Cole, B.; McMorrow, J.; Evans, M. Spectral monitoring of moorland plant phenology to identify a temporal window for hyperspectral remote sensing of peatland. ISPRS J. Photogramm. Remote Sens. 2014, 90, 49–58. [Google Scholar] [CrossRef]
- Rebelo, A.J.; Somers, B.; Esler, K.J.; Meire, P. Can wetland plant functional groups be spectrally discriminated? Remote Sens. Environ. 2018, 210, 25–34. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Remer, L.A. Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683. [Google Scholar] [CrossRef]
- Schmidtlein, S.; Sassin, J. Mapping of continuous floristic gradients in grasslands using hyperspectral imagery. Remote Sens. Environ. 2004, 92, 126–138. [Google Scholar] [CrossRef]
- Feilhauer, H.; Faude, U.; Schmidtlein, S. Combining Isomap ordination and imaging spectroscopy to map continuous floristic gradients in a heterogeneous landscape. Remote Sens. Environ. 2011, 115, 2513–2524. [Google Scholar] [CrossRef]
- Schmidtlein, S.; Feilhauer, H.; Bruelheide, H. Mapping plant strategy types using remote sensing. J. Veg. Sci. 2012, 23, 395–405. [Google Scholar] [CrossRef]
- Neumann, C.; Weiss, G.; Schmidtlein, S.; Itzerott, S.; Lausch, A.; Doktor, D.; Brell, M. Gradient-based assessment of habitat quality for spectral ecosystem monitoring. Remote Sens. 2015, 7, 2871–2898. [Google Scholar] [CrossRef] [Green Version]
- Austin, M.P. Continuum concept, ordination methods, and niche theory. Annu. Rev. Ecol. Syst. 1985, 16, 39–61. [Google Scholar] [CrossRef]
- Middleton, M.; Närhi, P.; Arkimaa, H.; Hyvönen, E.; Kuosmanen, V.; Treitz, P.; Sutinen, R. Ordination and hyperspectral remote sensing approach to classify peatland biotopes along soil moisture and fertility gradients. Remote Sens. Environ. 2012, 124, 596–609. [Google Scholar] [CrossRef]
- Wold, S.; Martens, H.; Wold, H. The multivariate calibration problem in chemistry solved by the PLS method, in Matrix pencils. In Matrix Pencils; Kågström, B., Ruhe, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1983; Volume 973, pp. 286–293. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Harris, A.; Charnock, R.; Lucas, R. Hyperspectral remote sensing of peatland floristic gradients. Remote Sens. Environ. 2015, 162, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Roth, K.L.; Roberts, D.A.; Dennison, P.E.; Alonzo, M.; Peterson, S.H.; Beland, M. Differentiating plant species within and across diverse ecosystems with imaging spectroscopy. Remote Sens. Environ. 2015, 167, 135–151. [Google Scholar] [CrossRef]
- Tenenbaum, J.B.; de Silva, V.; Langford, J.C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2000, 290, 2319–2323. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Wagner, H. Package Vegan. Community Ecology Package. R Package Vegan, Vers 2.3-1; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Mahecha, M.D.; Martínez, A.; Lischeid, G.; Beck, E. Nonlinear dimensionality reduction: Alternative ordination approaches for extracting and visualizing biodiversity patterns in tropical montane forest vegetation data. Ecol. Inform. 2007, 2, 138–149. [Google Scholar] [CrossRef]
- Mahecha, M.D.; Schmidtlein, S. Revealing biogeographical patterns by nonlinear ordinations and derived anisotropic spatial filters. Glob. Ecol. Biogeogr. 2008, 17, 284–296. [Google Scholar] [CrossRef]
- Unberath, I.; Vanierschot, L.; Somers, B.; Van De Kerchove, R.; Vanden Borre, J.; Unberath, M.; Feilhauer, H. Remote sensing of coastal vegetation: Dealing with high species turnover by mapping multiple floristic gradients. Appl. Veg. Sci. 2019, 22, 534–546. [Google Scholar] [CrossRef]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Balabin, R.M.; Smirnov, S.V. Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data. Anal. Chim. Acta 2011, 692, 63–72. [Google Scholar] [CrossRef]
- Geladi, P.; BR, K. Partial least-squares regression—A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Mevik, B.H.; Wehrens, R.; Liland, K.H. Pls: Partial Least Squares and Principal Component Regression. R Package Version 2.7-3. 2020. Available online: https://CRAN.R-project.org/package=pls (accessed on 16 October 2019).
- Bogan, S.A.; Antonarakis, A.S.; Moorcroft, P.R. Imaging spectrometry-derived estimates of regional ecosystem composition for the Sierra Nevada, California. Remote Sens. Environ. 2019, 228, 14–30. [Google Scholar] [CrossRef]
- Roth, K.L.; Dennison, P.E.; Roberts, D.A. Comparing endmember selection techniques for accurate mapping of plant species and land cover using imaging spectrometer data. Remote Sens. Environ. 2012, 127, 139–152. [Google Scholar] [CrossRef]
- Dennison, P.E.; Roberts, D.A. Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE. Remote Sens. Environ. 2003, 87, 123–135. [Google Scholar] [CrossRef]
- Böttcher, S.; Merz, C.; Lischeid, G.; Dannowski, R. Using Isomap to differentiate between anthropogenic and natural effects on groundwater dynamics in a complex geological setting. J. Hydrol. 2014, 519, 1634–1641. [Google Scholar] [CrossRef]
- Liu, T.; Xu, T.; Yu, F.; Yuan, Q.; Guo, Z.; Xu, B. A method combining ELM and PLSR (ELM-P) for estimating chlorophyll content in rice with feature bands extracted by an improved ant colony optimization algorithm. Comput. Electron. Agric. 2021, 186, 106177. [Google Scholar] [CrossRef]
Site | Code | Location (Latitude, Longitude) | G-LiHT Tile |
---|---|---|---|
Bridge Access Road | BAR | 60.52, −151.21 | Kenai_19Aug2014_l12s659 |
Beaver Creek | BC | 60.65, −151.04 | Kenai_18Aug2014_l8s25 |
Lily Lake | LL | 60.54, −150.50 | Kenai_18Aug2014_l2s693 |
Genus Species | Plant Functional Type (PFT) |
---|---|
Andromeda polifolia | Woody non-conifer |
Aulucomnium palustre | Non-Sphagnum bryophyte |
Betula nana | Woody non-conifer |
Calamogrostis canadensis | Graminoid |
Chamaedaphne calyculata | Woody non-conifer |
Cladonia rangiferina | Non-Sphagnum bryophyte |
Comarum palustre | Forb |
Cornus canadensis | Woody non-conifer |
Drosersa | Forb |
Empetrum nigrum | Woody non-conifer |
Epilobium angustofolium | Forb |
Equisetum fluvatile, arvense | Forb |
Eriophorum spp. | Graminoid |
Festuca | Graminoid |
Feather moss spp. | Non-Sphagnum bryophyte |
Ledum palustre | Woody non-conifer |
Myrica gale | Woody non-conifer |
Picea mariana | Conifer |
Populous tremuloides | Woody non-conifer |
Potentilla anserina | Forb |
Rubus chamaemorus | Forb |
Salix pedicellaris | Woody non-conifer |
Sphagnum spp. | Sphagnum |
standing water | Non-vegetation |
Vaccinium oxycoccus | Woody non-conifer |
Vaccinium ugilinosum | Woody non-conifer |
Vaccinium vitis idaea | Woody non-conifer |
PFT Comparison | M-Statistic Spectral Range (nm) Visible [400–550] | M-Statistic Spectral Range (nm) NIR Edge [680–720] | M-Statistic Spectral Range (nm) NIR 2 [721–800] |
---|---|---|---|
Sphagnum to Conifer | 2.35 | 1.72 | 1.22 |
Sphagnum to Graminoid | 0.57 | 3.36 | 0.75 |
Sphagnum to Forb | 1.31 | 5.78 | 2.74 |
Conifer to Graminoid | 5.46 | 8.49 | 4.32 |
Conifer to Forb | 0.13 | 3.48 | 2.22 |
Conifer to Woody Non-conifer | 1.21 | 3.99 | 3.55 |
Graminoid to Forb | 1.03 | 3.93 | 2.47 |
Graminoid to Woody Non-conifer | 0.06 | 8.21 | 3.71 |
Parameter | Handheld Dataset Characteristics |
---|---|
% Floristic variation retained in ordination 1 | 30% |
Minimum k parameter (ordination) | 2 |
Optimal k parameter | 7 |
PLSR calibrated | 0.99 |
validated (LOO) | 0.91 |
Number of predictor bands for PLSR | 19 |
Number of latent vectors for PLSR | 4 |
RMSE for PLSR, calibrated & validated (LOO) | 0.01, 0.03 |
Critical wavelength bands for PLSR (p < 0.05) | 698, 701, 703, 710 |
Number of Plots | 144 |
PLSR RMSE with optimal k | 0.015 (cal), 0.050 (val) |
Number of PFT | 5 |
Bands 1 | Initial Library Endmembers | Final Endmembers | Cohen’s Kappa |
---|---|---|---|
1–110 | 76 | 37 | 0.97 |
64–67 | 76 | 24 | 0.90 |
Site | Bands | Constrained | Cells Unmixed (%) | Mean RMSE (%) | Computation Time (Minutes) | Number of Pixels | Computation TIME Normalized for 480 Pixels (Minutes) |
---|---|---|---|---|---|---|---|
Lily Lake | 64–67 | No | 100 | 0.6 | 0.64 | 1820 | 0.17 |
1–110 | 100 | 0.6 | 1.91 | 0.50 | |||
64–67 | Yes | 100 | 0.1 | 0.31 | 0.08 | ||
1–110 | 100 | 0.7 | 0.45 | 0.12 | |||
Beaver Creek | 64–67 | No | 100 | 0.1 | 0.33 | 414 | 0.38 |
1–110 | 100 | 0.1 | 1.09 | 1.26 | |||
64–67 | Yes | 100 | 0.1 | 0.39 | 0.45 | ||
1–110 | 100 | 0.9 | 1.18 | 1.37 | |||
Bridge Access Road | 64–67 | No | 100 | 0.1 | 0.47 | 480 | 0.47 |
1–110 | 100 | 1.0 | 0.23 | 0.23 | |||
64–67 | Yes | 100 | 0.1 | 0.31 | 0.31 | ||
1–110 | 98 | 1.1 | 0.43 | 0.43 |
Site | Wetland Class | PFT | Fractional Coverage Field Sampled Plots 1 | Fractional Coverage MESMA Unconstrained Bands 64–67 | Fractional Coverage MESMA Constrained Bands 64–67 | Fractional Coverage MESMA Unconstrained Bands 1–110 | Fractional Coverage MESMA Constrained Bands 1–110 |
---|---|---|---|---|---|---|---|
Lily Lake | Low Shrub | Woody | 0.30 | 0.26 | 0.26 | 0.02 | 0.14 |
Sphagnum | 0.41 | 0.58 | 0.58 | 0.17 | 0.79 | ||
NPV2 | 0.03 | 0.00 | 0.00 | 0.73 | 0.00 | ||
Graminoid | 0.25 | 0.13 | 0.15 | 0.07 | 0.70 | ||
Forb | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | ||
Beaver Creek | Sedge | Woody | 0.33 | 0.19 | 0.19 | 0.02 | 0.05 |
Sphagnum | 0.40 | 0.47 | 0.48 | 0.76 | 0.84 | ||
NPV | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | ||
Graminoid | 0.28 | 0.31 | 0.33 | 0.05 | 0.09 | ||
Forb | 0.00 | 0.00 | 0.00 | 0.16 | 0.00 | ||
Bridge Access Road | Wet Herbaceous | Woody | 0.01 | 0.00 | 0.01 | 0.23 | 0.00 |
Sphagnum | 0.00 | 0.26 | 0.00 | 0.32 | 0.00 | ||
NPV | 0.09 | 0.00 | 0.05 | 0.00 | 0.02 | ||
Graminoid | 0.74 | 0.55 | 0.70 | 0.45 | 0.77 | ||
Forb | 0.18 | 0.19 | 0.25 | 0.01 | 0.18 | ||
Unclassified | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 |
Computation Time (minutes) 1 | Number of Models | Number of Bands | Number of Pixels | Site |
---|---|---|---|---|
2.7 | 3 | 4 | 180,375 | Beaver Creek |
3.6 | 3 | 4 | 155,595 | Bridge Access Road |
6.3 | 3 | 110 | 186,915 | Lily Lake |
6.5 | 4 | 4 | 180,375 | Beaver Creek |
8.5 | 3 | 4 | 186,915 | Lily Lake |
9.4 | 4 | 4 | 155,595 | Bridge Access Road |
19.1 | 3 | 110 | 180,375 | Beaver Creek |
21.7 | 3 | 110 | 155,595 | Bridge Access Road |
33.4 | 4 | 110 | 155,595 | Bridge Access Road |
36.1 | 4 | 110 | 186,915 | Lily Lake |
61.6 | 4 | 4 | 186,915 | Lily Lake |
231.0 | 4 | 110 | 180,375 | Beaver Creek |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunnick, H.; Ramage, J.M.; Magness, D.; Peters, S.C. Mapping Fractional Vegetation Coverage across Wetland Classes of Sub-Arctic Peatlands Using Combined Partial Least Squares Regression and Multiple Endmember Spectral Unmixing. Remote Sens. 2023, 15, 1440. https://doi.org/10.3390/rs15051440
Cunnick H, Ramage JM, Magness D, Peters SC. Mapping Fractional Vegetation Coverage across Wetland Classes of Sub-Arctic Peatlands Using Combined Partial Least Squares Regression and Multiple Endmember Spectral Unmixing. Remote Sensing. 2023; 15(5):1440. https://doi.org/10.3390/rs15051440
Chicago/Turabian StyleCunnick, Heidi, Joan M. Ramage, Dawn Magness, and Stephen C. Peters. 2023. "Mapping Fractional Vegetation Coverage across Wetland Classes of Sub-Arctic Peatlands Using Combined Partial Least Squares Regression and Multiple Endmember Spectral Unmixing" Remote Sensing 15, no. 5: 1440. https://doi.org/10.3390/rs15051440
APA StyleCunnick, H., Ramage, J. M., Magness, D., & Peters, S. C. (2023). Mapping Fractional Vegetation Coverage across Wetland Classes of Sub-Arctic Peatlands Using Combined Partial Least Squares Regression and Multiple Endmember Spectral Unmixing. Remote Sensing, 15(5), 1440. https://doi.org/10.3390/rs15051440