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Abstract: A new heterocyclic azo dye ligand (L) was synthesized by the combination of 4-amino
antipyrine with 4-aminophenol. The new Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and
Cd(II) complexes were synthesized in excellent yields. The metal chelate structures were elucidated
using elemental analyses, FT-IR, 1H-NMR, mass, magnetic moment, diffused reflectance spectral and
thermal analysis (TG-DTG), and molar conductivity measurement. According to the FT-IR study,
the azo dye ligand exhibited neutral tri-dentate behavior, binding to the metal ions with the azo
N, carbonyl O, and protonated phenolic OH. The 1H-NMR spectral study of the Zn(II) complex
supported the coordination of the zo dye ligand without proton displacement of the phenolic
OH. Diffused reflectance and magnetic moment studies revealed the octahedral geometry of the
complexes, as well as their good electrolytic nature, excepting the Zn(II) and Cd(II) complexes, which
were nonelectrolytes, as deduced from the molar conductivity study. The theoretical calculations
of optimized HOMO–LUMO energies, geometrical parameters, electronic spectra, natural atomic
charges, 3D-plots of MEP, and vibrational wavenumbers were computed and elucidated using
LANL2DZ and 6-311G (d, p) basis sets of density functional theory (DFT) with the approach of B3LYP
DFT and TD-DFT methods. The ligand and complexes have been assayed for their antimicrobial
activity and compared with the standard drugs. Most of the complexes have manifested excellent
antimicrobial activity against various microbial strains. A molecular docking investigation was also
performed, to acquire more information about the binding mode and energy of the ligand and its
metal complexes to the Escherichia coli receptor using molecular docking. Altogether, the newly
created ligand and complexes showed positive antibacterial effects and are worth future study.

Keywords: azo dye; complexes; antimicrobial activities; docking; molecular geometries

1. Introduction

The most popular synthetic dyes used in industry are azo dyes. The latter are aromatic
substances that include the diazinyl (N=N) groups [1]. Azo dyes are frequently involved in
many industries, including food and textile, paper printing, and cosmetics [2,3]. On the
other hand, coordination chemistry plays an important role in enhancing the biomedical
application of ligands [4–10]. The azo group possesses excellent donor properties and is
important in coordination chemistry. Therefore, chemists have recently become interested
in developing and physicochemical characterization of first-row transition metal chelates
with a wide range of azo dye ligands [11,12]. Furthermore, azo dye-based metal chelates
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have contributed significantly to the modern coordination chemistry revolution, due to
their interesting properties and diverse applications [13].

Furthermore, their facile synthetic protocol and structural diversity allows access to a
wide range of metal chelates [14,15]. Moreover, simple structural modifications (e.g., incor-
poration of bioactive heterocycles) and chelation with metal ions are usually associated with
characteristic alterations and enhancement of their biological properties, including the an-
tioxidant and antiproliferative activities [16], as well as their DNA binding affinities [17,18].
For instance, coordination is usually associated with bathochromic shift, making the color
duller. Besides this, oxidation resistance and light fastness properties are increased, whereas
aqueous solubility is lowered.

The current study describes the synthesis of new azo dye ligands derived from 4-
amino-antipyrine with 4-aminophenol. The resulting novel azo dye ligand coordination
was investigated with metal ions such as CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, and CdII
ions. Their corresponding composition was elucidated using various spectral methods,
such as IR and 1H NMR. The latter aided the verification of the coordination manner.
Furthermore, DFT calculations supported the structural elucidation. Likewise, the antimi-
crobial properties of the azo dye ligand and its metal chelates were also assessed. Moreover,
the antimicrobial activity was confirmed using molecular docking.

2. Materials and Methods
2.1. Starting Materials, Reagents, and Methods

All chemicals and methods employed in the preparation and characterization of the
compounds under inspection are supplied in the supporting information.

2.2. Azo Dye Ligand (L) Preparation

4-Amino-antipyrine (3 g, 14.85 mmol) was dissolved in EtOH (40 mL) and put in a
100 mL flask. HCl solution (4 mL) was added at 0–5 ◦C while stirring. Sodium nitrite
solution (5 g, 72.4 mmol, 10 mL H2O) was added drop-by-drop over 10 min, and the
resulting solution was then agitated for further 20 min at 0–5 ◦C. Stirring was continued
for an additional hour, and the mixture was poured into the 2,4-diaminophenol coupling
component (1.61 g, 14.85 mmol) in EtOH (25 mL) and an aqueous catalyst solution of 4 g
CH3COONa. The produced compound was sterilized through filtration, washed with H2O,
and vacuum-dried at 298 K.

Yield 84%; m.p. = 124 ◦C; brownish-red solid. Analysis Calcd for C17H17N5O2(%):C,
63.16; H, 5.26; N, 21.67. Found (%): C, 63.10; H, 5.02; N, 21.48. IR (cm−1):ν(OH) 3433;
carbonyl group ν(C=O) 1639; azo ν(N=N) 1620.1H/ NMR (400 MHz/d6 -DMSO/δ, ppm):
7.37–7.72 (m, 8H, Ar H), 3.43 (s, 3H, CH3-N), 2.54 (s, 3H, CH3), 6.90 (m, 2H, NH2), 10.00(s,
1H, OH).

2.3. Metal Chelates Preparation

In EtOH, azo dye ligand (L) was dissolved (0.4 g, 1.2383 mmol). The identical molar
ratio (1:1) of the following ethanolic metal salt solutions was added to the solution of azo
ligand: 0.3300 g Cr(III), 0.2004 g Mn(II), 0.3347 g Fe(III), 0.293 g Co(II), 0.294 g Ni(II), 0.211 g
Cu(II), 0.169 g Zn(II), and 0.227 g Cd(II). For 2–3 hours, the mixture was reflux heated while
stirring. The precipitates were removed by filtering and then dried over dehydrated CaCl2
in a vacuum desiccator after being washed with EtOH and diethyl ether.

[Cr(L)Cl2(H2O)]Cl Yield = 73%; m.p. = 235 ◦C; solid brown. Analysis Calcd for
Cr(C17H19Cl3N5O3) (%): C, 40.84; H, 3.80; N, 14.01; Cr, 10.41; Found (%): C, 40.74; H,
3.70; N, 13.81; Cr, 10.23. µeff /BM 3.81; Λm /Ω−1 mol−1 cm2 56.4. IR /cm−1: carbonyl
group ν(C=O) 1628; ν(OH) 3402; azo ν(N=N) 1610; ν(M-O) 551; ν(M-N) 435. λmax (nm):
241 (π–π*), 349 (n–π*). Ref. S.: 17,361, 19,436 and 22,624 cm−1 assignable to 4A2g(F) to
4T1g(F), 4A2g(F) to 4T2g(F) and 4A2g(F) to 4T1g(P) transitions, respectively.

[Mn(L)Cl2(H2O)]2H2O. Yield = 85%; solid yellowish brown; m.p. = 205 ◦C. Analysis
Calcd for Mn (C17H23Cl2N5O5) (%): C, 40.56; H, 4.57; N, 13.92; Mn, 10.93; Found (%): C,
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40.13; H, 4.50; N, 13.72; Mn, 10.68. µeff /BM 5.51; Λm/Ω−1 cm2 mol−1 46.4. IR: carbonyl
group ν(C=O) 1623; ν(OH) 3420; azo ν(N=N) 1615, ν(M-O) 597; ν(M-N) 436. λmax (nm):
219 (π–π*), 368 (n–π*). Ref. S.: 19,950, 21,260 and 25,478 cm−1 assignable to 6A1g→ T2g(F),
6A2g(G)→ 5T2g(F) and charge transfer transitions, respectively.

[Fe(L)Cl2(H2O)]Cl.H2O Yield = 88%; solid brown; m.p. = 215 ◦C. Analysis calculated
for Fe(C17H21Cl3N5O4) (%): C, 39.12; H, 4.03; N, 13.42; Fe, 10.74; Found (%): C, 39.02; H, 4.01;
N, 13.38; Fe, 11.05. µeff /BM 5.05; Λm/Ω−1 cm2 mol−1 93.6. IR: carbonyl group ν(C=O)
1627; ν(OH) 3407; azo ν(N=N) 1614; ν(M-O) 572; ν(M-N) 433. λmax (nm): 219 (π–π*),
365 (n–π*). Ref. S.: 13,280, 18,580 and 27,625 cm−1 assignable to 3A2g(F) → 3T2g(F),
3A2g(F)→ 3T1g(F) and 3A2g(F)→ 3T1g(P) transitions, respectively.

[Co(L)Cl(H2O)]Cl.H2O. Yield = 83%; solid faint pink; m.p. = 250 ◦C. Analysis cal-
culated for Co(C17H21Cl2N5O4) (%): C, 41.72; H, 4.29; N, 14.32; Co, 12.07; Found (%):
C, 41.64; H, 4.20; N, 14.25; Co, 12.06. µeff: 5.18; Λm/Ω−1 cm2 mol−1 36.4. IR: carbonyl
group ν(C=O) 1634; ν(OH) 3421; azo ν(N=N) 1618; ν(M-O) 513; ν(M-N) 434. λmax (nm):
221 (π–π*), 369 (n–π*). Ref. S.: 10,690, 15,187 and 25,025 cm−1 assignable to 4T1g to 4T2g(F),
4T1g to 4A2g(F) and 4T1g to 4T1g(p) transitions, respectively.

[Ni(L)Cl(H2O)2]Cl. Yield= 83%; solid faint green; m.p. 240 ◦C. Analysis calculated for
Ni(C17H21Cl2N5O4) (%): C, 41.72; H, 4.29; N, 14.32; Ni, 12.07; Found (%): C, 41.66; H, 4.15;
N, 14.08; Ni, 12.63. µeff: 3.76; Λm/Ω−1 cm2 mol−1 83.3. IR: carbonyl group ν(C=O) 1626;
ν(OH) 3416; azo ν(N=N) 1610; ν(M-O) 529; ν(M-N) 433. λmax (nm): 261 π–π*, 369 n–π*.
Ref. S.: 13,455, 16,253 and 22,056 cm−1 assignable to 3A2g to 3T2g,3A2g to 3T1g(F) and 3A2g
to 3T1g(P) transitions, respectively.

[Cu(L)Cl(H2O)2]Cl. Yield= 89%; solid yellowish brown; m.p. 240 ◦C. Analysis cal-
culated for Cu(C17H21Cl2N5O4) (%): C, 39.88; H, 4.50; N, 13.69; Cu, 12.41; Found (%):
C, 39.66; H, 4.42; N, 13.30; Cu, 12.32. µeff: 1.79; Λm/Ω−1 cm2 mol−1 88.3. IR: carbonyl
group ν(C=O) 1640; ν(OH) 3434; azo ν(N=N) 1614; ν(M-O) 527; ν(M-N) 435. λmax (nm):
269 (π–π*), 368 (n–π*). Ref. S.: 18,950, 21,260, and 24,478 cm−1 assignable to 6A1g→ T2g,
6A1g→ 5T1g(F), and charge transfer transitions, respectively.

[Zn(L)Cl2(H2O)]2H2O. Yield = 89%; solid brownish white; m.p. = 185 ◦C. Analysis
calculated for Zn(C17H23Cl2N5O5) (%): C, 39.77; H, 4.48; N, 13.65; Zn, 12.67; Found (%): C,
39.35; H, 4.33; N, 13.58; Zn, 12.86. µeff. diamagnetic; Λm/Ω−1 cm2 mol−1 39.4. IR: carbonyl
group ν(C=O) 1645; ν(OH) 3431; azo ν(N=N) 1622; ν(M-O) 576; ν(M-N) 435 λmax (nm):
221 (π–π*), 369 (n–π*). 1H NMR: 7.29–7.49 (m, 8H, Ar H), 3.41 (s, 3H, CH3-N), 2.52 (s, 3H,
CH3), 6.91 (m, 2H, NH2):10.20(s, 1H, OH). λmax (nm): 221 (π–π*), 368 n–π*.

[Cd(L)Cl2(H2O)]. Yield= 83%; solid brownish white; m.p. = 145 ◦C. Analysis calculated
for Cd(C17H19Cl2N5O3) (%): C, 38.93; H, 3.63; N,13.36; Cd, 21.37; Found (%): C, 39.72; H,
3.60; N, 13.25; Cd, 21.43. µeff. diamagnetic; Λm /Ω−1 cm2 mol−1 31.2. IR: carbonyl group
ν(C=O) 1629; ν(OH) 3439; azo ν(N=N) 1610; ν(M-O) 577; ν(M-N) 430 λmax (nm): 241 (π–π*),
368 (n–π*). 1H NMR: 7.33–7.72 (m, 8H, Ar H), 3.40 (s, 3H, CH3-N), 2.50 (s, 3H, CH3), 6.91
(m, 2H, NH2), 9.40(s, 1H, OH).

2.4. Spectrophotometric Measurements

To study UV-Vis spectra in the region of 200:700 nm, stock solutions of metal chelates
of 1 × 10−4 Mol/L were created by dissolving an exact quantity of the metal chelates
in DMF.

2.5. DFT Calculations

The Gaussian 09 was used for all quantum chemistry computations and visualiza-
tions [19]. The DFT approach was used to perform geometry optimizations at the B3LYP
level, utilizing the 6-311G(d, p) basis set for O, N, C, and H atoms [20]. LANL2DZ was
used for the Co, Ni, Cu, Mn, Fe, Cr, Zn, and Cd atoms [19]. Using the optimized structures,
frontier molecular orbitals (LUMOs and HOMOs) and MEP have been estimated [21].
Chemical hardness (η) and softness (σ), and other additional chemical descriptors that
provide insight into the reactivity of molecules, were calculated [22].
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2.6. Pharmacological Studies
2.6.1. Anti-Pathogenic Activity

A filter paper disk (5 mm) was added to 100 mL flasks that comprised 15 mL of the
test solution’s working concentration (100 mg/mL). All flasks were autoclaved at 121 ◦C
for 20 min. Four bacterial strains were used, namely: Bacillus subtilis (B. subtilis) and
Staphylococcus aureus (S. aureus) Gram(+ve), and Salmonella sp. and Escherichia coli (E. coli)
Gram(-ve) bacteria. Furthermore, Aspergillus fumigatus (A. fumigatus) and Candida albicans
(C. albicans) fungal strains were also used. All microbes were inoculated on the surfaces
of LB agar media utilizing the diffusion agar technique (agar plates). All the chemicals
were distributed among four evenly spaced locations in the inoculated Petri plates, each
2 cm from the center. A reference solvent for antipathogenic activity was DMSO. Clear
or inhibitory zones were seen around every disk after these incubations at 25 ◦C for 48 h.
The experiment’s control flask was created to run under the same conditions previously
explained for each microbe, but only using a DMSO solution. The antibacterial activity
was estimated by subtracting the diameter of the inhibition zone created by the DMSO
treatment from the diameter obtained in each experiment [23–25].

Amikacin and ketoconazole are standard drugs used as references for their antifungal
and antibacterial properties, respectively. The data shown are the mean values from all
experiments carried out in triplicate.

2.6.2. Docking for the Inspected Molecules

Molecular docking is frequently used to deduce structure-based activity relationships,
as it enables the prediction of the confirmation of small-molecule ligands’ binding to the
desired binding location. The binding nature of the metal chelates was predicted using
MOE software. In addition, a file containing the crystal structure of the E. coli receptor’s
active site (PDB ID: 3t88) was retrieved from the data bank of the protein.

3. Results & Discussion
3.1. Structural Inspection of the Azo Dye Ligand

The coupling of 4-amino-antipyrine with 4-aminophenol led to the formation of the
free ligand L, as shown in Figure 1. The free ligand L is soluble in ethanol, DMF, and
DMSO solvents. The IR spectrum of the L ligand demonstrated in the experimental section
(Figure S1) revealed three bands that were assigned to the stretching vibrations of OH,
C=O, and N=N functions: a broad band at 3433 cm−1; a medium band at 1639 cm−1; and
a faint band at 1620 cm−1. Unfortunately, the NH2 band is not very distinct, due to the
overlap with the OH bands in the same area [26].
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Figure 1. The proposed structure of azo dye ligand (L).

The ligand’s 1H NMR spectra revealed a single signal at 10 ppm that is associated
with the OH proton. The aromatic ring protons appeared multiple times between 7.37 and
7.72 ppm, followed by amino group signals at 6.9 ppm and the two methyl group signals at
3.43 ppm (Figure S2). When deuterated solvent was added, the signals from the OH and
NH2 groups vanished from the ligand’s 1H NMR spectra, confirming their positions. The
major molecular ion (M+) peak was found at m/z = 323 amu, which matches the elemental
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analysis results. The rest molecular ion peaks with their respective intensities are provided
in Figure 2.
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3.2. Structural Identification of Metal Chelates under Inspection
3.2.1. C, H, and N percent in the compounds under investigation

The experimental section and the complex’s molecular formulae show the elemental
analyses (C, H, and N). The metal-ligand ratio in all the metal chelates examined was found
to be 1:1. The metal chelates have high melting (decomposition) points and are stable in
the presence of air. All the metal chelates are entirely insoluble in water but readily soluble
in EtOH, DMF, and DMSO.

3.2.2. Evaluation of Molar Conductance

The molar conductivities were scanned at 27 ◦C using 10−3 mol/L of each metal chelate
in DMF as solvent. The molar conductivity findings were outlined in the experimental
section. The MnII, CoII, ZnII, and CdII complexes had molar conductivities of 36.4, 36,
39.4, and 11.2 Ω−1mol−1cm2, respectively, showing that they were non-electrolytes and
non-ionic [27,28]. On the other hand, the molar conductivity values of the chelates of
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Cr(III), Ni(II), Cu(II), and Fe(III) were found to be 56.3, 83.3, 88.3, and 93.4 Ω−1mol−1cm2,
respectively, revealing their ionic character and confirming that they were 1:1 electrolytes.

3.2.3. IR Spectral Studies

The metal chelates’ infrared spectral bands are listed in the experimental section and
Supplementary Figure S1. The coordination sites incorporated in chelation were deduced
by comparing the IR spectra of the free ligand and its metal chelates. All produced metal
complexes’ characteristic IR spectra assignments contrasted with the matching free ligand.
Because the metal complexes do not have the same absorption bands as the free azo dye
ligand, this suggests that the ligand and metal ion are coordinated.

The band seen in the L spectrum at 3433 cm−1 strongly suggests that OH is present
in L [29] while, in the spectra of the metal chelates, it was moved to 3402–3439 cm−1.
The absorption band confirmed the presence of the carbonyl group in the free ligand at
1639 cm−1, which was shifted to 1623–1645 cm−1 in the metal chelates IR spectra as a result
of the complex formation [30,31]. The band at 1620 cm−1 was attributed to the azo group’s
stretching vibration in the free ligand and was shifted to 1610–1622 cm−1 in the metal
chelates spectra [32] due to complexation of the ligand. The OH, C=O, and N=N groups’
shifts in band positions confirmed their participation in the bonding to the metal ions.

A new band attributed to the symmetric and asymmetric vibration of coordinated
water molecules occurred at 941–975 and 835–863 cm−1. It was determined that v(M-O)
and (M-N) were responsible for the weak bands’ frequencies in the ranges of 551–577 cm−1

and 430–436 cm−1, respectively [33–35]. These bands did not arise in azo ligand; they were
seen in metal complexes. The ligand demonstrates neutral tridentate behavior with NOO
donor sites, according to the aforementioned information.

3.2.4. Spectral Studies via 1H NMR

By considering the variations in the 1H NMR spectra of CdII and ZnII chelates com-
pared to the free ligand (Supplementary Figure S1), significant evidence for the structure of
complexes was obtained. The phenyl group in the free ligand caused a cluster of multiple
signals to appear between 7.37 and 7.72 ppm (m, 8H, Ar H). The phenolic-OH group in
the ligand was responsible for the signal at 10 ppm (s, 1H, OH) [36], while the signals
at 3.43 ppm (s, 6H, CH3) and 6.9 ppm (s, 2H, NH2) were attributed to the methyl and
amino groups, respectively. The 1H NMR spectra of the ZnII and CdII chelates revealed
signals for the methyl, aromatic, and phenolic OH groups at 3.41 and 3.40 ppm (s, 6H,
CH3), 7.29–7.49 and 7.29–7.72 ppm (m, 8H, Ar-H), and 10.20 and 9.40 ppm (s, 1H, OH),
respectively. The ZnII and CdII chelates signals at 6.90 and 6.91 ppm (s, 2H, NH2) belong to
the amino group. The change in the location of the OH band demonstrated that phenolic
groups’ oxygen atoms were coordinated with the metal ions. Additionally, it showed no
proton displacement between the phenolic OH group and the metal ions.

3.2.5. Mass Spectral Investigations

The hypothesized structures in Figure 2 are supported by the mass spectral data of
the free ligand and its CdII azo dye complex, which are consistent with the molecular ion
fragments. The molecular ion peak at m/z 504.82 amu in the Cd(II) chelate’s recorded
mass spectrum was in good agreement with the expected values and corresponded to the
molecular weight of the relevant compounds (M-H2O).

3.2.6. UV–Vis Absorption Studies

Several factors affect the UV/Vis spectra of azo dye and its chelates. These include
chemical composition, such as chromophores, substituted groups, azo groups number,
cations, pH levels, solvents, and more, which frequently affect the UV/Vis spectra of these
dyes [37]. The same solvent was used as a blank to measure the UV/Vis spectra of the free
azo ligand (L) (1 × 10−4 M) and its chelates (1 × 10−4 M) solutions in ethanol between
700 and 200 nm at 298 K. As seen, the unbound azo ligand has two separate zones of
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absorption. The first band at 225 nm could be due to the π-π* transition between the
antipyrine and benzene rings. The second band, visible at 365 nm, is related to the n-π*
electronic transition (Supplementary Figure S3). Specifically, the n-π* transition band was
observed at 346–353 nm, while the π-π* transition band was discovered at 271–275 nm.
This demonstrates the ligand-metal ion coupling of the azo dye [38,39].

3.2.7. Molecular Electronic Transitions and Magnetic Moment Measurements

For Cr(III) metal chelate as hexa-coordinated, there were three spins permitted for
transitions 4A2g(F) to4 T1g(P), 4A2g(F) to 4T2g(F), and 4A2g(F) to 4T2g(F). These spins
allowed transitions in the spectrum of diffused reflectance of Cr(III) chelate at 22,624,
19,436, and 17,361 cm−1. The chelate’s stated electronic spectrum is reasonably consistent
with those in the literature. The magnetization was determined to be 3.81 B.M. at 298 K,
which is in line with what is predicted for octahedral Cr(III) chelate [40].

Three weak bands at 19,950, 21,260, and 25,478 cm−1 in the spectrum of diffused
reflectance of the Mn(II) metal chelate can be attributed to the transitions 6A1g to T2g
(G), 6A1g to 5T1g, and charge transfer, correspondingly. The µeff suggested an octahedral
geometry. value of 5.51 BM for the manganese(II) metal chelate [41,42].

The Fe(III) metal chelate’s µeff. value was determined to be 5.05 BM, as predicted by
the octahedral geometry surrounding the Iron(III) ions [43]. Three bands distinguished
the spectrum of reflectance for the Ni(II) metal chelate in the areas 3A2g(F to 3T2g(F)(υ1)
(13,280 cm−1), 3A2g(F) to 3T1g(F)(υ2) (18,580 cm−1) and 3A2g(F) to 3T1g(P)(υ3) (27,625 cm−1)
transition in an idealized octahedral geometry.

The µeff. of the Co(II) metal chelate was 5.18 B.M., which correlates to three single
electrons. The diffused reflectance spectrum of the Cobalt (II) metal chelate displayed three
bands at 10,690 cm−1, 15,187 cm−1 and 25,051 cm−1. The transitions 4T1g to 4T2g(F)(ν1),
4T1g to 4A2g(F), and 4T1g to T1g(P), correspondingly, may be attributed to these bands.
Band positions suggested that the Co(II) complex’s an octahedral shape [44,45].

The high spin Ni(II) metal chelate had a µeff. value of 3.76 B.M. at 298 K, indicating
that it was an octahedral geometry [46]. Its reflectance spectrum displayed three bands at
(13,455 cm−1): 3A2g to 3T2g; (16,253 cm−1): 3A2g to 3T1g(F); and (22,056 cm−1): 3A2g to
3T1g(P). Additionally, a band at 26,333 cm_1 was detected in the spectrum, which may be
related to the charge transfer of ligand to metal.

The reflectance spectrum for Copper(II) metal chelate showed three sholder bands at
18,950, 21,260, and 24,478 cm−1, which could be attributed to 6A1g to T2g (G), 6A1g to 5T1g
transitions and charge transfer, correspondingly. The µeff. value of 1.79 BM for Cu(II) metal
chelate and the electronic transitions suggested an octahedral shape for the complex [47].

An octahedral shape was suggested for the Zn(II) and Cd(II) metal chelates based on
their empirical formulae, which were diamagnetic.

3.2.8. Analysis of Thermal Findings

The thermal stability of the azo dye ligand and its metal chelates was inspected
using the TG curve (Supplementary Figure S4). Data in Supplementary Table S1 show the
disintegration of the ligand and its metal chelates.

The TG curve of the azo dye ligand exhibited three mass loss steps. The first step has
a temperature range from 25 to 305 ◦C anticipating a mass disposal of 28.48% (computed
loss of mass = 28.79%), which corresponds to the disposal of C6H7N. The second step takes
place in the range of 305–410 ◦C with anticipated mass disposal of 9.88% corresponding
to C2H6 molecules. Finally, the last step finished at the temperature between 410–1000 ◦C
with anticipated mass disposal of 61.91%, corresponding to C9H4N4O.

The curve of TG for [Cr(L)(H2O)Cl2]Cl metal chelate displayed two instances of weight
decrease. The first stage of decomposition occurred in the range of 45 to 495 ◦C, with a
max.of 250 ◦C, and relates to the disposal of H2O molecules of coordination, C6H6, and
chlorine. As in the next step, the mass loss stage (270–800 ◦C) was due to the ligand’s
partial degradation (C11H16N5ClO1/2). The final residue was 1/2 chromium oxide as the
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residue of decomposition. The TG curve of the Mn(II) metal chelate with a molecular
formula [Mn(L)Cl2(H2O)]2H2O was degraded thermally in three stages. The first step
occurred within the range of the temperature from 45 to 235 ◦C, anticipating mass disposal
of 7.11% (computed loss of mass = 7.17%), matched with the disposal of coordinated water
molecules. The second step takes place in the range of 235 to 475 ◦C with anticipated mass
disposal of 24.54%, corresponding to the disposal of H2O, C2H6, and Cl2 molecules. The
last step occurred at the temperature from 475 to 1000 ◦C, anticipating mass disposal of
45.95%, corresponding to disposal of C15H13N5O and MnO as a residue.

It was noted from the TG-DTG curve of [Fe(L)Cl2(H2O)]Cl.H2O metal chelate that
the weight loss percentage happened in three stages at 45–1000 ◦C. In the first step, with a
maximum of DTG at 118 ◦C, 3.51% (theoretically calculated: 3.45%), there was a weight
decrease in the temperature range of 45 to 170 ◦C, which indicated the disposal of the
H2O molecule of hydration [48]. The second decay stage occurs in the vicinity of 400 to
700 ◦C, corresponding to the disposal of H2O, HCl and Cl2 molecules with anticipated
mass disposal of 23.82% (theoretically computed at 23.83%). The azo bonds in the metal
chelates under investigation were destroyed when the temperature exceeded 260 ◦C [49].
The third step of 56.67% (theoretically calculated 56.76%) weight loss was noted in the
temperature range of 400 to 1000 ◦C in the TG curve, which showed the degradation of the
C17H15N5O1/2 molecule and remaining 1/2Fe2O3 as residue [50].

For [Co(L)Cl2(H2O)]H2O metal chelate, the mass disposal of 21.25% (computed
21.72%) within the temperature range of 45 to 215 ◦C can be assigned to the disposal
of two molecules of water and Cl2 gas. At the temperature between 215–1000 ◦C, the mass
disposal of 63.14% (calc. 62.90%) was attributed to the disposal of the C17H17N5O molecule.
The decomposition was completed, leading to the formation of the nickel oxide (CoO)
residue [51].

TG curve of [Ni(L)Cl2(H2O)] metal chelate exhibited that weight disposal of 18.72%
(computed 19.01%) occurred in the temperature range of 45–220 ◦C is attributable to the
mass disposal of H2O and Cl2. The second step indicated that weight disposal of 13.37%
(computed 13.03%) occurred in the temperature range of 220–350 ◦C, with a max. of DTG
at 250 ◦C, and corresponded to the removal of C2H9NO. The third step corresponds to
mass disposal of 52.56% (calc. 52.13%). In conjunction with this step, the ligand completely
decomposes (C15H8N4O) and forms NiO as a residue.

The TG thermogram of [Cu(L)Cl(H2O)2]Cl metal chelate demonstrated that the decom-
position occurred in three stages. The first step within the temperature range of 40 to 250 ◦C
with a maximum of 150 ◦C may be assigned to the disposal of two H2O molecules with
a loss of mass of 7.25% (computed = 7.33%). The second degradation step, at 250–485 ◦C
with a maximum of 370 ◦C, includes disposal of two molecule Cl2 gas, with a loss of mass
of 14.10% (computed = 14.3%). Finally, the third decomposition step occurred within a
temperature range of 285 to 1000 ◦C with a maximum of 670 ◦C. The ligand completely
evaporates during this stage (C17H17N5O2) and produces leftover cupric oxide (CuO).

Zn(II) complex showed TG curves in the temperature range of 45–165 ◦C disposal
of 2H2O hydrated water molecules. The second stage is related to the disposal of HCl
and coordination water (165–440 ◦C) at a maximum of 280 ◦C due to mass disposal of
10.07% (computed 10.53%). The third stage showed the removal of C17H16N5ClO in the
temperature range (440–800 ◦C) relating to the disposal of 66.88 (computed 66.35%). The
remaining ligand’s breakdown, which leaves behind zinc oxide residue, causes final weight
losses [52].

The TG curve for [Cd(L)Cl2(H2O)] metal chelate exhibits two separate weight losses.
The first step of decomposition occurs within the range of 45 to 520 ◦C, with a maximum at
250 ◦C, and corresponds to the disposal of H2O, Cl2, C6H6NO, C6H6, Cl2, corresponding to
the removal of 36.91 (computed 37.56%). As in the next step, the loss of mass (520–1000 ◦C)
is caused by the breakdown of a portion of the ligand (C11H11N4). The final residue is CdO.
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3.3. Correlation between All Findings for Structural Inspection

From CHN analyses, vibration spectral, molar conductivity, thermal analysis, and
mass spectral data, the structures of the metal chelates of the titled ligand with Cr(III),
Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) ions were validated. Therefore, from
the vibration spectra, it was established that the azo ligand acts as a tri-dentate neutral
ligand coupled to the cations via oxygen of the carbonyl group, oxygen of the phenolic
group, and one nitrogen of the azo group. The molar conductivity data revealed that
the metal chelates were electrolytes, except for MnII, CoII, ZnII, and CdII. Based on the
information mentioned earlier and the magnetic and solid reflectance measurements, an
octahedral shape was postulated for the studied metal chelates. In Figure 3, the complexes
structural formulas were summed up as follows: [M(L)(H2O)Cl2]Clx.nH2O when M is
(Chromium(III), x = 1, n = 0, Manganese(II), x = 0, n = 2, Iron(III), x = n = 1, Cobalt(II), x = 0,
n = 1), and Zinc(II), x = 0, n = 2), then [M(L)Cl(H2O)2]Cl.nH2O where M = Nickel(II), n = 0,
and Copper(II), n = 1.
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Figure 3. The structure of the L-metal complexes.

3.4. DFT Calculations

The B3LYP and 6–311G (d, p) basis sets were used to optimize the geometry of the
ligand and its CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, and CdII metal chelates in the gas
phase. Figure 4 displays the L, CrL, MnL, FeL, CoL, NiL, CuL, ZnL, and CdL geometries in
their fully optimized and numbered states.

The highest occupied molecular orbital (HOMO) describes the ability of a molecule
to release electrons, whereas the smallest vacant molecular orbital describes a molecule’s
ability to take electrons (LUMO) [53]. The three-dimensional orbitals that resulted from
computing the HOMOs and LUMOs of the compounds using the DFT/B3LYP level of the-
ory are presented in Figure 5, together with their energy values in eV. The HOMO/LUMO
of the ligand/metal complexes was concentrated throughout the whole molecule, as seen
in Figure 5.
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When describing a molecule’s properties, such as chemical stability, the energy differ-
ence between HOMO and LUMO is quite helpful [53]. Any molecule’s electron distribution
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varies less and exhibits low polarization when the HOMO–LUMO energy difference is
high. These molecules are referred to as hard molecules. If there is little change in HOMO–
LUMO energy, the polarization is strong, the electron distribution is easily steered, and the
molecules are referred to as soft molecules. [54].

The HOMO–LUMO energy gap of the ligand and its metal chelates with CrIII, MnII,
FeIII, CoII, NiII, CuII, ZnII, and CdII ions, on the other hand, was calculated to be 3.42,
2.28, 2.01, 1.01, 1.95, 2.42, 2.20, and 2.56 eV., respectively. The ligand’s HOMO–LUMO
energy gap was greater than the metal complexes. If the examined compounds were ranked
according to their energy gaps, L > CdL > ZnL > NiL > CrL > CuL > MnL > CoL > FeL was
shown to be the order. The hardness and softness of molecules can be determined based on
various factors.

It is crucial to assess the molecules’ HOMO–LUMO energy gaps to provide informa-
tion. This led to the conclusion that the most challenging and stable molecule was (L).
According to calculations, the molecule that was the softest and most reactive was (FeL).
As a result, it was found that, among the neutral molecules, (L) was the hardest and most
stable, and (FeL) was the softest and most reactive.

Chemical hardness (η), softness (σ), and other parameters are additional chemical
descriptors that provide insight into the chemical reactivity of molecules [55,56]. Typically,
the HOMO and LUMO energies are used to calculate the values of chemical hardness (η)
and softness (σ). Table 1 contains the computed values.

Table 1. Chemical descriptors calculated using DFT.

EHOMO ELUMO ∆E I A χ CP H σ ω Nu ∆Nmax

L −5.27 −1.85 3.42 5.27 1.85 3.56 −3.56 1.71 0.29 3.70 0.27 2.08

CrL −4.57 −2.30 2.28 4.57 2.30 3.44 −3.44 1.14 0.44 5.19 0.19 3.02

MnL −3.77 −1.76 2.01 3.77 1.76 2.77 −2.77 1.01 0.50 3.80 0.26 2.75

FeL −6.68 −5.67 1.01 6.68 5.67 6.18 −6.18 0.50 0.99 37.94 0.03 12.29

CoL −4.56 −2.61 1.95 4.56 2.61 3.59 −3.59 0.97 0.51 6.60 0.15 3.68

NiL −8.81 −6.39 2.42 8.81 6.39 7.60 −7.60 1.21 0.41 23.87 0.04 6.28

CuL −8.66 −6.47 2.20 8.66 6.47 7.57 −7.57 1.10 0.46 26.06 0.04 6.89

ZnL −8.17 −5.61 2.56 8.17 5.61 6.89 −6.89 1.28 0.39 18.51 0.05 5.37

CdL −5.58 −2.30 3.28 5.58 2.30 3.94 −3.94 1.64 0.30 4.73 0.21 2.40

Based on the total electron density surface, the electrostatic potential mapping instan-
taneously shows the molecular distribution, size, molecular shape, and dipole moments of
the molecule’s electrostatic potential (electron + nuclei) [57]. Knowing the relative polarity
graphically is useful. The MEP for the ligand and the complexes of CrL, MnL, FeL, CoL,
NiL, CuL, ZnL, and CdL are shown in Figure 6. Regions that are electron-rich, electron-
deficient, moderately electron-deficient, and neutral are represented on the MEP surface by
the colors red, blue, yellow, and green, respectively. In the vicinity of oxygen and chloride,
one can find the region with the most negative potential (red) and the most positive charge
adjacent to hydrogen atoms.
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3.5. Biological Activities

The biological properties of the complexes are affected by the ligand’s chelating
nature, the type of the donor atoms, the complexes’ overall charge, the metal ion’s nature,
the composition of the opposing ions that balance out the complex, and the complex’s
geometrical structure [58–60]. The antimicrobial action of azo dye compounds may be
significantly enhanced by the presence of an azo group with chelating properties. These
properties may be used in metal transport across the bacterial membranes, or to attach to
the bacterial cells at a specific site, from which it can interfere with their growth [61].

Supplementary Table S2 summarizes the antimicrobial characteristics of the azo dye
ligand and its metal chelates. The common antibiotics ketoconazole and amikacin were
used as the standard antifungal and antibacterial agents, respectively. The results displayed
in Figure 7 were obtained by comparing the biological properties of the ligand and its metal
chelates. Most complexes were more potent than the free ligand against fungi and bacteria.
Furthermore, the Fe(III) metal chelate was the most effective against A. fumigatus (lower
than ketoconazole standard) and E. coli (higher than amikacin standard).
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Additionally, the azo dye ligand, Mn(II), Co(II), Ni(II) and Zn(II) metal chelate showed
the highest antibacterial potential against S. aureus (similar to amikacin standard). Fur-
thermore, the Zn(II), Ni(II) and Cr(III) complexes showed the higher antifungal activity
against C. albicans and almost higher or similar to the ketoconazole standard. Besides that,
Co(II) and Cr(III) complexes demonstrated the most promising antibacterial activity against
Salmonella sp bacteria and were higher than the antifungal standard. In contrast, the Cu(II)
metal chelate showed the highest antibacterial activity against the B. subtilis bacteria. In
addition, the azo dye ligand, Ni(II), Cu(II) and Cd(II) complexes showed no antifungal
activity against Aspergillus fumigatus, while the remaining complexes showed remarkable
antifungal activity, but lower than the standard. The partial sharing of metal ions’ positive
charge with donor groups is the basis for the enhanced antipathogenic action [61–63].

It was reported previously [64] that all the compounds have antibacterial activity
against Gram positive-bacteria when compared with a gentamicin standard in a similar
manner to the cited complexes. The data pointed out that the ligand (HL) and its metal
complexes (1–5) were found to have no antibacterial activity against Gram-negative bac-
terium (P. aeruginosa), but have antibacterial activity against E. coli when compared with an
ampicillin standard, which is in contrast to our findings here, where the azo dye ligand and
complexes showed remarkable activity. The antifungal activity of HL and its complexes
(1–5) were reported; they were found to have antifungal activity against A. fumigatus, which
is in contrast to our findings reported here. The HL ligand, complexes (2) and (4) have no
antifungal activity against C. albicans, while the complexes (1), (3), and (5) have antifungal
activity against C. albicans, and the inhibition zone is 19.6, 15.7 and 17.1 mm, respectively,
while the azo dye ligand and all metal complexes reported here showed remarkable activity.
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The compounds reported previously by researcher [65] exhibited high antimicrobial
activity against E. coli than Staphylococcus aureus. This trend is in similar to our reported data
(Supplementary Table S2). It was reported by [65] that the complexes showed higher biolog-
ical activity than the ligands, as is observed in our study. Thus, the metal coordination en-
hanced antimicrobial activity [65]. This pattern thus supports the possibility of using these
complexes as antimicrobial treatments to treat E. coli-related illnesses and/or infections, as
surface coating or paint pigments, or as corrosion inhibitors in anti-corrosion paints [65].
The compounds may have the ability to halt or prevent the action of sulphate-reducing
bacteria, which starts microbiologically-induced corrosion, based on their antimicrobial
activity against anaerobic E. coli [65].

The capacity to consider these new compounds and complexes as prospective an-
tibacterial and antitumor agents, as suggested by [38], is indicated by their significant
antimicrobial activity against the Gram-negative bacteria E. coli.

3.6. Molecular Docking

Molecular docking, a crucial technique in the design of the structure, can be used to
facilitate and speed up drug discovery by giving researchers information about a virtual
screen of the interaction between the target receptor protein and the ligand and predicting
the binding affinities and conformations of any species to target proteins.

In the present investigation, molecular docking was used to examine the interactions
of a few inhibitors with the E’s active site. coli receptor (PDB ID: 3t88). The gathered
information is displayed in Figure 8 and Table 2.

Table 2. Docking score obtained and corresponding interaction type.

Ligand Receptor Interaction Distance E
(kcal/mol)

S
(kcal/mol)

L
O 8 GLN 114 H-acceptor 3.25 −0.90

−6.78
N 7 ASP 110 H-donor 2.81 −1.30

CrL

N 7 PRO 285 H-donor 2.75 −3.40

−7.36

O 8 ASP 110 H-donor 2.92 −3.90

O 43 GLN 247 H-donor 2.99 −3.70

CL 47 LEU 109 H-donor 3.09 −0.30

O 8 ASP 110 ionic 2.92 −5.00

O 8 ASP 110 ionic 3.34 −2.50

N 10 ASP 110 ionic 3.81 −0.90

N 14 ASP 110 ionic 2.98 −4.60

O 16 ASP 110 ionic 3.49 −1.90

5-ring ARG 64 pi-cation 3.88 −1.00

MnL

O 43 THR 117 H-donor 2.73 −1.60

−7.55

N 10 ASP 110 ionic 3.04 −4.20

N 14 ASP 110 ionic 3.77 −1.00

O 16 ASP 110 ionic 2.67 −7.10

O 16 ASP 110 ionic 3.72 −1.20
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Table 2. Cont.

Ligand Receptor Interaction Distance E
(kcal/mol)

S
(kcal/mol)

FeL

N 7 ASN 252 H-donor 2.42 −1.00

−8.82

O 43 LEU 109 H-donor 2.62 −2.40

CL 46 ASP 110 H-donor 2.87 −0.20

N 10 ASP 110 ionic 2.79 −1.00

N 14 ASP 110 ionic 2.84 −5.60

O 16 ASP 110 ionic 3.01 −4.40

CoL

O 43 ASP 110 H-donor 2.80 −3.80

−8.17
O 43 TYR 65 H-donor 2.69 −3.00

N 7 LYS 54 H-acceptor 3.12 −0.20

O 43 ASP 110 ionic 2.80 −6.00

NiL

O 47 TYR 65 H-donor 2.86 −6.10

−7.18
N 7 LYS 54 H-acceptor 3.32 −1.90

O 43 ASP 110 ionic 3.44 −2.10

O 47 ASP 110 ionic 3.69 −1.20

CuL

O 43 ASP 110 H-donor 2.70 −2.80

−7.50

O 43 ASP 110 H-donor 2.85 −1.00

O 47 LEU 109 H-donor 2.45 −0.60

O 8 ASP 110 ionic 2.76 −6.30

N 10 ASP 110 ionic 3.00 −4.50

O 43 ASP 110 ionic 2.70 −6.90

O 43 ASP 110 ionic 2.85 −5.60

6-ring ARG 230 pi-cation 3.31 −0.80

ZnL

C 4 ASP 110 H-donor 3.32 −1.20

−7.11

N 7 THR 117 H-donor 2.94 −1.60

N 7 ASP 110 H-donor 3.46 −0.70

O 43 ASP 110 H-donor 2.93 −5.20

O 43 ASP 110 ionic 2.93 −5.00

O 43 ASP 110 ionic 3.80 −0.90

CdL

N 7 GLN 247 H-donor 3.25 −1.00

−6.96
CL 47 GLN 114 H-donor 3.23 −2.50

O 8 ASP 110 ionic 2.93 −7.40

N 10 ASP 110 ionic 3.43 −2.20
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The incredible ability to dock toward a targeted protein and the decision of the ligand
and target protein’s docking outcomes, which were based on the energy value of associated
binding, were both represented by the binding energy’s more considerable negative value.
The binding of the ligand and its metal-derived complexes to the E coli receptor is mainly
mediated by charge and hydrophobic interactions, according to the docking score in Table 2.

The evaluation of the binding scores, resulting from the interaction of all tested
compounds with 3t88, revealed that each interaction was exothermic and occurred in-
dependently. However, it became apparent that the scores of metal chelates were lower
than those of the L ligand when the scores of compounds were compared. This infers
that they were more stable than the L-3t88 complex; the complexes formed by binding the
complexes to 3t88. L, CrL, MnL, NiL, FeL, CoL, CdL, and ZnL metal complexes’ respective
binding scores with 3t88 were −7.82, −7.17, −6.55, −6.50, −6.36, −6.18, −6.11, −5.96, and
−5.78 kcal/mol. According to the ratings, the molecule FeL that binds to the 3t88 protein
was shown to be the strongest.

Figure 7 depicts the positions the FeL molecule should be in to optimally bind to
3t88 and adhere to the protein’s hydrophobic surface. It was discovered that the ASN 252,
LEU 109, and ASP 110 regions of the protein were where the FeL molecule interacted most
steadily. Additionally, it was assumed that the protein and shorter hydrogen bond formed
this relationship by the FeL complex, as compared to the other compounds, caused the
higher binding of the FeL complex to the protein, as opposed to other metal chelates.

4. Conclusions

The azo-coupling reaction of 4-amino-antipyrine and 4-aminophenol afforded the azo
dye ligand (L). The azo dye structures are verified using IR, 1H NMR, elemental analysis,
and mass spectroscopies. The azo dye ligand was reacted with some metal ions to afford a
new batch of octahedral-structured transition metal complexes. The structure of the metal
chelates was completely elucidated using elemental analysis, infrared, mass, electronic,
and 1HNMR spectra data, as well as magnetic studies. The IR spectra demonstrated that
the chelation mode takes place through the OH (oxygen atom of phenolic), oxygen atoms
(of CO group), and the nitrogen atom (of N=N groups). Molar conductivity in ethanol
indicates that the MnII, CoII, ZnII, and CdII metal chelates are non-electrolytes. The CrIII,
NiII, CuII, and FeIII are electrolytes. The proposed structural formulas of the meta chelates
are [M(L)(H2O)Cl2]Clx.nH2O where M = (CrIII, x = 1, n = 0, MnII and ZnII, x = 0, n = 2,
FeIII, x = n = 1, CoII, x = 0, n = 1) and ZnII, x = 0, n = 2) and [M(L)Cl(H2O)2]Cl.nH2O where
M = NiII, n = 0, and CuII, n = 1. Frontier molecular orbitals and optimal geometries were
predicted by the DFT with the B3LYP method, using 6-311G (d, p) and LANL2DZ basis
sets for the ligand and its metal chelates, respectively. Among all the compounds, FeL
complex was the softest and most reactive one, according to the values of the HOMO–
LUMO gap. The antimicrobial tests showed that most complexes have higher antifungal
activity than the free ligand, and all metal chelates have anti-pathogenic activities behaviors.
Additionally, a molecular docking analysis was performed to examine the bonding styles
of the molecules produced with the E. coli receptor’s active region (PDB ID: 3t88). FeL
complex was found to have the lowest binding energy score of all the compounds tested,
coming in at −8.82 kcal/mol.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16030897/s1, Figure S1: IR spectra of (L) L, (a) L-Cr, (b) L-Mn,
(c) L-Fe, (d) L-Co, (e) L-Ni, (f) L-Cu, (g) L-Zn and (h) L-Cd metal complexes; Figure S2: 1H-NMR
spectra of (a–i) L in DMSO, (b–i) L-Zn(II) in DMSO and (c–i) L-Cd(II) in DMSO; Figure S3. UV-Vis.
spectra of (l) L, (a) L-Cr(III), (b) L-Mn(II), (c) L-Fe(III), (d) L-Co(II), (e) L-Ni(II), (f) L-Cu(II), (g) L-Zn(II)
and (h) L-Cd(II) complexes; Figure S4. TG Thermograms of (a) L, (b) L-Cr(III), (c) L-Mn(II), (d)
L-Fe(III), (e) L-Co(II), (f) L-Ni(II), (g) L-Cu(II), (h) L-Zn(II) and (i) L-Cd(II) complexes. Table S1:
Thermodynamic data of the thermal decomposition of azo dye ligand (L) and its metal complexes;
Table S2: Biological activity of azo dye ligand (L2) and its metal complexes.

https://www.mdpi.com/article/10.3390/ma16030897/s1
https://www.mdpi.com/article/10.3390/ma16030897/s1
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