Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = antipyrine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2209 KiB  
Article
Polymorphism and Phase-Transition Thermodynamic Properties of Phenazone (Antipyrine)
by Dmitrii N. Bolmatenkov, Ilyas I. Nizamov, Andrey A. Sokolov, Airat A. Notfullin, Boris N. Solomonov and Mikhail I. Yagofarov
Molecules 2025, 30(13), 2814; https://doi.org/10.3390/molecules30132814 - 30 Jun 2025
Viewed by 292
Abstract
In this work, detailed information on the phase-transition thermodynamics of the analgesic and antipyretic drug phenazone, also known as antipyrine, is reported. It was found that the compound forms two polymorphs. Fusion thermodynamics of both forms was studied between 298.15 K and T [...] Read more.
In this work, detailed information on the phase-transition thermodynamics of the analgesic and antipyretic drug phenazone, also known as antipyrine, is reported. It was found that the compound forms two polymorphs. Fusion thermodynamics of both forms was studied between 298.15 K and Tm using the combination of differential scanning calorimetry and solution calorimetry. The vapor pressures above crystalline and liquid phenazone were measured for the first time using thermogravimetry—fast scanning calorimetry technique. These studies were complemented by computation of the ideal gas entropy and heat capacity and by measurements of the condensed phase heat capacities. On the basis of experiments performed, we derived sublimation and vaporization enthalpies and vapor pressure above liquid and both crystalline modifications of phenazone in a wide range of temperatures. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

26 pages, 2704 KiB  
Article
Removal from Water of Some Pharmaceuticals by Photolysis and Photocatalysis: Kinetic Models
by Miguel A. Jiménez-López, María C. Rubio-Gonzaga and Fernando J. Beltrán
Catalysts 2025, 15(5), 471; https://doi.org/10.3390/catal15050471 - 10 May 2025
Cited by 1 | Viewed by 810
Abstract
Pharmaceutical residues are emerging contaminants of growing concern due to their persistence and poor removal efficiency in conventional wastewater treatment plants. This study evaluates UVC photolysis with type C ultraviolet radiation (UVC) and UVC/TiO2 photocatalysis of a mixture of four pharmaceuticals—atenolol (ATL), [...] Read more.
Pharmaceutical residues are emerging contaminants of growing concern due to their persistence and poor removal efficiency in conventional wastewater treatment plants. This study evaluates UVC photolysis with type C ultraviolet radiation (UVC) and UVC/TiO2 photocatalysis of a mixture of four pharmaceuticals—atenolol (ATL), acetaminophen (ACM), clofibric acid (CLA), and antipyrine (ANT)—commonly found in treated urban wastewater. A comprehensive kinetic model was developed to describe their degradation, taking into account the generation of reactive oxygen species (ROS): hydroxyl (HO), superoxide ion (O2●−) radicals, and singlet oxygen (1O2), along with their reactions with both the pharmaceuticals and dissolved organic matter. Direct quantum yields were determined as 8.05 × 10−3 mol·Einstein−1 for ATL, 1.93 × 10−3 for ACM, 3.12 × 10−1 for CLA, and 5.12 × 10−2 for ANT. In addition, rate constants of the reactions between singlet oxygen and pharmaceuticals were 9.93, 1.3 × 106, 1.18 × 102, and 1.14 × 104 M−1s−1 for ATL, ACM, CLA, and ANT, respectively. Scavenger experiments confirmed the key role of the ROS involved. The model reproduces the inhibitory effect of natural organic matter in secondary effluent and, in most cases, treated, accurately predicts the concentration profiles of the pharmaceuticals. Under photocatalytic conditions (0.10 g·L−1 TiO2), all compounds were completely degraded in less than 15 min. This validated model provides a useful tool for understanding the degradation mechanisms of pharmaceutical mixtures and for supporting the design of effective water strategies based on photochemical processes. Full article
(This article belongs to the Special Issue Photocatalytic Nanomaterials for Environmental Purification)
Show Figures

Graphical abstract

12 pages, 1677 KiB  
Article
Enhanced Drug Skin Permeation by Azone-Mimicking Ionic Liquids: Effects of Fatty Acids Forming Ionic Liquids
by Takeshi Oshizaka, Shunsuke Kodera, Rika Kawakubo, Issei Takeuchi, Kenji Mori and Kenji Sugibayashi
Pharmaceutics 2025, 17(1), 41; https://doi.org/10.3390/pharmaceutics17010041 - 30 Dec 2024
Cited by 1 | Viewed by 1321
Abstract
Background/Objectives: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) [...] Read more.
Background/Objectives: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone. Methods: Excised porcine skin was pretreated with each IL-Azone to assess the in vitro skin permeability of antipyrine (ANP) as a model penetrant. In addition, 1,3-butanediol was selected for the skin permeation test to confirm whether the effect of IL-Azone was due to fatty acids and if this effect differed depending on the concentration of IL-Azone applied. Results: The results obtained showed that C12 IL-Azone exerted the highest skin-penetration-enhancing effect, which was higher than Azone. On the other hand, many of the IL-Azones tested had a lower skin-penetration-enhancing effect. Conclusions: These results suggest the potential of C12 IL-Azone as a strong and useful penetration enhancer. Full article
Show Figures

Figure 1

18 pages, 2284 KiB  
Communication
Intestinal Cells-on-Chip for Permeability Studies
by Marit Keuper-Navis, Hossein Eslami Amirabadi, Joanne Donkers, Markus Walles, Birk Poller, Bo Heming, Lisanne Pieters, Bjorn de Wagenaar, Adam Myszczyszyn, Theo Sinnige, Bart Spee, Rosalinde Masereeuw and Evita van de Steeg
Micromachines 2024, 15(12), 1464; https://doi.org/10.3390/mi15121464 - 30 Nov 2024
Cited by 1 | Viewed by 2192
Abstract
Background: To accurately measure permeability of compounds in the intestine, there is a need for preclinical in vitro models that accurately represent the specificity, integrity and complexity of the human small intestinal barrier. Intestine-on-chip systems hold considerable promise as testing platforms, but several [...] Read more.
Background: To accurately measure permeability of compounds in the intestine, there is a need for preclinical in vitro models that accurately represent the specificity, integrity and complexity of the human small intestinal barrier. Intestine-on-chip systems hold considerable promise as testing platforms, but several characteristics still require optimization and further development. Methods: An established intestine-on-chip model for tissue explants was adopted for intestinal cell monolayer culture. A 3D-printed culture disc was designed to allow cell culture in static conditions and subsequent permeability studies in a dynamic environment. Membrane characteristics and standardized read-outs were investigated and compared to traditional permeability studies under static conditions. Results: By starting cultures outside the chip in conventional wells plates, the new cell disc design could support accurate cell monolayer formation for both Caco-2 and human enteroids. When transferred to the chip with laminar flow, there was accurate detection of barrier integrity (FD4 and Cascade Blue) and permeability (atenolol/antipyrine). Both flow and membrane characteristics had a significant impact on permeability outcomes. Conclusions: This novel intestinal cell-on-chip system offers large flexibility for intestinal permeability studies, although it still requires validation with more compounds to reveal its full potential. Full article
(This article belongs to the Special Issue Recent Advances in Lab-on-a-Chip and Their Biomedical Applications)
Show Figures

Figure 1

11 pages, 3445 KiB  
Communication
Synthesis of an Antipyrine-Based Fluorescent Probe with Synergistic Effects for the Selective Recognition of Zinc Ion
by Yan Gao, Dezheng Chang, Yuyang Luo, Haojie Yu, Jinhui Li and Kunming Liu
Minerals 2024, 14(7), 649; https://doi.org/10.3390/min14070649 - 25 Jun 2024
Cited by 1 | Viewed by 1452
Abstract
A novel fluorescent probe containing an imine structure was synthesized through a condensation reaction based on the skeleton of antipyrine. Due to the synergistic effect of photoinduced electron transfer (PET), excited-state intramolecular proton transfer (ESIPT), and E/Z isomerization, the probe itself [...] Read more.
A novel fluorescent probe containing an imine structure was synthesized through a condensation reaction based on the skeleton of antipyrine. Due to the synergistic effect of photoinduced electron transfer (PET), excited-state intramolecular proton transfer (ESIPT), and E/Z isomerization, the probe itself has weak fluorescence. When zinc ions are added to the ethanol solution of the probe, the formed complex inhibits PET, ESIPT, and E/Z isomerization while activating chelation-enhanced fluorescence (CHEF), resulting in fluorescent “turn-on” at 462 nm. Under optimal detection conditions, the probe can rapidly respond to zinc ions within 3 min, with a linear range of 60–220 μM and a lower limit of detection (LOD) of 0.63 μM. It can also specifically identify zinc ions in the presence of 13 common metal ions. Full article
(This article belongs to the Special Issue Recent Advances in Extractive Metallurgy)
Show Figures

Figure 1

34 pages, 7697 KiB  
Review
A Comprehensive Review of Reactive Flame Retardants for Polyurethane Materials: Current Development and Future Opportunities in an Environmentally Friendly Direction
by Paulina Parcheta-Szwindowska, Julia Habaj, Izabela Krzemińska and Janusz Datta
Int. J. Mol. Sci. 2024, 25(10), 5512; https://doi.org/10.3390/ijms25105512 - 18 May 2024
Cited by 20 | Viewed by 4054
Abstract
Polyurethanes are among the most significant types of polymers in development; these materials are used to produce construction products intended for work in various conditions. Nowadays, it is important to develop methods for fire load reduction by using new kinds of additives or [...] Read more.
Polyurethanes are among the most significant types of polymers in development; these materials are used to produce construction products intended for work in various conditions. Nowadays, it is important to develop methods for fire load reduction by using new kinds of additives or monomers containing elements responsible for materials’ fire resistance. Currently, additive antipyrines or reactive flame retardants can be used during polyurethane material processing. The use of additives usually leads to the migration or volatilization of the additive to the surface of the material, which causes the loss of the resistance and aesthetic values of the product. Reactive flame retardants form compounds containing special functional groups that can be chemically bonded with monomers during polymerization, which can prevent volatilization or migration to the surface of the material. In this study, reactive flame retardants are compared. Their impacts on polyurethane flame retardancy, combustion mechanism, and environment are described. Full article
(This article belongs to the Special Issue Advanced Flame Retardant Polymeric Materials 2.0)
Show Figures

Graphical abstract

13 pages, 1131 KiB  
Article
Tramadol and M1 Bioavailability Induced by Metamizole Co-Administration in Donkeys (Equus asinus)
by Gabriel Araújo-Silva, Luã B. de Macêdo, Andressa N. Mouta, Maria Gláucia C. de Oliveira, Kathryn N. Arcoverde, Lilian G. S. Solon, José T. Perez-Urizar and Valéria V. de Paula
Animals 2024, 14(6), 929; https://doi.org/10.3390/ani14060929 - 17 Mar 2024
Cited by 2 | Viewed by 1980
Abstract
Our objective was to assess the pharmacokinetic characteristics of metamizole when administered together with tramadol in a single intravenous dose to donkeys. Ten male animals received 10 mg∙kg−1 of dipyrone associated with 2 mg∙kg−1 of tramadol (T2M10) [...] Read more.
Our objective was to assess the pharmacokinetic characteristics of metamizole when administered together with tramadol in a single intravenous dose to donkeys. Ten male animals received 10 mg∙kg−1 of dipyrone associated with 2 mg∙kg−1 of tramadol (T2M10) and 25 mg∙kg−1 of dipyrone with 2 mg∙kg−1 of tramadol (T2M25). Venous blood samples were taken from groups to determine the pharmacokinetics after drug administration, using initial brief intervals that were followed by extended periods until 48 h. Restlessness and ataxia were observed in two animals in the T2M25 group. Analysis revealed prolonged detectability of tramadol, 4-methylamine antipyrine, 4-aminoantipyrine (up to 24 h), and O-desmethyltramadol (up to 12 h) after administration. Although metamizole and its metabolites showed no significant pharmacokinetic changes, tramadol and O-desmethyltramadol exhibited altered profiles, likely because of competition for the active sites of CYP450 enzymes. Importantly, the co-administration of metamizole increased the bioavailability of tramadol and O-desmethyltramadol in a dose-dependent manner, highlighting their potential interactions and emphasizing the need for further dose optimization in donkey analgesic therapies. In conclusion, metamizole co-administered with tramadol interferes with metabolism and this interference can change the frequency of drug administration and its analgesic efficacy. Full article
(This article belongs to the Special Issue Anaesthesia and Pain Management in Large Animals)
Show Figures

Figure 1

17 pages, 7110 KiB  
Article
Application of L-FDM Technology to the Printing of Tablets That Release Active Substances—Preliminary Research
by Ewa Gabriel, Anna Olejnik, Bogna Sztorch, Miłosz Frydrych, Olga Czerwińska, Robert Pietrzak and Robert E. Przekop
C 2024, 10(1), 23; https://doi.org/10.3390/c10010023 - 6 Mar 2024
Cited by 2 | Viewed by 2694
Abstract
The following work presents a method for obtaining PLA composites with activated carbon modified using the liquid for fused deposition modeling (L-FDM) method in which two different compounds, i.e., rhodamine and antipyrine, are introduced. Tablets saturated with substances were obtained. Microscopic tests were [...] Read more.
The following work presents a method for obtaining PLA composites with activated carbon modified using the liquid for fused deposition modeling (L-FDM) method in which two different compounds, i.e., rhodamine and antipyrine, are introduced. Tablets saturated with substances were obtained. Microscopic tests were carried out, and these confirmed the presence of substances that had been introduced into the polymer structure. UV-Vis spectra and observation of the active substance release process confirmed the relationship between the printing speed and the amounts of the compounds liberated from the tablets. Additionally, the contact angle of the PLA with activated carbon composites was characterized. The hydrophilic nature of the obtained composites favors an increase in the amounts of compounds released during the release process, which is a desirable effect. The surfaces and pores of the obtained materials were also analyzed. The incorporation of activated carbon into PLA results in a significant increase in its surface area. Investigations indicate that a novel approach for introducing chemicals into polymer matrices through the L-FDM method holds promise for the prospective fabrication of tablets capable of a controlled and customized release of substances tailored to individual requirements. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications)
Show Figures

Graphical abstract

18 pages, 8568 KiB  
Article
Elimination of Pharmaceutical Compounds from Aqueous Solution through Novel Functionalized Pitch-Based Porous Adsorbents: Kinetic, Isotherm, Thermodynamic Studies and Mechanism Analysis
by Qilin Yang, Hongwei Zhao, Qi Peng, Guang Chen, Jiali Liu, Xinxiu Cao, Shaohui Xiong, Gen Li and Qingquan Liu
Molecules 2024, 29(2), 463; https://doi.org/10.3390/molecules29020463 - 17 Jan 2024
Cited by 4 | Viewed by 1883
Abstract
The long-term presence of PPCPs in the aqueous environment poses a potentially significant threat to human life and physical health and the safety of the water environment. In our previous work, we investigated low-cost pitch-based HCP adsorbents with an excellent adsorption capacity and [...] Read more.
The long-term presence of PPCPs in the aqueous environment poses a potentially significant threat to human life and physical health and the safety of the water environment. In our previous work, we investigated low-cost pitch-based HCP adsorbents with an excellent adsorption capacity and magnetic responsiveness through a simple one-step Friedel–Crafts reaction. In this work, we further investigated the adsorption behavior of the prepared pitch-based adsorbents onto three PPCP molecules (DFS, AMP, and antipyrine) in detail. The maximum adsorption capacity of P-MPHCP for DFS was 444.93 mg g−1. The adsorption equilibrium and kinetic processes were well described through the Langmuir model and the proposed secondary kinetic model. The negative changes in Gibbs free energy and enthalpy reflected that the adsorption of HCPs onto PPCPs was a spontaneous exothermic process. The recoverability results showed that the adsorption of MPHCP and P-MPHCP onto DFS remained above 95% after 10 adsorption–desorption cycles. The present work further demonstrates that these pitch-based adsorbents can be used for multiple applications, which have a very extensive practical application prospect. Full article
Show Figures

Figure 1

23 pages, 8745 KiB  
Article
Antimicrobial Potency and E. coli β-Carbonic Anhydrase Inhibition Efficacy of Phenazone-Based Molecules
by Huda R. M. Rashdan, Gharieb S. El-Sayyad, Ihsan A. Shehadi and Aboubakr H. Abdelmonsef
Molecules 2023, 28(22), 7491; https://doi.org/10.3390/molecules28227491 - 8 Nov 2023
Cited by 3 | Viewed by 1899
Abstract
In this investigation, 4-antipyrinecarboxaldhyde was reacted with methyl hydrazinecarbodithioate to afford the carbodithioate derivative 3. The as-prepared carbodithioate derivative 3 is considered to be a key molecule for the preparation of new antipyrine-1,3,4-thiadiazole-based molecules (49) through its reaction [...] Read more.
In this investigation, 4-antipyrinecarboxaldhyde was reacted with methyl hydrazinecarbodithioate to afford the carbodithioate derivative 3. The as-prepared carbodithioate derivative 3 is considered to be a key molecule for the preparation of new antipyrine-1,3,4-thiadiazole-based molecules (49) through its reaction with the appropriate hydrazonoyl halides. Furthermore, a typical Biginelli three-component cyclocondensation reaction involving ethyl acetoacetate, 4-antipyrinecarboxaldhyde, and thiourea under the standard conditions is carried out in the presence of sulfuric acid to afford the corresponding antipyrine–pyrimidine hybrid molecule (10). The latter was submitted to react with hydrazine monohydrate to provide the corresponding hydrazide derivative (11) which, under reaction with ethyl acetoacetate in refluxing ethanol containing catalytic amount of acetic acid, afforded the corresponding derivative (12). The structure of the newly synthesized compounds was affirmed by their spectral and microanalytical data. We also screened for their antimicrobial potential (ZOI and MIC) and conducted a kinetic study. Additionally, the mechanism of biological action was assessed by a membrane leakage assay and SEM imaging technique. Moreover, the biological activities and the binding modes of these compounds were further supplemented by an in silico docking study against E. coli β-carbonic anhydrase. The amount of cellular protein released by E. coli is directly correlated to the concentration of compound 9, which was found to be 177.99 µg/mL following treatment with 1.0 mg/mL of compound 9. This finding supports compound 9’s antibacterial properties and explains how the formation of holes in the E. coli cell membrane results in the release of proteins from the cytoplasm. The newly synthesized compounds represent acceptable antimicrobial activities with potential action against E. coli β-carbonic anhydrase. The docking studies and antimicrobial activity test proved that compound (9) declared a greater activity than the other synthesized compounds. Full article
Show Figures

Figure 1

20 pages, 3455 KiB  
Article
Peroxymonosulfate Activation by Different Synthesized CuFe-MOFs: Application for Dye, Drugs, and Pathogen Removal
by Antia Fdez-Sanromán, Bárbara Lomba-Fernández, Marta Pazos, Emilio Rosales and Angeles Sanromán
Catalysts 2023, 13(5), 820; https://doi.org/10.3390/catal13050820 - 29 Apr 2023
Cited by 11 | Viewed by 2672
Abstract
In this study, three CuFe-MOFs were successfully synthesized by a solvothermal process by changing the ratio of solvents, salts, or temperature. These MOFs named CuFe(BDC-NH2)R, CuFe(BDC-NH2)S, and CuFe(BDC-NH2)D showed rod-shaped, spindle-like, and [...] Read more.
In this study, three CuFe-MOFs were successfully synthesized by a solvothermal process by changing the ratio of solvents, salts, or temperature. These MOFs named CuFe(BDC-NH2)R, CuFe(BDC-NH2)S, and CuFe(BDC-NH2)D showed rod-shaped, spindle-like, and diamond-like structures, respectively. The CuFe(BDC-NH2)D and CuFe(BDC-NH2)S were found to exhibit an improved PMS activation for Rhodamine B removal attaining levels around 92%. Their effective removal capability was investigated as a function of the pH, catalyst dosage, and the effect of the application of UV radiation. The best degradation system was photo-assisted activation of PMS when CuFe(BDC-NH2)D and CuFe(BDC-NH2)S were used. Under these conditions, the degradation of a mixture of antibiotic and anti-inflammatory drugs (sulfamethoxazole and antipyrine) was evaluated with the results revealing the total degradation of both drugs after 1 h. A higher antibacterial activity was attained with the system CuFe(BDC-NH2)R/PMS due to the high copper content with respect to the others. Full article
(This article belongs to the Special Issue Trends in Environmental Applications of Advanced Oxidation Processes)
Show Figures

Graphical abstract

23 pages, 5830 KiB  
Article
Design, Synthesis, Spectroscopic Inspection, DFT and Molecular Docking Study of Metal Chelates Incorporating Azo Dye Ligand for Biological Evaluation
by Mohamed Ali Ibrahim Al-Gaber, Hany M. Abd El-Lateef, Mai M. Khalaf, Saad Shaaban, Mohamed Shawky, Gehad G. Mohamed, Aly Abdou, Mohamed Gouda and Ahmed M. Abu-Dief
Materials 2023, 16(3), 897; https://doi.org/10.3390/ma16030897 - 17 Jan 2023
Cited by 61 | Viewed by 3226
Abstract
A new heterocyclic azo dye ligand (L) was synthesized by the combination of 4-amino antipyrine with 4-aminophenol. The new Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) complexes were synthesized in excellent yields. The metal chelate structures were elucidated using elemental analyses, [...] Read more.
A new heterocyclic azo dye ligand (L) was synthesized by the combination of 4-amino antipyrine with 4-aminophenol. The new Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) complexes were synthesized in excellent yields. The metal chelate structures were elucidated using elemental analyses, FT-IR, 1H-NMR, mass, magnetic moment, diffused reflectance spectral and thermal analysis (TG-DTG), and molar conductivity measurement. According to the FT-IR study, the azo dye ligand exhibited neutral tri-dentate behavior, binding to the metal ions with the azo N, carbonyl O, and protonated phenolic OH. The 1H-NMR spectral study of the Zn(II) complex supported the coordination of the zo dye ligand without proton displacement of the phenolic OH. Diffused reflectance and magnetic moment studies revealed the octahedral geometry of the complexes, as well as their good electrolytic nature, excepting the Zn(II) and Cd(II) complexes, which were nonelectrolytes, as deduced from the molar conductivity study. The theoretical calculations of optimized HOMO–LUMO energies, geometrical parameters, electronic spectra, natural atomic charges, 3D-plots of MEP, and vibrational wavenumbers were computed and elucidated using LANL2DZ and 6-311G (d, p) basis sets of density functional theory (DFT) with the approach of B3LYP DFT and TD-DFT methods. The ligand and complexes have been assayed for their antimicrobial activity and compared with the standard drugs. Most of the complexes have manifested excellent antimicrobial activity against various microbial strains. A molecular docking investigation was also performed, to acquire more information about the binding mode and energy of the ligand and its metal complexes to the Escherichia coli receptor using molecular docking. Altogether, the newly created ligand and complexes showed positive antibacterial effects and are worth future study. Full article
Show Figures

Figure 1

17 pages, 3303 KiB  
Article
Peroxymonosulphate Activation by Basolite® F-300 for Escherichia coli Disinfection and Antipyrine Degradation
by Antía Fdez-Sanromán, Marta Pazos and Angeles Sanroman
Int. J. Environ. Res. Public Health 2022, 19(11), 6852; https://doi.org/10.3390/ijerph19116852 - 3 Jun 2022
Cited by 6 | Viewed by 2383
Abstract
In this study, the removal of persistent emerging and dangerous pollutants (pharmaceuticals and pathogens) in synthetic wastewater was evaluated by the application of heterogeneous Advanced Oxidation Processes. To do that, a Metal-Organic Framework (MOF), Basolite® F-300 was selected as a catalyst and [...] Read more.
In this study, the removal of persistent emerging and dangerous pollutants (pharmaceuticals and pathogens) in synthetic wastewater was evaluated by the application of heterogeneous Advanced Oxidation Processes. To do that, a Metal-Organic Framework (MOF), Basolite® F-300 was selected as a catalyst and combined with peroxymonosulfate (PMS) as oxidants in order to generate sulphate radicals. Several key parameters such as the PMS and Basolite® F-300 concentration were evaluated and optimized using a Central Composite Experimental Design for response surface methodology for the inactivation of Escherichia coli. The assessment of the degradation of an analgesic and antipyretic pharmaceutical, antipyrine, revealed that is necessary to increase the concentration of PMS and amount of Basolite® F-300, in order to diminish the treatment time. Finally, the PMS-Basolite® F-300 system can be used for at least four cycles without a reduction in its ability to disinfect and degrade persistent emerging and dangerous pollutants such as pharmaceuticals and pathogens. Full article
Show Figures

Figure 1

10 pages, 1420 KiB  
Article
Utilization of Sodium Nitroprusside as an Intestinal Permeation Enhancer for Lipophilic Drug Absorption Improvement in the Rat Proximal Intestine
by Hisanao Kishimoto, Kaori Miyazaki, Hiroshi Tedzuka, Ryosuke Ozawa, Hanai Kobayashi, Yoshiyuki Shirasaka and Katsuhisa Inoue
Molecules 2021, 26(21), 6396; https://doi.org/10.3390/molecules26216396 - 22 Oct 2021
Cited by 2 | Viewed by 3717
Abstract
As advanced synthetic technology has enabled drug candidate development with complex structure, resulting in low solubility and membrane permeability, the strategies to improve poorly absorbed drug bioavailability have attracted the attention of pharmaceutical companies. It has been demonstrated that nitric oxide (NO), a [...] Read more.
As advanced synthetic technology has enabled drug candidate development with complex structure, resulting in low solubility and membrane permeability, the strategies to improve poorly absorbed drug bioavailability have attracted the attention of pharmaceutical companies. It has been demonstrated that nitric oxide (NO), a vital signaling molecule that plays an important role in various physiological systems, affects intestinal drug absorption. However, NO and its oxidants are directly toxic to the gastrointestinal tract, thereby limiting their potential clinical application as absorption enhancers. In this study, we show that sodium nitroprusside (SNP), an FDA-approved vasodilator, enhances the intestinal absorption of lipophilic drugs in the proximal parts of the small intestine in rats. The SNP pretreatment of the rat gastrointestinal sacs significantly increased griseofulvin and flurbiprofen permeation in the duodenum and jejunum but not in the ileum and colon. These SNP-related enhancement effects were attenuated by the co-pretreatment with dithiothreitol or c-PTIO, an NO scavenger. The permeation-enhancing effects were not observed in the case of antipyrine, theophylline, and propranolol in the duodenum and jejunum. Furthermore, the SNP treatment significantly increased acidic glycoprotein release from the mucosal layers specifically in the duodenum and jejunum but not in the ileum and colon. These results suggest that SNP increases lipophilic drug membrane permeability specifically in the proximal region of the small intestine through disruption of the mucosal layer. Full article
Show Figures

Graphical abstract

11 pages, 1847 KiB  
Article
A Glyphosate-Based Formulation but Not Glyphosate Alone Alters Human Placental Integrity
by Christelle Simasotchi, Audrey Chissey, Gérald Jungers, Thierry Fournier, Gilles-Eric Seralini and Sophie Gil
Toxics 2021, 9(9), 220; https://doi.org/10.3390/toxics9090220 - 13 Sep 2021
Cited by 11 | Viewed by 3680
Abstract
Glyphosate (G)-based herbicidal formulations, such as the most commonly used one, Roundup (R), are major pesticides used worldwide on food and feed. Pregnant women may be frequently exposed to R compounds. These are composed of G, which is declared as the active principle, [...] Read more.
Glyphosate (G)-based herbicidal formulations, such as the most commonly used one, Roundup (R), are major pesticides used worldwide on food and feed. Pregnant women may be frequently exposed to R compounds. These are composed of G, which is declared as the active principle, and other products contained in formulations, named formulants, which have been declared as inerts and diluents by the manufacturers. These formulants have, in fact, been demonstrated to be much more toxic than G, in particular to placental and embryonic human cells. In this work, we thus compared the effect of G and a GT+ formulation named R, using placental perfusion ex vivo. R, but not G alone, was demonstrated to alter the placental permeability of a known small model molecule, antipyrine. Similar results were observed for the fetal venous flow rate. The transfer of G alone increases with time, but is significantly decreased in presence of its formulants. The perfusion of R provokes a destruction of fetal vessels, as demonstrated by immunohistochemistry. Formulants obviously alter the fetal-placental circulation and placental integrity according to time of exposure. Therefore, G does not appear to be the main toxic agent of R. Formulants, although undeclared, include polyoxyethanolamines, PAHs, or heavy metals, and may be responsible for this toxicity. These compounds are also present in other pesticides. The progressive blood flow reduction due to the toxic compounds of formulations may diminish the nutrient supply to the fetus, alter the development, and may enhance the poisoning effects. Although these are preliminary results, they could at least partially explain some adverse pregnancy outcomes in mothers exposed to pesticides or other environmental pollutants. The debate on glyphosate alone is proven insufficient for the understanding of the toxicity. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

Back to TopTop