Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = aqueous micellar systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2413 KiB  
Article
Effect of PPO/PEO Ratio on the Phase Behavior of Reverse Pluronics
by Alejandro Aguilar-Ramírez, César Alexsander Machado-Cervantes, Raúl Ortega-Córdova, Víctor Vladimir Amílcar Fernández-Escamilla, Yahya Rharbi, Gabriel Landázuri-Gómez, Emma Rebeca Macías-Balleza and J. Félix Armando Soltero-Martínez
Polymers 2025, 17(15), 2061; https://doi.org/10.3390/polym17152061 - 28 Jul 2025
Viewed by 229
Abstract
The specific features of the phase diagrams of aqueous Pluronic systems, and particularly those of reverse Pluronics, are critically important for their broad range of applications, notably as nanocarriers for anticancer molecules. This work aims to investigate the effect of increasing hydrophobicity, achieved [...] Read more.
The specific features of the phase diagrams of aqueous Pluronic systems, and particularly those of reverse Pluronics, are critically important for their broad range of applications, notably as nanocarriers for anticancer molecules. This work aims to investigate the effect of increasing hydrophobicity, achieved by varying the PPO/PEO ratio and the molecular weight, on the phase behavior of three reverse Pluronics: 10R5 [(PPO)8–(PEO)22–(PPO)8], 17R4 [(PPO)14–(PEO)24–(PPO)14] and 31R1 [(PPO)26–(PEO)7–(PPO)26]. A broad set of physical measurements, including density, sound velocity, viscosity, and surface tension, was used to characterize the physical properties of the solutions. These data were complemented by additional techniques such as direct observation, dynamic light scattering, and rheological measurements. Based on the primary measurements, molar volume, apparent adiabatic compressibility, and hydration profiles were subsequently derived. Phase diagrams were constructed for each system over concentration ranges of 0.1–90 wt.% and temperatures between 6 and 70 °C, identifying distinct regions corresponding to random networks, flower-like micelles, and micellar networks. Notably, the 31R1/water system does not form flower-like micelles, whereas both the 17R4/water and 10R5/water systems display such structures, albeit in a narrow interval, that shift toward higher concentrations and temperatures with increasing PPO/PEO ratio. Altogether, the present study provides new insights into the physicochemical behavior of reverse Pluronic systems, offering a foundation for their rational design as hydrophobic nanocarriers, either as standalone entities or in conjunction with other copolymers. Full article
(This article belongs to the Special Issue Self-Assembly of Block Copolymers and Nanoparticles)
Show Figures

Graphical abstract

28 pages, 3006 KiB  
Article
Self-Assembling Amphiphilic ABA Triblock Copolymers of Hyperbranched Polyglycerol with Poly(tetrahydrofuran) and Their Nanomicelles as Highly Efficient Solubilization and Delivery Systems of Curcumin
by Dóra Fecske, György Kasza, Gergő Gyulai, Kata Horváti, Márk Szabó, András Wacha, Zoltán Varga, Györgyi Szarka, Yi Thomann, Ralf Thomann, Rolf Mülhaupt, Éva Kiss, Attila Domján, Szilvia Bősze, Laura Bereczki and Béla Iván
Int. J. Mol. Sci. 2025, 26(12), 5866; https://doi.org/10.3390/ijms26125866 - 19 Jun 2025
Viewed by 585
Abstract
Delivering of hydrophobic drugs by polymeric nanoparticles is an intensively investigated research and development field worldwide due to the insufficient solubility of many existing and potential new drugs in aqueous media. Among polymeric nanoparticles, micelles of biocompatible amphiphilic block copolymers are among the [...] Read more.
Delivering of hydrophobic drugs by polymeric nanoparticles is an intensively investigated research and development field worldwide due to the insufficient solubility of many existing and potential new drugs in aqueous media. Among polymeric nanoparticles, micelles of biocompatible amphiphilic block copolymers are among the most promising candidates for solubilization, encapsulation, and delivery of hydrophobic drugs to improve the water solubility and thus the bioavailability of such drugs. In this study, amphiphilic ABA triblock copolymers containing biocompatible hydrophilic hyperbranched (dendritic) polyglycerol (HbPG) outer and hydrophobic poly(tetrahydrofuran) (PTHF) inner segments were synthesized using amine-telechelic PTHF as a macroinitiator for glycidol polymerization. These hyperbranched–linear–hyperbranched block copolymers form nanosized micelles with 15–20 nm diameter above the critical micelle concentration. Coagulation experiments proved high colloidal stability of the aqueous micellar solutions of these block copolymers against temperature changes. The applicability of block copolymers as drug delivery systems was investigated using curcumin, a highly hydrophobic, water-insoluble, natural anti-cancer agent. High and efficient drug solubilization up to more than 3 orders of magnitude to that of the water solubility of curcumin (>1500-fold) is achieved with the HbPG-PTHF-HbPG block copolymer nanomicelles, locating the drug in amorphous form in the inner PTHF core. Outstanding stability of and sustained curcumin release from the drug-loaded block copolymer micelles were observed. The in vitro bioactivity of the curcumin-loaded nanomicelles was investigated on U-87 glioblastoma cell line, and an optimal triblock copolymer composition was found, which showed highly effective cellular uptake and no toxicity. These findings indicate that the HbPG-PTHF-HbPG triblock copolymers are promising candidates for advanced drug solubilization and delivery systems. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of Dendrimer Materials)
Show Figures

Figure 1

13 pages, 5858 KiB  
Article
Temperature Sensing in Agarose/Silk Fibroin Translucent Hydrogels: Preparation of an Environment for Long-Term Observation
by Maria Micheva, Stanislav Baluschev and Katharina Landfester
Nanomaterials 2025, 15(2), 123; https://doi.org/10.3390/nano15020123 - 16 Jan 2025
Viewed by 3352
Abstract
Environmental changes, such as applied medication, nutrient depletion, and accumulation of metabolic residues, affect cell culture activity. The combination of these factors reflects on the local temperature distribution and local oxygen concentration towards the cell culture scaffold. However, determining the temporal variation of [...] Read more.
Environmental changes, such as applied medication, nutrient depletion, and accumulation of metabolic residues, affect cell culture activity. The combination of these factors reflects on the local temperature distribution and local oxygen concentration towards the cell culture scaffold. However, determining the temporal variation of local temperature, independent of local oxygen concentration changes in biological specimens, remains a significant technological challenge. The process of triplet–triplet annihilation upconversion (TTA-UC), performed in a nanoconfined environment with a continuous aqueous phase, appears to be a possible solution to these severe sensing problems. This process generates two optical signals (delayed emitter fluorescence (dF) and residual sensitizer phosphorescence (rPh)) in response to a single external stimulus (local temperature), allowing the application of the ratiometric-type sensing procedure. The ability to incorporate large amounts of sacrificial singlet oxygen scavenging materials, without altering the temperature sensitivity, allows long-term protection against photo-oxidative damage to the sensing moieties. Translucent agarose/silk fibroin hydrogels embedding non-ionic micellar systems containing energetically optimized annihilation couples simultaneously fulfill two critical functions: first, to serve as mechanical support (for further application as a cell culture scaffold); second, to allow tuning of the material response window to achieve a maximum temperature sensitivity better than 0.5 K for the physiologically important region around 36 °C. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

21 pages, 8325 KiB  
Article
Thermodynamics of Micelle Formation of Selected Homologous 7-Alkyl Derivatives of Na-Cholate in Aqueous Solution: Steroid Skeleton and the Alkyl Chain Conformation
by Dileep Kumar and Mihalj Poša
Int. J. Mol. Sci. 2024, 25(23), 13055; https://doi.org/10.3390/ijms252313055 - 4 Dec 2024
Cited by 5 | Viewed by 1082
Abstract
Bile acid salts are steroid biosurfactants that build relatively small micelles compared to surfactants with an alkyl chain due to the rigid conformation of the steroid skeleton. In order to increase the capacity of micellar solubilization of the hydrophobic molecular guest, certain C7 [...] Read more.
Bile acid salts are steroid biosurfactants that build relatively small micelles compared to surfactants with an alkyl chain due to the rigid conformation of the steroid skeleton. In order to increase the capacity of micellar solubilization of the hydrophobic molecular guest, certain C7 alkyl derivatives were synthesized. Namely, introducing an alkyl group in the C7 position of the steroid skeleton results in a more effective increase in the micelle’s hydrophobic domain (core) than the introduction in the C3 position. In comparison, fewer synthetic steps are required than if alkyl groups are introduced into the C12 position of cholic acid in the Grignard reaction. Here, the thermodynamic parameters of micellization (demicellization) of C7 alkyl (number of C atoms in the alkyl group: 2, 3, 4, and 8) derivatives of cholic acid anion in an aqueous solution without additives are examined (which have not yet been determined) in the temperature interval T (10–40) °C. The critical micellar concentration and the change in the standard molar enthalpy of demicellization (hdemic0) are determined by isothermal calorimetric titration (ICT). From the temperature dependence of hdemic0, the change in the standard molar heat capacity of demicellization is obtained (Cdemic0), the value of which is proportional to the hydrophobic surface of the monomer, which in the micellar state is protected from hydrophobic hydration. The values of Cdemic0 indicate that in the case of C7-alkyl derivatives of cholic acid anion with butyl and octyl chains, parts of the steroid skeleton and alkyl chain remain shielded from hydration after disintegration of the micelle. Conformational analysis can show that starting from the C7 butyl chain in the alkyl chain, sequences with gauche conformation are also possible without the formation of steric repulsive strain between the alkyl chain and the steroid skeleton so that the C7 alkyl chain takes an orientation above the convex surface of the steroid skeleton instead of an elongated conformation toward the aqueous solution. This is a significant observation, namely, if the micelle is used as a carrier of a hydrophobic drug and after the breakdown of the micelle in the biological system, the released drug has a lower tendency to associate with the monomer if its hydrophobic surface is smaller, i.e., the alkyl chain is oriented towards the angular methyl groups of the steroid skeleton (the ideal monomer increases the hydrophobic domain of the micelle, but in aqueous solution, it adopts a conformation with the as small hydrophobic surface as possible oriented towards the aqueous solution)—which then does not disturb the passage of the drug through the cell membrane. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

15 pages, 1257 KiB  
Article
The Potential of Colloidal Systems Based on Carbamate-Containing Hexadecylpiperidinium Surfactants in Biomedical Applications
by Rushana Kushnazarova, Alla Mirgorodskaya, Dmitry Bekrenev, Denis Kuznetsov, Anna Lyubina, Alexandra Voloshina and Lucia Zakharova
Colloids Interfaces 2024, 8(5), 57; https://doi.org/10.3390/colloids8050057 - 17 Oct 2024
Cited by 3 | Viewed by 1538
Abstract
New hexadecylpiperidinium surfactants, containing one or two butylcarbamate fragments, were synthesized. The antimicrobial activity, toxicity, aggregation behavior in aqueous solutions, and solubilization capacity of these surfactants towards the hydrophobic drug ibuprofen were characterized. These surfactants demonstrated a high antimicrobial activity against a wide [...] Read more.
New hexadecylpiperidinium surfactants, containing one or two butylcarbamate fragments, were synthesized. The antimicrobial activity, toxicity, aggregation behavior in aqueous solutions, and solubilization capacity of these surfactants towards the hydrophobic drug ibuprofen were characterized. These surfactants demonstrated a high antimicrobial activity against a wide range of pathogenic bacteria, including both Gram-positive and Gram-negative strains, as well as fungi. By forming mixed-micellar compositions of the cationic surfactant 1-CB(Bu)-P-16 and the nonionic surfactant Brij®35, highly functional and low-toxic formulations were obtained. Furthermore, the transition from mixed micelles to niosomes was accomplished, enhancing their potential as drug delivery systems. Niosomes were found to be less toxic compared to mixed micelles, while also increasing the solubility of ibuprofen in water. The modification of niosomes with cationic surfactants made it possible to increase the stability of the system and improve the solubility of the drug. The data obtained indicate that these new carbamate-containing hexadecylpiperidinium surfactants have significant potential in biomedical applications, particularly in the formulation of advanced drug delivery systems. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Graphical abstract

17 pages, 3890 KiB  
Article
Visible-Light-Induced Diselenide-Crosslinked Polymeric Micelles for ROS-Triggered Drug Delivery
by Xinfeng Cheng, Huixian Li, Xiaomeng Sun, Tianxu Xu, Zhenzhen Guo, Xianchao Du, Shuai Li, Xuyang Li, Xiaojing Xing and Dongfang Qiu
Molecules 2024, 29(16), 3970; https://doi.org/10.3390/molecules29163970 - 22 Aug 2024
Cited by 4 | Viewed by 1874
Abstract
To synthesize an effective and versatile nano-platform serving as a promising carrier for controlled drug delivery, visible-light-induced diselenide-crosslinked polyurethane micelles were designed and prepared for ROS-triggered on-demand doxorubicin (DOX) release. A rationally designed amphiphilic block copolymer, poly(ethylene glycol)-b-poly(diselenolane diol-co-isophorone diisocyanate)-b [...] Read more.
To synthesize an effective and versatile nano-platform serving as a promising carrier for controlled drug delivery, visible-light-induced diselenide-crosslinked polyurethane micelles were designed and prepared for ROS-triggered on-demand doxorubicin (DOX) release. A rationally designed amphiphilic block copolymer, poly(ethylene glycol)-b-poly(diselenolane diol-co-isophorone diisocyanate)-b-poly(ethylene glycol) (PEG-b-PUSe-b-PEG), which incorporates dangling diselenolane groups within the hydrophobic PU segments, was initially synthesized through the polycondensation reaction. In aqueous media, this type of amphiphilic block copolymer can self-assemble into micellar aggregates and encapsulate DOX within the micellar core, forming DOX-loaded micelles that are subsequently in situ core-crosslinked by diselenides via a visible-light-triggered metathesis reaction of Se-Se bonds. Compared with the non-crosslinked micelles (NCLMs), the as-prepared diselenide-crosslinked micelles (CLMs) exhibited a smaller particle size and improved colloidal stability. In vitro release studies have demonstrated suppressed drug release behavior for CLMs in physiological conditions, as compared to the NCLMs, whereas a burst release of DOX occurred upon exposure to an oxidation environment. Moreover, MTT assay results have revealed that the crosslinked polyurethane micelles displayed no significant cytotoxicity towards HeLa cells. Cellular uptake analyses have suggested the effective internalization of DOX-loaded crosslinked micelles and DOX release within cancer cells. These findings suggest that this kind of ROS-triggered reversibly crosslinked polyurethane micelles hold significant potential as a ROS-responsive drug delivery system. Full article
(This article belongs to the Special Issue Molecular Approaches to Drug Discovery and Development)
Show Figures

Figure 1

20 pages, 3768 KiB  
Article
Mixed Micellar Gel of Poloxamer Mixture for Improved Solubilization of Poorly Water-Soluble Ibuprofen and Use as Thermosensitive In Situ Gel
by Namon Hirun, Pakorn Kraisit and Supaporn Santhan
Pharmaceutics 2024, 16(8), 1055; https://doi.org/10.3390/pharmaceutics16081055 - 10 Aug 2024
Cited by 4 | Viewed by 2158
Abstract
The aqueous solution of binary mixtures of amphiphilic copolymers is a potential platform for fabricating mixed polymeric micelles for pharmaceutical applications, particularly in developing drug delivery depots for a poorly water-soluble compound. This study fabricated and investigated binary mixtures of poloxamer 403 (P403) [...] Read more.
The aqueous solution of binary mixtures of amphiphilic copolymers is a potential platform for fabricating mixed polymeric micelles for pharmaceutical applications, particularly in developing drug delivery depots for a poorly water-soluble compound. This study fabricated and investigated binary mixtures of poloxamer 403 (P403) and poloxamer 407 (P407) at varying P403:P407 molar ratios to develop a vehicle for the poorly water-soluble compound, using ibuprofen as a model drug. The cooperative formation of mixed micelles was obtained, and the solubility of ibuprofen in the binary mixtures was enhanced compared to the solubility in pure water and an aqueous single P407 solution. The binary mixture with the P403:P407 molar ratio of 0.75:0.25 at a total polymer concentration of 19% w/v exhibited the temperature dependence of micellization and sol-to-gel characteristics of the thermosensitive mixed micellar gels. It possessed suitable micellization and gelation characteristics for in situ gelling systems. The release of ibuprofen from the thermosensitive mixed micellar depots was sustained through a diffusion-controlled mechanism. The findings can aid in formulating binary mixtures of P403 and P407 to achieve the desired properties of mixed micelles and micellar gels. Full article
(This article belongs to the Special Issue Self-Assembled Amphiphilic Copolymers in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

20 pages, 4253 KiB  
Article
Formulation of Polymeric Micelles to Increase the Solubility and Photostability of Caffeic Acid
by Elisabetta Mazzotta, Martina Chieffallo, Rita Muzzalupo, Miriana Spingola, Paolino Caputo, Martina Romeo and Giuseppina Ioele
Molecules 2024, 29(14), 3329; https://doi.org/10.3390/molecules29143329 - 15 Jul 2024
Viewed by 1857
Abstract
Caffeic acid (CA), a hydrophobic polyphenol with various pharmacological activities, exhibits a low aqueous solubility and sensitivity to light. In order to improve its chemical properties and overcome the limits in its application, the compound was loaded in P123 micelles (MCs) prepared using [...] Read more.
Caffeic acid (CA), a hydrophobic polyphenol with various pharmacological activities, exhibits a low aqueous solubility and sensitivity to light. In order to improve its chemical properties and overcome the limits in its application, the compound was loaded in P123 micelles (MCs) prepared using two polymer concentrations (10 and 20% w/w, MC10 and MC20). The micelles were characterised in terms of the size distribution, zeta potential, drug encapsulation efficiency, rheology, and cumulative drug release. Micellar formulations exhibited sizes in the range of 11.70 and 17.70 nm and a good polydispersion, indicating the formation of relatively small-sized micelles, which is favourable for drug delivery applications. Additionally, the stability and antioxidant profiles of the free CA and the CA loaded in micelles were studied. The results obtained on the free CA showed the formation of photodegradation products endowed with higher DPPH scavenging activity with respect to the pure compound. Instead, it was found that the incorporation of CA into the micelles significantly increased its solubility and decreased the photodegradation rate. Overall, the results indicate the successful formation of P123 micelles loaded with CA, with promising characteristics such as a small size, good encapsulation efficiency, sustained release profile, and improved light stability. These findings suggest the potentiality of these micelles as a delivery system for CA, thus enhancing its bioavailability. Full article
(This article belongs to the Special Issue Novel Insights toward the Development of New Drugs)
Show Figures

Graphical abstract

20 pages, 3423 KiB  
Article
pH-Sensitive Amphiphilic Diblock Polyphosphoesters with Lactate Units: Synthesis and Application as Drug Carriers
by Kasumi Mochizuki, Violeta Mitova, Kimiko Makino, Hiroshi Terada, Issei Takeuchi and Kolio Troev
Int. J. Mol. Sci. 2024, 25(8), 4518; https://doi.org/10.3390/ijms25084518 - 20 Apr 2024
Cited by 2 | Viewed by 1282
Abstract
pH-sensitive amphiphilic diblock polyphosphoesters containing lactic acid units were synthesized by multistep one-pot polycondensation reactions. They comprise acid-labile P(O)-O-C and C(O)-O-C bonds, the cleavage of which depends on the pH of the medium. The structure of these copolymers was characterized by 1H, [...] Read more.
pH-sensitive amphiphilic diblock polyphosphoesters containing lactic acid units were synthesized by multistep one-pot polycondensation reactions. They comprise acid-labile P(O)-O-C and C(O)-O-C bonds, the cleavage of which depends on the pH of the medium. The structure of these copolymers was characterized by 1H, 13C {H}, 31P NMR, and size exclusion chromatography (SEC). The newly synthesized polymers self-assembled into the micellar structure in an aqueous solution. The effects of the molecular weight of the copolymer and the length of the hydrophobic chain on micelle formation and stabilityand micelle size were studied via dynamic light scattering (DLS). Drug loading and encapsulation efficiency tests using doxorubicin revealed that hydrophobic drugs can be delivered by copolymers. It was established that the molecular weight of the copolymer, length of the hydrophobic chain and content of lactate units affects the size of the micelles, drug loading, and efficiency of encapsulation. A copolymer with 10.7% lactate content has drug loading (3.2 ± 0.3) and efficiency of encapsulation (57.4 ± 3.2), compared to the same copolymer with 41.8% lactate content (1.63%) and (45.8%), respectively. It was demonstrated that the poly[alkylpoly(ethylene glycol) phosphate-b-alkylpoly(ethylene glycol)lactate phosphate] DOX system has a pH-sensitive response capability in the result in which DOX was selectively accumulated into the tumor, where pH is acidic. The results obtained indicate that amphiphilic diblock polyphosphoesters have potential as drug carriers. Full article
Show Figures

Graphical abstract

16 pages, 4485 KiB  
Article
The Use of an Advanced Intelligent–Responsive Polymer for the Study of Dynamic Water–Carbon Dioxide Alternating Displacement
by Feng Zhang, Jingong Zhang, Yidong Yuan, Zishu Yong, Zhuoyue Yan, Jiayuan Zhang and Guochao Lu
Polymers 2024, 16(8), 1040; https://doi.org/10.3390/polym16081040 - 10 Apr 2024
Viewed by 1397
Abstract
Addressing the issue of inadequate temperature tolerance in traditional polymers, in this study, we successfully executed a one-step synthesis of intelligent–responsive polymers which have excellent adaptability in water–gas alternating displacement scenarios. Utilizing the fatty acid method, we produced OANND from oleic acid (OA) [...] Read more.
Addressing the issue of inadequate temperature tolerance in traditional polymers, in this study, we successfully executed a one-step synthesis of intelligent–responsive polymers which have excellent adaptability in water–gas alternating displacement scenarios. Utilizing the fatty acid method, we produced OANND from oleic acid (OA) and N,N-dimethyl-1,3-propanediamine (NND). Upon testing the average particle size in the aqueous solution both prior and subsequent to CO2 passage, it became evident that OANND assumes the form of a small-molecule particle in the aqueous phase, minimizing damage during formation. Notably, upon CO2 exposure, it promptly organizes into stable micelles with an average size of 88 nm and a relatively uniform particle distribution. This unique characteristic endows it with a rapid CO2 response mechanism and the ability to form a highly resilient gel. In the exploration of viscoelastic fluids, we observed the remarkable behavior of the AONND aqueous solution when CO2/N2 was introduced. This system displayed repeatable transitions between aqueous and gel states, with the highest viscosity peaking at approximately 3895 mPa·s, highlighting its viscosity reversibility and reusability properties. The rheological property results that we obtained indicate that an elongated micellar structure is present in the solution system, with the optimal concentration ratio for its formation determined as 0.8, which is the molar ratio of the OANND-NaOA system. In the sealing performance tests, a 1.0 wt% concentration of the gel system exhibited excellent injectability properties. At 80 °C, this gel effectively reduced the permeability of a sand-filled model to 94.5% of its initial value, effectively sealing potential leakage paths or gas fluxes. This remarkable ability to block leakage paths and reduce seepage capacity highlights the material’s superior blocking effect and erosion resistance properties. Furthermore, even at a temperature of 90 °C and an injection pore volume (PV) of 3, this plugging system could reduce the permeability of a high-permeability sand-filled model to over 90% of its initial value. Full article
(This article belongs to the Special Issue Advanced Polymer Composites in Oil Industry)
Show Figures

Figure 1

12 pages, 3235 KiB  
Article
Solution-Phase Synthesis of KCl Nanocrystals Templated by PEO-PPO-PEO Triblock Copolymers Micelles
by Lingling Sun, Min Li, Fei Li, Fuchun Wang, Xiangfeng Liang and Qinghui Shou
Polymers 2024, 16(7), 982; https://doi.org/10.3390/polym16070982 - 3 Apr 2024
Viewed by 1536
Abstract
The current work introduces the synthesis of inorganic salt nano/micro-crystals during the reduction of hydrogen tetrachloroaurate(III) by Pluronic triblock copolymers (P123, PEO20–PPO70–PEO20). The morphologies and component were confirmed using an electron microscope with an electronic differential system [...] Read more.
The current work introduces the synthesis of inorganic salt nano/micro-crystals during the reduction of hydrogen tetrachloroaurate(III) by Pluronic triblock copolymers (P123, PEO20–PPO70–PEO20). The morphologies and component were confirmed using an electron microscope with an electronic differential system (EDS), and the crystal structures were determined with X-ray diffraction (XRD). The morphologies highly depend on the concentrations of Pluronic and pH values. The mean size of the nanocrystal and hollow micro-crystal were controlled typically in the range of 32–150 nm (side length) and 1.4 μm, respectively. Different from the electrospray–ionization (EI) method, a model in which KCl forms a supersaturated solution in the micellar core of Pluronic is used to explain the formation process. This work provides the new insight that inorganic salt nanocrystals could be synthesized with the template of micelles in pure aqueous solutions. Full article
(This article belongs to the Special Issue Characterization and Application of Self-Assembled Block Copolymers)
Show Figures

Graphical abstract

16 pages, 3206 KiB  
Article
A Remarkable Impact of pH on the Thermo-Responsive Properties of Alginate-Based Composite Hydrogels Incorporating P2VP-PEO Micellar Nanoparticles
by Amalia Iliopoulou, Zacharoula Iatridi and Constantinos Tsitsilianis
Polymers 2024, 16(7), 886; https://doi.org/10.3390/polym16070886 - 24 Mar 2024
Cited by 2 | Viewed by 2756
Abstract
A heterograft copolymer with an alginate backbone, hetero-grafted by polymer pendant chains displaying different lower critical solution temperatures (LCSTs), combined with a pH-responsive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) diblock copolymer forming micellar nanoparticles, was investigated in aqueous media at various [...] Read more.
A heterograft copolymer with an alginate backbone, hetero-grafted by polymer pendant chains displaying different lower critical solution temperatures (LCSTs), combined with a pH-responsive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) diblock copolymer forming micellar nanoparticles, was investigated in aqueous media at various pHs. Due to its thermo-responsive side chains, the copolymer forms hydrogels with a thermo-induced sol–gel transition, above a critical temperature, Tgel (thermo-thickening). However, by lowering the pH of the medium in an acidic regime, a remarkable increase in the elasticity of the formulation was observed. This effect was more pronounced in low temperatures (below Tgel), suggesting secondary physical crosslinking, which induces significant changes in the hydrogel thermo-responsiveness, transforming the sol–gel transition to soft gel–strong gel. Moreover, the onset of thermo-thickening shifted to lower temperatures followed by the broadening of the transition zone, implying intermolecular interactions between the uncharged alginate backbone with the PNIPAM side chains, likely through H-bonding. The shear-thinning behavior of the soft gel in low temperatures provides injectability, which allows potential applications for 3D printing. Furthermore, the heterograft copolymer/nanoparticles composite hydrogel, encapsulating a model hydrophobic drug in the hydrophobic cores of the nanoparticles, was evaluated as a pH-responsive drug delivery system. The presented tunable drug delivery system might be useful for biomedical potential applications. Full article
Show Figures

Figure 1

21 pages, 7563 KiB  
Article
Specific FRET Probes Sensitive to Chitosan-Based Polymeric Micelles Formation, Drug-Loading, and Fine Structural Features
by Igor D. Zlotnikov, Ivan V. Savchenko and Elena V. Kudryashova
Polymers 2024, 16(6), 739; https://doi.org/10.3390/polym16060739 - 8 Mar 2024
Cited by 5 | Viewed by 1791
Abstract
Förster resonance energy transfer (FRET) probes are a promising tool for studying numerous biochemical processes. In this paper, we show the application of the FRET phenomenon to observe the micelle formation from surfactants, micelles self-assembling from chitosan grafted with fatty acid (oleic—OA, or [...] Read more.
Förster resonance energy transfer (FRET) probes are a promising tool for studying numerous biochemical processes. In this paper, we show the application of the FRET phenomenon to observe the micelle formation from surfactants, micelles self-assembling from chitosan grafted with fatty acid (oleic—OA, or lipoic—LA), cross-linking of SH groups in the micelle’s core, and inclusion and release of the model drug cargo from the micelles. Using the carbodiimide approach, amphiphilic chitosan-based polymers with (1) SH groups, (2) crosslinked with S-S between polymer chains, and (3) without SH and S-S groups were synthesized, followed by characterization by FTIR and NMR spectroscopy. Two pairs of fluorophores were investigated: 4-methylumbelliferon-trimethylammoniocinnamate—rhodamine (MUTMAC–R6G) and fluorescein isothiocyanate—rhodamine (FITC–R6G). While FITC–R6G has been described before as an FRET-producing pair, for MUTMAC–R6G, this has not been described. R6G, in addition to being an acceptor fluorophore, also serves as a model cytostatic drug in drug-release experiments. As one could expect, in aqueous solution, FRET effect was poor, but when exposed to the micelles, both MUTMAC–R6G and FITC–R6G yielded a pronounced FRET effect. Most likely, the formation of micelles is accompanied by the forced convergence of fluorophores in the hydrophobic micelle core by a donor-to-acceptor distance (r) significantly closer than in the aqueous buffer solution, which was reflected in the increase in the FRET efficiency (E). Therefore, r(E) could be used as analytical signal of the micelle formation, including critical micelle concentration (CMC) and critical pre-micelle concentration (CPMC), yielding values in good agreement with the literature for similar systems. We found that the r-function provides analytically valuable information about the nature and mechanism of micelle formation. S-S crosslinking between polymer chains makes the micelle more compact and stable in the normal physiological conditions, but loosens in the glutathione-rich tumor microenvironment, which is considered as an efficient approach in targeted drug delivery. Indeed, we found that R6G, as a model cytostatic agent, is released from micelles with initial rate of 5%/h in a normal tissue microenvironment, but in a tumor microenvironment model (10 mM glutathione), the release of R6G from S-S stitched polymeric micelles increased up to 24%/h. Drug-loading capacity differed substantially: from 75–80% for nonstitched polymeric micelles to ~90% for S-S stitched micelles. Therefore, appropriate FRET probes can provide comprehensive information about the micellar system, thus helping to fine-tune the drug delivery system. Full article
(This article belongs to the Special Issue Research Progress on Chitosan Applications)
Show Figures

Figure 1

18 pages, 4995 KiB  
Article
Curcumin-Loaded RH60/F127 Mixed Micelles: Characterization, Biopharmaceutical Characters and Anti-Inflammatory Modulation of Airway Inflammation
by Xinli Wang, Yanyan Wang, Tao Tang, Guowei Zhao, Wei Dong, Qiuxiang Li and Xinli Liang
Pharmaceutics 2023, 15(12), 2710; https://doi.org/10.3390/pharmaceutics15122710 - 30 Nov 2023
Cited by 3 | Viewed by 1568
Abstract
Curcumin’s ability to impact chronic inflammatory conditions, such as metabolic syndrome and arthritis, has been widely researched; however, its poor bioavailability limits its clinical application. The present study is focused on the development of curcumin-loaded polymeric nanomicelles as a drug delivery system with [...] Read more.
Curcumin’s ability to impact chronic inflammatory conditions, such as metabolic syndrome and arthritis, has been widely researched; however, its poor bioavailability limits its clinical application. The present study is focused on the development of curcumin-loaded polymeric nanomicelles as a drug delivery system with anti-inflammatory effects. Curcumin was loaded in PEG-60 hydrogenated castor oil and puronic F127 mixed nanomicelles (Cur-RH60/F127-MMs). Cur-RH60/F127-MMs was prepared using the thin film dispersion method. The morphology and releasing characteristics of nanomicelles were evaluated. The uptake and permeability of Cur-RH60/F127-MMs were investigated using RAW264.7 and Caco-2 cells, and their bioavailability and in vivo/vitro anti-inflammatory activity were also evaluated. The results showed that Cur-RH60/F127-MMs have regular sphericity, possess an average diameter smaller than 20 nm, and high encapsulation efficiency for curcumin (89.43%). Cur-RH60/F127-MMs significantly increased the cumulative release of curcumin in vitro and uptake by cells (p < 0.01). The oral bioavailability of Cur-RH60/F127-MMs was much higher than that of curcumin-active pharmaceutical ingredients (Cur-API) (about 9.24-fold). The treatment of cell lines with Cur-RH60/F127-MMs exerted a significantly stronger anti-inflammatory effect compared to Cur-API. In addition, Cur-RH60/F127-MMs significantly reduced OVA-induced airway hyperresponsiveness and inflammation in an in vivo experimental asthma model. In conclusion, this study reveals the possibility of formulating a new drug delivery system for curcumin, in particular nanosized micellar aqueous dispersion, which could be considered a perspective platform for the application of curcumin in inflammatory diseases of the airways. Full article
(This article belongs to the Special Issue Polymer-Based Delivery System)
Show Figures

Graphical abstract

25 pages, 3004 KiB  
Review
Nanoscale Self-Assemblies from Amphiphilic Block Copolymers as Proficient Templates in Drug Delivery
by Dhruvi Patel, Ketan Kuperkar, Shin-ichi Yusa and Pratap Bahadur
Drugs Drug Candidates 2023, 2(4), 898-922; https://doi.org/10.3390/ddc2040045 - 22 Nov 2023
Cited by 15 | Viewed by 3062
Abstract
This review article emphasizes the current enlargements in the formation and properties of the various nanostructured aggregates resulting from the self-assembly of a variety of block copolymers (BCPs) in an aqueous solution. The development of the different polymerization techniques which produce polymers with [...] Read more.
This review article emphasizes the current enlargements in the formation and properties of the various nanostructured aggregates resulting from the self-assembly of a variety of block copolymers (BCPs) in an aqueous solution. The development of the different polymerization techniques which produce polymers with a desired predetermined molecular weight and low polydispersity is investigated with regard to their technological and biomedical applications; in particular, their applications as vehicles for drug delivery systems are considered. The solution behavior of amphiphilic BCPs and double-hydrophilic block copolymers (DHBCs), with one or both blocks being responsive to any stimulus, is discussed. Polyion complex micelles (PICMs)/polymersomes obtained from the electrostatic interaction of a polyelectrolyte-neutral BCP with oppositely charged species are also detailed. Lastly, polymerization-induced self-assembly (PISA), which forms nanoscale micellar aggregates with controlled size/shape/surface functionality, and the crystallization-driven self-assembly of semicrystalline BCPs facilitated when one block of the BCP is crystallizable, are also revealed. The scalability of the copolymeric micelles in the drug delivery systems and pharmaceutical formations that are currently being used in clinical trials, research, or preclinical testing is emphasized as these micelles could be used in the future to create novel nanomedicines. The updated literature and the future perspectives of BCP self-assembly are considered. Full article
(This article belongs to the Section Preclinical Research)
Show Figures

Figure 1

Back to TopTop