Nanoscale Self-Assemblies from Amphiphilic Block Copolymers as Proficient Templates in Drug Delivery
Abstract
:1. Introduction
1.1. Structural Design
1.2. Updated Synthesis Route
2. Types of BCPs
2.1. Hydrophilic BCPs
2.2. Hydrophobic BCPs
2.3. Stimuli-Responsive Block Copolymers (SRPs)
- (i)
- Temperature responsiveness
- (ii)
- pH responsiveness
- (iii)
- Light responsiveness
- (iv)
- Magnetic responsiveness
- (v)
- Multi-responsiveness
3. Physicochemical Features of the Self-Assembly in BCPs
3.1. Polymeric Micelles (PMs)
3.2. Polymersomes
3.3. Ethylene Oxide (EO)-Propylene Oxide (PO)-Based BCP Micelles
3.4. Polyion Complex Micelles (PICMs)
3.5. Polymerization-Induced Self-Assembly (PISA)
3.6. Crystallization-Driven Self-Assembly (CDSA)
4. Applications of BCPs
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riess, G.; Hurtrej, G.; Bahadur, P. Block Copolymers, Encyclopedia of Polymer Science Engineering. Wiley 1985, 2, 324–434. [Google Scholar]
- Riess, G. Micellization of block copolymers. Prog. Polym. Sci. 2003, 28, 1107–1170. [Google Scholar] [CrossRef]
- Perin, F.; Motta, A.; Maniglio, D. Amphiphilic copolymers in biomedical applications: Synthesis routes and property control. Mater. Sci. Eng. C 2021, 123, 111952–111967. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Coenjarts, C.; Ober, C. Patternable block copolymers. Adv. Polym. Sci. 2005, 190, 183–226. [Google Scholar]
- Li, Z.; Lin, Z. Self-assembly of block copolymers for biological applications. Polym. Int. 2021, 71, 366–370. [Google Scholar] [CrossRef]
- Hadjichristidis, N.; Pispas, S.; Floudas, G. Block Copolymers: Synthetic Strategies, Physical Properties, and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Lazzari, M.; Tornerio, M. A global view on block copolymers. Polymers 2020, 12, 869. [Google Scholar] [CrossRef] [PubMed]
- Alexandridis, P.; Lindman, B. Amphiphilic Block Copolymers: Self-Assembly and Applications; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Lu, Y.; Lin, J.; Wang, L.; Zhang, L.; Cai, C. Self-Assembly of Copolymer Micelles: Higher-Level Assembly for Constructing Hierarchical Structure. Chem. Rev. 2020, 120, 4111–4140. [Google Scholar] [CrossRef]
- Hu, X.; Xiong, S. Fabrication of Nanodevices Through Block Copolymer Self-Assembly. Front. Nanotechnol. 2022, 4, 762996–763012. [Google Scholar] [CrossRef]
- Xi, S.; Zhu, Y.; Lu, J.; Chapmana, W. Block copolymer self-assembly: Melt and solution by molecular density functional theory. J. Chem. Phys. 2022, 156, 054902–054910. [Google Scholar] [CrossRef]
- Kuperkar, K.; Patel, D.; Atanase, L.; Bahadur, P. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers 2022, 14, 4072. [Google Scholar] [CrossRef]
- Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block Copolymer Micelles in Nanomedicine Applications. Chem. Rev. 2018, 118, 6844–6892. [Google Scholar] [CrossRef]
- Genevieve, G.; Marie-Helene, D.; Vinayak, P.; Sant, N.; Dusica, M.; Jean-Christophe, L. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release 2005, 109, 169–188. [Google Scholar]
- Kazunori, K.; Atsushi, H.; Yukio, N. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2012, 64, 37–48. [Google Scholar]
- Xiong, X.; Binkhathlan, Z.; Molavi, O.; Lavasanifar, A. Amphiphilic block co-polymers: Preparation and application in nanodrug and gene delivery. Acta Biomater. 2012, 8, 2017–2033. [Google Scholar] [CrossRef] [PubMed]
- Arotçaréna, M.; Heise, B.; Ishaya, S.; Laschewsky, A. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity. J. Am. Chem. Soc. 2002, 124, 3787–3793. [Google Scholar] [CrossRef] [PubMed]
- Bielawski, C.; Grubbs, R. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 2007, 32, 1–29. [Google Scholar] [CrossRef]
- Braunecker, W.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments and perspectives. Prog. Polym. Sci. 2007, 32, 93–146. [Google Scholar] [CrossRef]
- Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2001, 47, 113–131. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, J.; Huo, Q.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef]
- Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Mays, J. Macromolecular architectures by living and controlled/living polymerizations. Prog. Polym. Sci. 2006, 31, 1068–1132. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Sumerlin, B.; Tsarevsky, N. Progress in Controlled Radical Polymerization: Mechanisms and Techniques. Am. Chem. Soc. 2012, 1100, 317–331. [Google Scholar]
- Matyjaszewski, K. Advanced Materials by Atom Transfer Radical Polymerization. Adv. Mater. 2018, 30, 1706441–1706473. [Google Scholar] [CrossRef] [PubMed]
- Mertoglu, M.; Garnier, S.; Laschewsky, A.; Skrabania, K.; Storsberg, J. Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation (RAFT). Polymer 2005, 46, 7726–7740. [Google Scholar] [CrossRef]
- Siegwart, D.; Oh, J.; Matyjaszewski, K. ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 2012, 37, 18–37. [Google Scholar] [CrossRef] [PubMed]
- Szwarc, M. ‘Living’ polymers. Nature 1956, 178, 1168–1169. [Google Scholar] [CrossRef]
- Moad, G.; Rizzardo, E.; Thang, S. Radical addition-fragmentation chemistry in polymer synthesis. Polymer 2008, 49, 1079–1131. [Google Scholar] [CrossRef]
- Nabiyan, A.; Max, J.B.; Schacher, F.H. Double hydrophilic copolymers-synthetic approaches, architectural variety, and current application fields. Chem. Soc. Rev. 2022, 51, 995–1044. [Google Scholar] [CrossRef] [PubMed]
- Nadal, C.; Gineste, S.; Coutelier, O.; Marty, J.D.; Destarac, M. A deeper insight into the dual temperature- and pH-responsiveness of poly(vinylamine)-b-poly(N-isopropylacrylamide) double hydrophilic block copolymers. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128502–128513. [Google Scholar] [CrossRef]
- Schmidt, B.V.K.J. Double Hydrophilic Block Copolymer Self-Assembly in Aqueous Solution. Macromol. Chem. Phys. 2018, 219, 1700494–1700508. [Google Scholar] [CrossRef]
- Butun, V.; Armes, S.; Billingham, N.; Tuzar, Z.; Rankin, A.; Eastoe, J.; Heenan, R. Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer. Macromolecules 2001, 34, 1503. [Google Scholar]
- Liu, S.; Billingham, N.C.; Armes, S.P. A Schizophrenic Water-Soluble Diblock Copolymer. Angew. Chem. Int. Ed. 2001, 40, 2328–2332. [Google Scholar] [CrossRef]
- Liu, S.; Armes, S.P. Micelle Formation and Inversion Kinetics of a Schizophrenic Diblock Copolymer. Langmuir 2002, 19, 4432. [Google Scholar] [CrossRef]
- Papadakis, C.M.; Müller-Buschbaum, P.; Laschewsky, A. Switch it inside-out: “Schizophrenic” behavior of all thermoresponsive UCST-LCST diblock copolymers. Langmuir 2019, 35, 9660–9676. [Google Scholar] [CrossRef]
- Alam, M.; Keiko, H.; Yusa, S.; Nakashima, K. Schizophrenic micelle of a water-soluble diblock polymer and its application to a thermo-optical device. Colloid Polym. Sci. 2014, 292, 1611–1617. [Google Scholar] [CrossRef]
- Guragain, S.; Bastakoti, B.; Malgras, V.; Nakashima, K.; Yamauchi, Y. Multi-Stimuli-Responsive Polymeric Materials. Chem.-A Eur. J. 2021, 21, 13164–13174. [Google Scholar] [CrossRef] [PubMed]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, T.; Urban, M.; Winnik, F.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef]
- Mizoue, Y.; Takahashi, R.; Sakurai, K.; Yusa, S. A Thermo-Responsive Polymer Micelle with a Liquid Crystalline Core. Polymers 2023, 15, 770. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Behera, B.; Sahu, S.; Ananthakrishnan, R.; Maiti, T.; Pramanik, P. Design of Dual Stimuli Responsive Polymer Modified Magnetic Nanoparticles for Targeted Anti-Cancer Drug Delivery and Enhanced MR Imaging. New J. Chem. 2016, 40, 545–557. [Google Scholar] [CrossRef]
- Appold, M.; Mari, C.; Lederle, C.; Elbert, J.; Schmidt, C.; Ott, I.; Stühn, B.; Gasser, G.; Gallei, M. Multi-stimuli responsive block copolymers as a smart release platform for a polypyridyl ruthenium complex. Polym. Chem. 2016, 8, 890–900. [Google Scholar] [CrossRef]
- Fleige, E.; Quadir, M.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug. Deliv. Rev. 2012, 64, 866–884. [Google Scholar] [CrossRef]
- You, Y.; Oupicky, D. Synthesis of Temperature-Responsive Heterobifunctional Block Copolymers of Poly(ethylene glycol) and Poly(N-isopropylacrylamide). Biomacromolecules 2007, 8, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Mukerabigwi, J.; Yin, W.; Zha, Z.; Ke, W.; Wang, Y.; Chen, W.; Japir, A.; Wang, Y.; Ge, Z. Polymersome nanoreactors with tumor pH-triggered selective membrane permeability for prodrug delivery, activation, and combined oxidation-chemotherapy. J. Control. Release 2019, 303, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Huang, X.; Xu, F.; Pan, J.; Wang, Y.; Zhou, S. A pH-responsive polymersome depleting regulatory T cells and blocking A2A receptor for cancer immunotherapy. Nano Res. 2022, 15, 2324–2334. [Google Scholar] [CrossRef]
- Zhuang, J.; Gordon, M.; Ventura, J.; Li, L.; Thayumanavan, S. Multi-stimuli responsive macromolecules and their assemblies. Chem. Soc. Rev. 2013, 42, 7421–7436. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Zhao, D.; Yuan, D.; Wang, H.; Tu, K.; Wang, L. Influence of indomethacin-loading on the micellization and drug release of thermosensitive dextran-graft-poly(N-isopropylacrylamide). Reactive Func. Polym. 2011, 71, 820–827. [Google Scholar] [CrossRef]
- Wei, H.; Cheng, S.X.; Zhang, X.Z.; Zhuo, R.X. Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers. Progr. Polym. Sci. 2009, 34, 893–910. [Google Scholar] [CrossRef]
- He, M.; Zhang, Z.; Jiao, Z.; Yan, M.; Miao, P.; Wei, Z.; Leng, X.; Li, Y.; Fan, J.; Sun, W.; et al. Redox-responsive phenyl-functionalized polylactide micelles for enhancing Ru complexes delivery and phototherapy. Chin. Chem. Lett. 2023, 34, 1075741–1075746. [Google Scholar] [CrossRef]
- Li, Y.; Tong, A.; Niu, P.; Guo, W.; Jin, Y.; Hu, Y.; Tao, P.; Miao, W. Light-Decomposable Polymeric Micelles with Hypoxia-Enhanced Phototherapeutic Efficacy for Combating Metastatic Breast Cancer. Pharmaceutics 2022, 14, 253. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Singh, K. Amphiphilic star block copolymer micelles in saline as effective vehicle for quercetin solubilization. J. Mol. Liq. 2021, 345, 118259–118265. [Google Scholar] [CrossRef]
- Kuperkar, K.; Tiwari, S.; Bahadur, P. Self-assembled block copolymer nanoaggregates for drug delivery applications. In Applications of Polymers in Drug Delivery, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 423–447. ISBN 978-0-12-819659-5. [Google Scholar]
- Nakashima, K.; Bahadur, P. Aggregation of water-soluble block copolymers in aqueous solutions: Recent trends. Adv. Colloid Interface Sci. 2006, 123, 75–96. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, S. Responsive Polymers for Detection and Sensing Applications: Current Status and Future Developments. Macromolecules 2010, 43, 8315–8330. [Google Scholar] [CrossRef]
- Stubenrauch, K.; Voets, I.; Fritz-Popovski, G.; Trimmel, G. pH and Ionic Strength Responsive Polyelectrolyte Block copolymer micelles prepared by ring opening metathesis polymerization. J. Polym. Sci. A 2008, 47, 1178–1191. [Google Scholar] [CrossRef]
- Qian, S.; Li, S.; Xiong, W.; Khan, H.; Huang, J.; Zhang, W. A new visible light and temperature responsive diblock copolymer. Polym. Chem. 2019, 10, 5001–5009. [Google Scholar] [CrossRef]
- Blanazs, A.; Armes, S.; Ryan, A. Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications. Macromol. Rapid Commun. 2009, 30, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985. [Google Scholar] [CrossRef] [PubMed]
- Procházka, K.; Limpouchová, Z.; Štěpánek, M.; Šindelka, K.; Lísal, M. DPD Modelling of the Self-and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers 2022, 14, 404. [Google Scholar] [CrossRef]
- Tuzar, Z.; Kratochvil, P. Block and graft copolymer micelles in solution. Adv. Colloid Interface Sci. 1976, 6, 201–232. [Google Scholar] [CrossRef]
- Aqeel, R.; Srivastava, N.; Kushwaha, P. Micelles in Cancer Therapy: An Update on Preclinical and Clinical Status. Recent Pat. Nanotechnol. 2022, 16, 283–294. [Google Scholar]
- Wang, H.; Fliedel, C.; Manoury, E.; Poli, R. Core-crosslinked micelles with a poly-anionic poly(styrene sulfonate)-based outer shell made by RAFT polymerization. Polymer 2022, 243, 124640–124649. [Google Scholar] [CrossRef]
- Xiong, D.; Yao, N.; Gu, H.; Wang, J.; Zhang, L. Stimuli-responsive shell cross-linked micelles from amphiphilic four-arm star copolymers as potential nanocarriers for “pH/redox-triggered” anticancer drug release. Polymer 2017, 114, 161–172. [Google Scholar] [CrossRef]
- Bai, J.; Wang, J.; Feng, Y.; Yao, Y.; Zhao, X. Stability-tunable core-crosslinked polymeric micelles based on an imidazole-bearing block polymer for pH-responsive drug delivery. Colloids Surf. A 2022, 639, 128353–128361. [Google Scholar] [CrossRef]
- Kim, J.O.; Kabanov, A.V.; Bronich, T.K. Polymer micelles with cross-linked polyanion core for delivery of a cationic drug doxorubicin. J. Control. Release 2009, 138, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, W.; Xu, D. Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J. Drug Target. 2018, 27, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Chen, F.; Wang, Y.; Stenzel, M.; Chapman, R. Polyion Complex Micelles for Protein Delivery Benefit from Flexible Hydrophobic Spacers in the Binding Group. Macromol. Rapid Commun. 2022, 41, 2000208–2000214. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Wang, Y.; Xiao, Y.; Mao, A.; Lang, M. Phenylboronic acid conjugated mPEG-b-PCL micelles as DOX carriers for enhanced drug encapsulation and controlled drug release. Eur. Polym. J. 2022, 173, 111235. [Google Scholar] [CrossRef]
- Feng, R.; Li, Z.; Fangfang, T.; Min, W.; Shiyu, C.; Zhimei, S.; Hongmei, L. Phenylboronic acid-modified polymeric anhydride-F127 micelles for pH-activated targeting delivery of doxorubicin. Colloids Surf. B 2022, 216, 112559–112568. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tan, X.; Zhou, Q.; Geng, P.; Wang, J.; Zou, P.; Deng, A.; Hu, J. Co-delivery of doxorubicin and SIS3 by folate-targeted polymeric micelles for overcoming tumor multidrug resistance. Drug Deliv. Transl. Res. 2022, 12, 167–179. [Google Scholar] [CrossRef]
- Bastakoti, B.; Liao, S.; Inoue, M.; Yusa, S.; Imura, M.; Nakashima, K.; Wu, K.; Yamauchi, Y. pH-responsive polymeric micelles with core-shell-corona architectures as intracellular anti-cancer drug carriers. Sci. Technol. Adv. Mater. 2013, 14, 044402–044407. [Google Scholar] [CrossRef]
- Nicolai, T.; Colombani, O.; Chassenieux, C. Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter. 2010, 6, 3111–3118. [Google Scholar] [CrossRef]
- Gohy, J.; Zhao, Y. Photo-responsive block copolymer micelles: Design and behavior. Chem. Soc. Rev. 2013, 42, 7117–7129. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Varshney, S.; Wong, S.; Eisenberg, A. Block Copolymer “Crew-Cut” Micelles in Water. Macromolecules 1994, 27, 7923–7927. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, S. Ionic liquids: Versatile media for preparation of vesicles from polymerization-induced self-assembly. ACS Macro Lett. 2015, 4, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Becerra, E.; Quinchia, J.; Castro, C.; Orozco, J. Light-Triggered Polymersome-based anticancer therapeutics delivery. Nanomaterials 2022, 12, 836. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Meng, F.; Cheng, R.; Zhong, Z. pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: A comparative study with micelles. J. Control. Release 2010, 142, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Discher, D.E.; Eisenberg, A. Polymer vesicles. Science 2002, 297, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Discher, D.E.; Ahmed, F. Polymersomes. Annu. Rev. Biomed. Eng. 2006, 8, 323–341. [Google Scholar] [CrossRef]
- Letchford, K.; Burt, H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 2007, 65, 259–269. [Google Scholar] [CrossRef]
- Robertson, J.; Yealland, G.; Avila-Olias, M.; Chierico, L.; Bandmann, O.; Renshaw, S.; Battaglia, G. pH-sensitive tubular polymersomes: Formation and applications in cellular delivery. ACS Nano 2014, 8, 4650–4661. [Google Scholar] [CrossRef]
- Pawar, P.; Gohil, S.; Jain, J.; Kumar, N. Functionalized polymersomes for biomedical applications. Polym. Chem. 2013, 4, 3160–3176. [Google Scholar] [CrossRef]
- Mohammadi, M.; Ramezani, M.; Abnous, K.; Alibolandi, M. Biocompatible polymersomes-based cancer theranostics: Towards multifunctional nanomedicine. Int. J. Pharm. 2017, 519, 287–303. [Google Scholar] [CrossRef]
- Raffa, P.; Wever, D.; Picchioni, F.; Broekhuis, A. Polymeric Surfactants: Synthesis, Properties, and Links to Applications. Chem. Rev. 2015, 115, 8504–8563. [Google Scholar] [CrossRef] [PubMed]
- Pitto-Barry, A.; Barry, N.P.E. Pluronic® block-copolymers in medicine: From chemical and biological versatility to rationalisation and clinical advances. Polym. Chem. 2014, 5, 3291–3297. [Google Scholar] [CrossRef]
- Singla, P.; Garg, S.; McClements, J.; Jamieson, O.; Peeters, M.; Mahajan, R. Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review. Adv. Colloid Interface Sci. 2022, 299, 102563–102594. [Google Scholar] [CrossRef] [PubMed]
- Chiappetta, D.A.; Sosnik, A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur. J. Pharm. Biopharm. 2007, 66, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Zlotnikov, I.D.; Ezhov, A.A.; Ferberg, A.S.; Krylov, S.S.; Semenova, M.N.; Semenov, V.V.; Kudryashova, E.V. Polymeric Micelles Formulation of Combretastatin Derivatives with Enhanced Solubility, Cytostatic Activity and Selectivity against Cancer Cells. Pharmaceutics 2023, 15, 1613. [Google Scholar] [CrossRef] [PubMed]
- Jundi, A.E.; Buwalda, S.J.; Bakkour, Y.; Garric, X.; Nottelet, B. Double hydrophilic block copolymers self-assemblies in biomedical applications. Adv. Colloid Int. Sci. 2020, 283, 102213–102279. [Google Scholar] [CrossRef] [PubMed]
- Giaouzi, D.; Pispas, S. PNIPAM-b-PDMAEA double stimuli responsive copolymers: Effects of composition, end groups and chemical modification on solution self-assembly. Eur. Polym. J. 2020, 135, 109867. [Google Scholar] [CrossRef]
- Bhowmik, S.; Pham, T.; Takahashi, R.; Kim, D.; Matsuoka, H.; Ishihara, K.; Yusa, S. Preparation of Water-Soluble Polyion Complex (PIC) Micelles with Random Copolymers Containing Pendant Quaternary Ammonium and Sulfonate Groups. Langmuir 2023, 39, 8120–8129. [Google Scholar] [CrossRef]
- Pham, T.; Pham, T.; Yusa, S. Polyion complex (PIC) micelles formed from oppositely charged styrene-based polyelectrolytes via electrostatic, hydrophobic, and π–π interactions. Polym. J. 2022, 54, 1091–1101. [Google Scholar] [CrossRef]
- Song, Y.; Tian, Q.; Huang, Z.; Fan, D.; She, Z.; Liu, X.; Cheng, X.; Yu, B.; Deng, Y. Self-assembled micelles of novel amphiphilic copolymer cholesterol-coupled F68 containing cabazitaxel as a drug delivery system. Int. J. Nanomed. 2014, 9, 2307–2317. [Google Scholar]
- Kim, D.; Vitol, E.; Liu, J.; Balasubramanian, S.; Gosztola, D.; Cohen, E.; Novosad, V.; Rozhkova, E. Stimuli-Responsive Magnetic Nanomicelles as Multifunctional Heat and Cargo Delivery Vehicles. Langmuir 2013, 29, 7425–7432. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, S.; Santos, S.; Fessi, H.; Elaissari, A. Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 2011, 403, 139–161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, S.; Pang, M.; Zhang, W. Synthesis and micellization of a multi-stimuli responsive block copolymer based on spiropyran. Polym. Chem. 2016, 7, 6880–6885. [Google Scholar] [CrossRef]
- Corten, C.; Kretschmer, K.; Kuckling, D. Novel multi-responsive P2VP-block-PNIPAAm block copolymers via nitroxide-mediated radical polymerization. Beilstein J. Org. Chem. 2010, 6, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Fuoss, R.; Sadek, H. Mutual interaction of polyelectrolytes. Science 1949, 110, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Nakai, K.; Nishiuchi, M.; Inoue, M.; Ishihara, K.; Sanada, Y.; Sakurai, K.; Yusa, S. Preparation and characterization of polyion complex micelles with phosphobetaine shells. Langmuir 2013, 29, 9651–9661. [Google Scholar] [CrossRef] [PubMed]
- Damsongsang, P.; Yusa, S.; Hoven, V. Zwitterionic nano-objects having functionalizable hydrophobic core: Formation via polymerization-induced self-assembly and their morphology. Eur. Polym. J. 2022, 179, 111536. [Google Scholar] [CrossRef]
- Ohno, S.; Ishihara, K.; Yusa, S. Formation of Polyion Complex (PIC) Micelles and Vesicles with Anionic pH-Responsive Unimer Micelles and Cationic Diblock Copolymers in Water. Langmuir 2016, 32, 3945–3953. [Google Scholar] [CrossRef]
- Yusa, S.; Yokoyama, Y.; Morishima, Y. Synthesis of oppositely charged block copolymers of polyethylene glycol via reversible addition-fragmentation chain transfer radical polymerization and characterization of their polyion complex micelles in water. Macromolecules 2009, 42, 376–383. [Google Scholar] [CrossRef]
- Chen, F.; Stenzel, M. Polyion Complex Micelles for Protein Delivery. Aust. J. Chem. 2018, 71, 768–780. [Google Scholar] [CrossRef]
- Harada, A.; Kataoka, K. Polyion complex micelle formation from double-hydrophilic block copolymers composed of charged and non-charged segments in aqueous media. Polym. J. 2018, 50, 95–100. [Google Scholar] [CrossRef]
- Nakamura, N.; Mochida, Y.; Toh, K.; Anraku, Y.; Cabral, H. Effect of mixing ratio of oppositely charged block copolymers on polyion complex micelles for in vivo application. Polymers 2021, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Charleux, B.; Delaittre, G.; Rieger, J.; D’Agosto, F. Polymerization-Induced Self-Assembly: From Soluble Macromolecules to Block Copolymer Nano-Objects in One Step. Macromolecules 2012, 45, 6753–6765. [Google Scholar] [CrossRef]
- Derry, M.; Fielding, L.; Armes, S. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog. Polym. Sci. 2016, 52, 1–18. [Google Scholar] [CrossRef]
- Penfold, N.; Yeow, J.; Boyer, C.; Armes, S. Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Lett. 2019, 8, 1029–1054. [Google Scholar] [CrossRef] [PubMed]
- Warren, N.; Armes, S. Polymerization-Induced Self-Assembly of Block Copolymer Nano-objects via RAFT Aqueous Dispersion Polymerization. J. Am. Chem. Soc. 2014, 136, 10174–10185. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Lowe, A. Polymerization-induced self-assembly: Ethanolic RAFT dispersion polymerization of 2-phenylethyl methacrylate. Polym. Chem. 2014, 5, 2342–2351. [Google Scholar] [CrossRef]
- Zhang, W.; Kadirkhanov, J.; Wang, C.; Ding, S.; Hong, C.; Wang, F.; You, Y. Polymerization-induced self-assembly for the fabrication of polymeric nano-objects with enhanced structural stability by cross-linking. Polym. Chem. 2020, 11, 3654–3672. [Google Scholar] [CrossRef]
- Cao, J.; Tan, Y.; Chen, Y.; Zhang, L.; Tan, J. Expanding the Scope of Polymerization-Induced Self-Assembly: Recent Advances and New Horizons. Macromol. Rapid Comm. 2021, 42, 2100498–2100510. [Google Scholar] [CrossRef]
- D’Agosto, F.; Rieger, J.; Lansalot, M. RAFT-Mediated Polymerization-Induced Self-Assembly. Angew. Chem. 2020, 59, 8368–8392. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hong, C.; Pan, C. Polymerization techniques in polymerization-induced self-assembly (PISA). Polym. Chem. 2020, 11, 3673–3689. [Google Scholar] [CrossRef]
- Gonzalez, J.; Schmarsow, R.; Rojo, U.; Puig, J.; Schroeder, W.; Zucchi, I. Block Copolymer Micelles Generated by Crystallization-Driven Self-Assembly in Polymer Matrices. Sci. Rev. 2020, 1, 47–64. [Google Scholar]
- Inam, M.; Cambridge, G.; Pitto-Barry, A.; Laker, Z.L.; Wilson, N.R.; Mathers, R.T.; Dove, A.P.; O’Reilly, R.K. 1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers. Chem. Sci. 2017, 8, 4223–4230. [Google Scholar] [CrossRef] [PubMed]
- Gädt, T.; Ieong, N.; Cambridge, G.; Winnik, M.; Manners, I. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nat. Mater. 2009, 8, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Ganda, S.; Stenzel, M. Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Prog. Polym. Sci. 2020, 101, 101195–101205. [Google Scholar] [CrossRef]
- He, W.; Xu, J. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog. Polym. Sci. 2012, 37, 1350–1400. [Google Scholar] [CrossRef]
- Finnegan, J.; Pilkington, E.; Alt, K.; Rahim, A.; Kent, S.; Davis, T.; Kempe, K. Stealth Nanorods via the Aqueous Living Crystallisation-Driven Self-Assembly of Poly(2-oxazoline)s. Chem. Sci. 2021, 12, 7350–7360. [Google Scholar] [CrossRef]
- Gilroy, J.; Gädt, T.; Whittell, G.; Chabanne, L.; Mitchels, J.; Richardson, R.; Winnik, M.; Manners, I. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2010, 2, 566–570. [Google Scholar] [CrossRef]
- MacFarlane, L.; Zhao, C.; Cai, J.; Qiu, H.; Manners, I. Emerging applications for living crystallization-driven self-assembly. Chem. Sci. 2021, 12, 4661–4682. [Google Scholar] [CrossRef]
- Sha, Y.; Rahman, A.; Zhu, T.; Cha, Y.; McAlister, C.; Tang, C. ROMPI-CDSA: Ring-opening metathesis polymerization-induced crystallization-driven self-assembly of metallo-block copolymers. Chem. Sci. 2019, 10, 9782–9787. [Google Scholar] [CrossRef] [PubMed]
- López-Lorente, A.; Mizaikoff, B. Recent advances on the characterization of nanoparticles using infrared spectroscopy. Trends Analyt. Chem. 2016, 84, 97–106. [Google Scholar] [CrossRef]
- Modena, M.; Rühle, B.; Burg, T.; Wuttke, S. Nanoparticle Characterization: What to Measure. Adv. Mater. 2019, 31, 1901556–1901580. [Google Scholar] [CrossRef] [PubMed]
- Mourdikoudis, S.; Pallares, R.; Thanh, N. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, Z.; Wang, F.; Xie, D.; Yang, S.; Wang, T.; Feng, L.; Chu, C. Synthesis, characterization, and self-assembly of linear poly(ethyleneoxide)-block–poly(propylene oxide)-block–poly(e-caprolactone) (PEO–PPO–PCL) copolymers. J. Colloid Interf. Sci. 2013, 393, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Park, W.; Park, H.; Lee, D.; Na, K. Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydr. Polym. 2017, 156, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Ray, D.; Aswal, V.; Kuperkar, K.; Bahadur, P. Temperature stimulated self-association and micellar transition for star shaped normal and reverse EO-PO block copolymers and their mixed systems as potential use for anticancer drug solubilization. Soft Matter. 2022, 18, 4543–4553. [Google Scholar] [CrossRef]
- Patel, D.; Jana, R.; Lin, M.; Kuperkar, K.; Seth, D.; Chen, L.; Bahadur, P. Revisiting the salt-triggered self-assembly in very hydrophilic triblock copolymer Pluronic® F88 using multitechnique approach. Colloid Polym. Sci. 2021, 299, 229–239. [Google Scholar] [CrossRef]
- Lunagariya, J.; Sivakumar, N.; Asif, M.; Dhar, A.; Vekariya, R. Dependency of Anion and Chain Length of Imidazolium Based Ionic Liquid on Micellization of the Block Copolymer F127 in Aqueous Solution: An Experimental Deep Insight. Polymers 2017, 9, 285. [Google Scholar] [CrossRef]
- Patel, D.; Ray, D.; Kuperkar, K.; Pal, H.; Aswal, V.; Bahadur, P. Solubilization, micellar transition and biocidal assay of loaded multifunctional antioxidants in Tetronic® 1304 micelles. Polym. Int. 2020, 69, 1097–1104. [Google Scholar] [CrossRef]
- Patel, D.; Ray, D.; Kuperkar, K.; Aswal, V.; Bahadur, P. Parabens induced spherical micelle to polymersome transition in thermo-responsive amphiphilic linear and star-shaped EO-PO block copolymers. J. Mol. Liq. 2020, 316, 113897–113908. [Google Scholar] [CrossRef]
- Singla, P.; Singh, O.; Chabba, S.; Aswal, V.; Mahajan, R. Sodium deoxycholate mediated enhanced solubilization and stability of hydrophobic drug Clozapine in pluronic micelles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 15, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Park, S.; Hinsberg, W. Block copolymer-based nanostructures: Materials, processes, and applications to electronics. Chem. Rev. 2010, 110, 146–177. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J. Preparation and Properties of Poly(l-lactide)-block-poly(trimethylenecarbonate) as Biodegradable Thermoplastic Elastomer. Polym. J. 2002, 34, 203–208. [Google Scholar] [CrossRef]
- Chowdhry, B.; Snowdena, M.; Leharne, S. A scanning calorimetric investigation of phase transitions in a PPO-PEO-PPO block copolymer. Eur. Polym. J. 1999, 35, 273–278. [Google Scholar] [CrossRef]
- Sarolia, J.; Kumar, D.; Shah, S.; Bahadur, P.; Tiwari, S. Thermodynamics of pluronic 103 micellization in mannitol solution: Analyses based on isothermal titration calorimetry. Colloid Surf. A 2022, 648, 129240–129244. [Google Scholar] [CrossRef]
- Santiago, A.; Vargas, J.; Jorge, V.; Cruz-Morales, J.; Mikhail, T.; Gavino, R.; Malkanduev, Y.; Sivov, N. Synthesis of New Polymer Ionomers via Ring-Opening Metathesis Polymerization. Open J. Organic Polym. Mat. 2014, 4, 84–91. [Google Scholar] [CrossRef]
- Patel, D.; Vaswani, P.; Sengupta, S.; Ray, D.; Bhatia, D.; Choudhury, S.D.; Aswal, V.K.; Kuperkar, K.; Bahadur, P. Thermoresponsive phase behavior and nanoscale self-assembly generation in normal and reverse Pluronics®. Colloid Polym. Sci. 2023, 301, 75–92. [Google Scholar] [CrossRef]
- Akhlaghi, S.; Ribeiro, I.; Boyd, B.; Loh, W. Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic® F127cubosomes. Colloids Surf. B 2016, 145, 845–853. [Google Scholar] [CrossRef]
- Rodrigues, E.; Morales, M.; Medeiros, S.; Suguihiro, M.; Baggio-Saitovitch, E. Pluronics coated sterically stabilized magnetite nanoparticles for hyperthermia applications. J. Magn. Magn. Mater. 2016, 416, 434–440. [Google Scholar] [CrossRef]
- Kanga, E.; Sharker, S.; Inc, I.; Park, S. Pluronic mimicking fluorescent carbon nanoparticles conjugated with doxorubicin via acid-cleavable linkage for tumor-targeted drug delivery and bioimaging. J. Ind. Eng. Chem. 2016, 43, 150–157. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Kumar, K.; Arora, A.; Katti, D. Fabrication and characterization of Pluronic modified poly(hydroxybutyrate) fibers for potential wound dressing applications. Mat. Sci. Eng. C 2016, 63, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Pellosi, D.; Calori, I.; Paula, L.; Hioka, N.; Quaglia, F.; Tedesco, A. Multifunctional theranostic Pluronic mixed micelles improve targeted photoactivity of Verteporfin in cancer cells. Mat. Sci. Eng. C 2017, 71, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yap, L.; Yang, M. Evaluation of hydrogel composing of Pluronic F127 and carboxymethyl hexanoyl chitosan as injectable scaffold for tissue engineering applications. Colloids Surf. B 2016, 146, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Negut, I.; Bita, B. Polymeric Micellar Systems—A Special Emphasis on “Smart” Drug Delivery. Pharmaceutics 2023, 15, 976. [Google Scholar] [CrossRef] [PubMed]
- Talelli, M.; Barz, M.; Rijcken, C.; Kiessling, F.; Hennink, W.; Lammers, T. Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation. Nano Today 2015, 10, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Colfen, H. Double-Hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactants and Crystal Growth Modifiers. Macromol. Rapid Commun. 2001, 4, 220–252. [Google Scholar]
- Zou, Y.; Zhou, X.; Ma, J.; Yang, X.; Deng, Y. Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: Assembly engineering and applications. Chem. Soc. Rev. 2020, 49, 1173–1208. [Google Scholar] [CrossRef]
- Lu, H.; Jiang, K.; Liang, X.; Liu, H.; Li, Y. Small molecule-mediated self-assembly behaviors of Pluronic block copolymers in aqueous solution: Impact of hydrogen bonding on the morphological transition of Pluronic micelles. Soft Matter. 2020, 16, 142–152. [Google Scholar] [CrossRef]
- Dhapte, V.; Mehta, P. Advances in hydrotropic solutions: An updated review. Polytech. J. 2015, 1, 424–435. [Google Scholar] [CrossRef]
- Hodgdon, T.; Kaler, E. Hydrotropic solutions. Curr. Opin. Colloid Interface Sci. 2007, 12, 121–128. [Google Scholar] [CrossRef]
- Vemula, V.; Lagishetty, V.; Lingala, S. Solubility enhancement techniques. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 41–51. [Google Scholar]
- Klermund, L.; Castiglione, K. Polymersomes as nanoreactors for preparative biocatalytic applications: Current challenges and future perspectives. Bioprocess Biosyst. Eng. 2018, 41, 1233–1246. [Google Scholar] [CrossRef] [PubMed]
- Ruttala, H.; Ramasamy, T.; Madeshwaran, T.; Hiep, T.; Kandasamy, U.; Oh, K.; Choi, H.; Yong, C.; Kim, J. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch. Pharm. Res. 2017, 41, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Aliabadi, H.; Lavasanifar, A. Polymeric micelles for drug delivery. Expert Opin. Drug Deliv. 2006, 3, 139–162. [Google Scholar] [CrossRef] [PubMed]
- Manimaran, V.; Nivetha, R.P.; Tamilanban, T.; Narayanan, J.; Vetriselvan, S.; Fuloria, N.K.; Chinni, S.V.; Sekar, M.; Fuloria, S.; Wong, L.S.; et al. Nanogels as novel drug nanocarriers for CNS drug delivery. Front. Mol. Biosci. 2023, 10, 1232109. [Google Scholar] [CrossRef] [PubMed]
- Hlavatovičová, E.; Fernandez-Alvarez, R.; Byś, K.; Kereïche, S.; Mandal, T.; Atanase, L.; Štěpánek, M.; Uchman, M. Stimuli-Responsive Triblock Terpolymer Conversion into Multi-Stimuli-Responsive Micelles with Dynamic Covalent Bonds for Drug Delivery through a Quick and Controllable Post-Polymerization Reaction. Pharmaceutics 2023, 15, 288. [Google Scholar] [CrossRef]
- Zlotnikov, I.; Streltsov, D.; Ezhov, A.; Kudryashova, E. Smart pH- and Temperature-Sensitive Micelles Based on Chitosan Grafted with Fatty Acids to Increase the Efficiency and Selectivity of Doxorubicin and Its Adjuvant Regarding the Tumor Cells. Pharmaceutics 2023, 15, 1135. [Google Scholar] [CrossRef]
- Szewczyk-Łagodzińska, M.; Plichta, A.; Dębowski, M.; Kowalczyk, S.; Iuliano, A.; Florjańczyk, Z. Recent Advances in the Application of ATRP in the Synthesis of Drug Delivery Systems. Polymers 2023, 15, 1234. [Google Scholar] [CrossRef]
- Movassaghian, S.; Merkel, O.M.; Torchilin, V.P. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip. Rev. Nanomed. 2015, 7, 691–707. [Google Scholar] [CrossRef]
- Varela-Moreira, A.; Yang, S.; Marcel, H.F.; Twan, L.; Wim, E.H.; Raymond, M.S. Clinical application of polymeric micelles for the treatment of cancer. Mater. Chem. Front. 2017, 1, 1485–1501. [Google Scholar] [CrossRef]
- Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Favero, E.D.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release. 2021, 332, 312–336. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Monica, G.; Niraj, K.J.; John, D.; Vandana, P.; Kamal, D.; Sachin, K.S. Recent advances in developing polymeric micelles for treating cancer: Breakthroughs and bottlenecks in their clinical translation. Drug Discov. Today 2022, 27, 1495–1512. [Google Scholar] [CrossRef] [PubMed]
- Junnuthula, V.; Kolimi, P.; Nyavanandi, D.; Sampathi, S.; Vora, L.K.; Dyawanapelly, S. Polymeric Micelles for Breast Cancer Therapy: Recent Updates, Clinical Translation and Regulatory Considerations. Pharmaceutics 2022, 4, 1860. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, D.; Kuperkar, K.; Yusa, S.-i.; Bahadur, P. Nanoscale Self-Assemblies from Amphiphilic Block Copolymers as Proficient Templates in Drug Delivery. Drugs Drug Candidates 2023, 2, 898-922. https://doi.org/10.3390/ddc2040045
Patel D, Kuperkar K, Yusa S-i, Bahadur P. Nanoscale Self-Assemblies from Amphiphilic Block Copolymers as Proficient Templates in Drug Delivery. Drugs and Drug Candidates. 2023; 2(4):898-922. https://doi.org/10.3390/ddc2040045
Chicago/Turabian StylePatel, Dhruvi, Ketan Kuperkar, Shin-ichi Yusa, and Pratap Bahadur. 2023. "Nanoscale Self-Assemblies from Amphiphilic Block Copolymers as Proficient Templates in Drug Delivery" Drugs and Drug Candidates 2, no. 4: 898-922. https://doi.org/10.3390/ddc2040045
APA StylePatel, D., Kuperkar, K., Yusa, S. -i., & Bahadur, P. (2023). Nanoscale Self-Assemblies from Amphiphilic Block Copolymers as Proficient Templates in Drug Delivery. Drugs and Drug Candidates, 2(4), 898-922. https://doi.org/10.3390/ddc2040045