Visible-Light-Induced Diselenide-Crosslinked Polymeric Micelles for ROS-Triggered Drug Delivery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Self-Assembly Behavior of MPEG-b-PUSe-b-MPEG Block Copolymers
2.3. Visible-Light-Induced Diselenide-Crosslinked MPEG-b-PUSe-b-MPEG Micelles
2.4. The Structural Stability of the Micelles
2.5. ROS-Induced Disassembly Behavior of Diselenide-Crosslinked Micelles (CLMs)
2.6. DSC Analysis
2.7. In Vitro Drug Release Behavior of DOX-Loaded Micelles
2.8. Cytotoxicities of Diselenide-Crosslinked Micelles (CLMs)
2.9. Cellular Uptake of DOX-Loaded Micelles
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.3. Synthesis of the Functional Monomer DiSe
3.4. Synthesis of MPEG-b-PUSe-b-MPEG Triblock Copolymers
3.5. Preparation of Polymeric Micelles and Determination of Critical Micelle Concentration (CMC)
3.6. Preparation of Diselenide Core-Crosslinked Micelles
3.7. Structural Stability of Micelles
3.8. ROS-Triggered Disassembly of Diselenide-Crosslinked Micelles
3.9. In Vitro Drug Loading and Release
3.10. MTT Assay
3.11. Cellular Uptake Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.P.; Xiao, K.; Zhu, W.; Deng, W.B.; Lam, K.S. Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv. Drug Deliver. Rev. 2014, 66, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Rong, F.; Wang, T.; Wang, K.; Zhou, Q.; Peng, H.; Li, P. Core-Cross-Linking of Polymeric Micelles by Di-para-Substituted S-Aroylthiooximes as Linkers for Controlled H2S Release. ACS Macro Lett. 2022, 11, 622–629. [Google Scholar] [CrossRef]
- Kuang, G.Z.; Zhang, Q.F.; He, S.S.; Wu, Y.J.; Huang, Y.B. Reduction-responsive disulfide linkage core-cross-linked polymeric micelles for site-specific drug delivery. Polym. Chem. 2020, 11, 7078–7086. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, L.; Li, Y.; Wu, H. Recent Progress of Crosslinking Strategies for Polymeric Micelles with Enhanced Drug Delivery in Cancer Therapy. Curr. Med. Chem. 2019, 26, 2356–2376. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Chen, X.; Zhang, X. Recent Developments in the Area of Click-Crosslinked Nanocarriers for Drug Delivery. Macromol. Rapid Commun. 2019, 40, 1800541. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, E.; Yang, J.; Cao, Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018, 11, 4985–4998. [Google Scholar] [CrossRef]
- Liao, Q.; Kim, E.J.; Tang, Y.; Xu, H.; Yu, D.-G.; Song, W.; Kim, B.J. Rational design of hyper-crosslinked polymers for biomedical applications. J. Polym. Sci. 2024, 62, 1517–1535. [Google Scholar] [CrossRef]
- Khoee, S.; Rahimi, S. Chapter 5—Reversible core-shell crosslinked micelles for controlled release of bioactive agents. In Nanoarchitectonics in Biomedicine; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 119–167. [Google Scholar]
- Bhadran, A.; Polara, H.; Calubaquib, E.L.; Wang, H.H.; Babanyinah, G.K.; Shah, T.J.; Anderson, P.A.; Saleh, M.; Biewer, M.C.; Stefan, M.C. Reversible Cross-linked Thermoresponsive Polycaprolactone Micelles for Enhanced Stability and Controlled Release. Biomacromolecules 2023, 24, 5823–5835. [Google Scholar] [CrossRef]
- Hu, X.; Jazani, A.M.; Oh, J.K. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. Polymer 2021, 230, 124024. [Google Scholar] [CrossRef]
- Yi, X.-Q.; Zhang, Q.; Zhao, D.; Xu, J.-Q.; Zhong, Z.-L.; Zhuo, R.-X.; Li, F. Preparation of pH and redox dual-sensitive core crosslinked micelles for overcoming drug resistance of DOX. Polym. Chem. 2016, 7, 1719–1729. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, J.T.; Yang, H.; Lei, Z.L. Synthesis of Photo, Oxidation, Reduction Triple-Stimuli-Responsive Interface-Cross-Linked Polymer Micelles as Nanocarriers for Controlled Release. Macromol. Chem. Phys. 2021, 222, 2000365. [Google Scholar] [CrossRef]
- Song, Y.; Jin, S.; Fu, K.; Ji, J.; Shen, L. pH responsive, reversible photo-crosslinkable micelle in layer-by-layer assembly-Study on film growth and drug delivery behavior. J. Polym. Sci. 2022, 60, 2395–2407. [Google Scholar] [CrossRef]
- Pramanik, N.B.; Singha, N.K. Amphiphilic functional block copolymers bearing a reactive furfuryl group via RAFT polymerization; reversible core cross-linked micelles via a Diels-Alder “click reaction”. RSC Adv. 2016, 6, 2455–2463. [Google Scholar] [CrossRef]
- Dai, Y.; Sun, H.; Pal, S.; Zhang, Y.; Park, S.; Kabb, C.P.; Wei, W.D.; Sumerlin, B.S. Near-IR-induced dissociation of thermally-sensitive star polymers. Chem. Sci. 2017, 8, 1815–1821. [Google Scholar] [CrossRef]
- Olszowy, Y.; Wesselmann, J.; Over, S.F.; Paetzold, F.; Weberskirch, R. Synthesis of redox-responsive core-shell nanoparticles: Insights into core-crosslinking efficiency. Polym. Chem. 2023, 14, 3761–3774. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, J.; Xu, S.; Zhou, J.; Han, S.; Deng, L.; Zhang, J.; Liu, J.; Meng, A.; Dong, A. Graft Copolymer Nanoparticles with pH and Reduction Dual-Induced Disassemblable Property for Enhanced Intracellular Curcumin Release. ACS Appl. Mater. Interfaces 2013, 5, 13216–13226. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ling, L.; Xia, Q.; Li, X. A reduction-responsive drug delivery with improved stability: Disulfide crosslinked micelles of small amiphiphilic molecules. RSC Adv. 2021, 11, 12757–12770. [Google Scholar] [CrossRef] [PubMed]
- Sarolia, J.; Shah, S.A.; Aswal, V.K.; Tiwari, S. Reduction-sensitive shell crosslinked TPGS micelles: Formulation and colloidal characterizations. Colloids Surf. A-Physicochem. Eng. Asp. 2023, 677, 132321. [Google Scholar] [CrossRef]
- Liu, Y.; van Steenbergen, M.J.; Zhong, Z.; Oliveira, S.; Hennink, W.E.; van Nostrum, C.F. Dithiolane-Crosslinked Poly(ε-caprolactone)-Based Micelles: Impact of Monomer Sequence, Nature of Monomer, and Reducing Agent on the Dynamic Crosslinking Properties. Macromolecules 2020, 53, 7009–7024. [Google Scholar] [CrossRef]
- Ni, D.; Guo, B.; Zhong, Z.; Chen, Y.; Yang, G.; Yang, J.; Zhong, Z.; Meng, F. Integrin-targeting disulfide-crosslinked micellar docetaxel eradicates lung and prostate cancer patient-derived xenografts. Acta Biomater. 2023, 170, 228–239. [Google Scholar] [CrossRef]
- Birhan, Y.S.; Tsai, H.-C. Recent developments in selenium-containing polymeric micelles: Prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J. Mater. Chem. B 2021, 9, 6770–6801. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.-H.; Almutairi, A. Recent progress of redox-responsive polymeric nanomaterials for controlled release. J. Mater. Chem. B 2021, 9, 2179–2188. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Zhang, J.; Zhang, F.; Wu, W.; Chen, F.; Zhang, Z.; Lin, X.; Yang, C.; Yi, G. Mesoscopic Simulations of Diselenide-Containing Crosslinked Doxorubicin-Loaded Micelles and Their Tumor Microenvironment Responsive Release Behaviors. J. Pharm. Sci. 2023, 112, 1388–1400. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.-C.; Ye, M.-J.; Yang, Q.-C.; Zhang, T.; Zhang, M.-J.; Ma, X.-B.; Xu, J.-M.; Wang, S.; Wu, Z.-Z.; Yang, L.-L.; et al. Diselenide-Based Dual-Responsive Prodrug as Pyroptosis Inducer Potentiates Cancer Immunotherapy. Adv. Healthc. Mater. 2023, 12, 2202135. [Google Scholar] [CrossRef]
- Yang, J.; Pan, S.; Gao, S.; Li, T.; Xu, H. CO/chemosensitization/antiangiogenesis synergistic therapy with H2O2-responsive diselenide-containing polymer. Biomaterials 2021, 271, 120721. [Google Scholar] [CrossRef]
- Sun, C.; Tan, Y.; Xu, H. From Selenite to Diselenide-Containing Drug Delivery Systems. ACS Mater. Lett. 2020, 2, 1173–1177. [Google Scholar] [CrossRef]
- Cao, W.; Wang, L.; Xu, H. Selenium/tellurium containing polymer materials in nanobiotechnology. Nano Today 2015, 10, 717–736. [Google Scholar] [CrossRef]
- Xu, H.; Cao, W.; Zhang, X. Selenium-Containing Polymers: Promising Biomaterials for Controlled Release and Enzyme Mimics. Acc. Chem. Res. 2013, 46, 1647–1658. [Google Scholar] [CrossRef] [PubMed]
- Deepagan, V.G.; Kwon, S.; You, D.G.; Nguyen, V.Q.; Um, W.; Ko, H.; Lee, H.; Jo, D.-G.; Kang, Y.M.; Park, J.H. In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials 2016, 103, 56–66. [Google Scholar] [CrossRef]
- Salma, S.A.; Patil, M.P.; Kim, D.W.; Le, C.M.Q.; Ahn, B.-H.; Kim, G.-D.; Lim, K.T. Near-infrared light-responsive, diselenide containing core-cross-linked micelles prepared by the Diels-Alder click reaction for photocontrollable drug release application. Polym. Chem. 2018, 9, 4813–4823. [Google Scholar] [CrossRef]
- Zhai, S.; Hu, X.; Hu, Y.; Wu, B.; Xing, D. Visible light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug release and combination chemotherapy. Biomaterials 2017, 121, 41–54. [Google Scholar] [CrossRef]
- Birhan, Y.S.; Darge, H.F.; Hanurry, E.Y.; Andrgie, A.T.; Mekonnen, T.W.; Chou, H.-Y.; Lai, J.-Y.; Tsai, H.-C. Fabrication of Core Crosslinked Polymeric Micelles as Nanocarriers for Doxorubicin Delivery: Self-Assembly, In Situ Diselenide Metathesis and Redox-Responsive Drug Release. Pharmaceutics 2020, 12, 580. [Google Scholar] [CrossRef]
- Li, M.; Li, Q.; Hou, W.; Zhang, J.; Ye, H.; Li, H.; Zeng, D.; Bai, J. A redox-sensitive core-crosslinked nanosystem combined with ultrasound for enhanced deep penetration of nanodiamonds into tumors. RSC Adv. 2020, 10, 15252–15263. [Google Scholar] [CrossRef] [PubMed]
- Siboro, S.A.P.; Salma, S.A.; Kim, H.-R.; Jeong, Y.T.; Gal, Y.-S.; Lim, K.T. Diselenide Core Cross-Linked Micelles of Poly(Ethylene Oxide)-b-Poly(Glycidyl Methacrylate) Prepared through Alkyne-Azide Click Chemistry as a Near-Infrared Controlled Drug Delivery System. Materials 2020, 13, 2846. [Google Scholar] [CrossRef]
- Esmaeili, M.; Shahbaz, S.; Kamankesh, M.; Shahin, M.; Tekie, F.S.M.; Fadavi, P.; Beigi, M.; Mortazavi, S.A.; Dinarvand, R. Intracellular delivery of anticancer agents using dual responsive nanomicelles synthesized via RAFT polymerization. Eur. Polym. J. 2023, 198, 112417. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Lu, D.-Q.; Chen, L.; Yang, R.; Liu, D.; Zhang, B. Diselenide-crosslinked carboxymethyl chitosan nanoparticles for doxorubicin delivery: Preparation and in vivo evaluation. Carbohydr. Polym. 2022, 292, 119699. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Cao, W.; Yu, Y.; Xu, H. Dynamic Diselenide Bonds: Exchange Reaction Induced by Visible Light without Catalysis. Angew. Chem.-Int. Ed. 2014, 53, 6781–6785. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Zhang, M.; Wu, D.; Shen, Y.; Tang, G.; Ping, Y. Redox-Activatable ATP-Depleting Micelles with Dual Modulation Characteristics for Multidrug-Resistant Cancer Therapy. Adv. Healthc. Mater. 2017, 6, 1601293. [Google Scholar] [CrossRef]
- Joshi, D.C.; Saxena, S.; Jayakannan, M. Development of L-Lysine Based Biodegradable Polyurethanes and Their Dual-Responsive Amphiphilic Nanocarriers for Drug Delivery to Cancer Cells. ACS Appl. Polym. Mater. 2019, 1, 1866–1880. [Google Scholar] [CrossRef]
- Song, N.; Ding, M.; Pan, Z.; Li, J.; Zhou, L.; Tan, H.; Fu, Q. Construction of Targeting-Clickable and Tumor-Cleavable Polyurethane Nanomicelles for Multifunctional Intracellular Drug Delivery. Biomacromolecules 2013, 14, 4407–4419. [Google Scholar] [CrossRef]
- Ji, S.; Cao, W.; Yu, Y.; Xu, H. Visible-Light-Induced Self-Healing Diselenide-Containing Polyurethane Elastomer. Adv. Mater. 2015, 27, 7740–7745. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Liu, C.; Wang, S.; Lv, J.; Li, W.; Fu, Y.; Xu, H. Swelling-induced 3D photopatterning on a diselenide-containing elastomer. J. Mater. Chem. C 2019, 7, 10777–10782. [Google Scholar] [CrossRef]
- Xia, J.; Zhao, P.; Zheng, K.; Lu, C.; Yin, S.; Xu, H. Surface Modification Based on Diselenide Dynamic Chemistry: Towards Liquid Motion and Surface Bioconjugation. Angew. Chem.-Int. Ed. 2019, 58, 542–546. [Google Scholar] [CrossRef]
- Si, J.; Zhao, P.; Guan, J.; Ji, S.; Xu, H. Dynamic Fluorescent Patterning Based on Visible-Light-Responsive Diselenide Metathesis. Langmuir 2022, 38, 13272–13278. [Google Scholar] [CrossRef]
- Yu, S.; Ding, J.; He, C.; Cao, Y.; Xu, W.; Chen, X. Disulfide Cross-Linked Polyurethane Micelles as a Reduction-Triggered Drug Delivery System for Cancer Therapy. Adv. Healthc. Mater. 2014, 3, 752–760. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Yi, W.-J.; Li, C.; Li, Y.-Y.; Zhuo, R.-X.; Zhang, X.-Z. Novel shell-cross-linked micelles with detachable PEG corona for glutathione-mediated intracellular drug delivery. Soft Matter 2013, 9, 692–699. [Google Scholar] [CrossRef]
- Bergson, G. A new synthesis of 6-selenoctic Acid and a Relatived Compound. Acta Chem. Scand. 1958, 12, 582–583. [Google Scholar] [CrossRef]
- Fang, Y.; Jiang, Y.; Zou, Y.; Meng, F.; Zhang, J.; Deng, C.; Sun, H.; Zhong, Z. Targeted glioma chemotherapy by cyclic RGD peptide-functionalized reversibly core-crosslinked multifunctional poly(ethylene glycol)-b-poly(ε-caprolactone) micelles. Acta Biomater. 2017, 50, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.C.; He, H.; Liu, X.Y.; Hu, D.; Yin, L.C.; Lu, Y.B.; Xu, W.J. Redox-responsive, core-crosslinked degradable micelles for controlled drug release. Polym. Chem. 2016, 7, 6330–6339. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 1987, 5, 37–42. [Google Scholar] [CrossRef]
- Zhong, L.; Xu, L.; Liu, Y.; Li, Q.; Zhao, D.; Li, Z.; Zhang, H.; Zhang, H.; Kan, Q.; Wang, Y.; et al. Transformative hyaluronic acid-based active targeting supramolecular nanoplatform improves long circulation and enhances cellular uptake in cancer therapy. Acta Pharm. Sin. B 2019, 9, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Chung, J.E.; Gao, S.J.; Yongvongsoontorn, N.; Kurisawa, M. Highly Augmented Drug Loading and Stability of Micellar Nanocomplexes Composed of Doxorubicin and Poly(ethylene glycol)-Green Tea Catechin Conjugate for Cancer Therapy. Adv. Mater. 2018, 30, 1706963. [Google Scholar] [CrossRef]
- Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew. Chem.-Int. Ed. 2003, 42, 4640–4643. [Google Scholar] [CrossRef] [PubMed]
Nanocarrier | Release Medium | k | n | R2 | Release Mechanism |
---|---|---|---|---|---|
NCLMs | 0 mM H2O2 | 12.25 | 0.34 | 0.93 | pseudo-Fickian |
CLMs | 0 mM H2O2 | 5.74 | 0.31 | 0.98 | pseudo-Fickian |
CLMs | 25 mM H2O2 | 12.00 | 0.58 | 0.99 | Anomalous transport |
CLMs | 50 mM H2O2 | 16.70 | 0.65 | 0.99 | Anomalous transport |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Li, H.; Sun, X.; Xu, T.; Guo, Z.; Du, X.; Li, S.; Li, X.; Xing, X.; Qiu, D. Visible-Light-Induced Diselenide-Crosslinked Polymeric Micelles for ROS-Triggered Drug Delivery. Molecules 2024, 29, 3970. https://doi.org/10.3390/molecules29163970
Cheng X, Li H, Sun X, Xu T, Guo Z, Du X, Li S, Li X, Xing X, Qiu D. Visible-Light-Induced Diselenide-Crosslinked Polymeric Micelles for ROS-Triggered Drug Delivery. Molecules. 2024; 29(16):3970. https://doi.org/10.3390/molecules29163970
Chicago/Turabian StyleCheng, Xinfeng, Huixian Li, Xiaomeng Sun, Tianxu Xu, Zhenzhen Guo, Xianchao Du, Shuai Li, Xuyang Li, Xiaojing Xing, and Dongfang Qiu. 2024. "Visible-Light-Induced Diselenide-Crosslinked Polymeric Micelles for ROS-Triggered Drug Delivery" Molecules 29, no. 16: 3970. https://doi.org/10.3390/molecules29163970
APA StyleCheng, X., Li, H., Sun, X., Xu, T., Guo, Z., Du, X., Li, S., Li, X., Xing, X., & Qiu, D. (2024). Visible-Light-Induced Diselenide-Crosslinked Polymeric Micelles for ROS-Triggered Drug Delivery. Molecules, 29(16), 3970. https://doi.org/10.3390/molecules29163970