Elimination of Pharmaceutical Compounds from Aqueous Solution through Novel Functionalized Pitch-Based Porous Adsorbents: Kinetic, Isotherm, Thermodynamic Studies and Mechanism Analysis
Abstract
:1. Introduction
2. Results and Discussions
2.1. pH-Dependent Adsorption Behaviors of Pitch-Based HCPs
2.2. Adsorption Kinetics
2.3. Effect of Initial Concentration
2.4. Adsorption Isotherms
2.5. Adsorption Thermodynamics
2.6. Recyclability of Pitch-Based HCPs
2.7. Adsorption Mechanism
2.7.1. Pore Structure
2.7.2. Electrostatic Interaction
2.7.3. Molecular Dimension
2.7.4. Hydrogen-Bonding Interaction
2.7.5. π-π* Dispersion Interaction
3. Materials and Methods
3.1. Materials
3.2. Preparation of Functionalized Fe3O4 Nanoparticles
3.3. Preparation of Pitch-Based HCPs
3.4. Characterizations
3.5. Adsorption Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iovino, P.; Lavorgna, M.; Orlo, E.; Russo, C.; Felice, B.D.; Campolattano, N.; Muscariello, L.; Fenti, A.; Chianese, S.; Isidori, M.; et al. An integrated approach for the assessment of the electrochemical oxidation of diclofenac: By-product identification, microbiological and Eco-genotoxicological evaluation. Sci. Total Environ. 2024, 909, 168511. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Zhang, L.; Wang, X.J.; Lu, C.Y.; Liu, J.Y.; Liu, Y.; Li, L.C.; Peng, J.Y.; Xue, M.M. High-throughput analysis of the effects of different fish culture methods on antibiotic resistance gene abundances in a lake. Environ. Sci. Pollut. Res. 2019, 26, 5445–5453. [Google Scholar] [CrossRef]
- Gomes, A.L.M.; Andrade, P.H.M.; Palhares, H.G.; Dumont, M.R.; Soares, D.C.F.; Volkringer, C.; Houmard, M.; Nunes, E.H.M. Facile Sol-gel synthesis of silica sorbents for the removal of organic pollutants from aqueous media. J. Mater. Res. Technol. 2021, 15, 4580–4594. [Google Scholar] [CrossRef]
- Phoon, B.L.; Ong, C.C.; Saheed, M.S.M.; Show, P.-L.; Chang, J.-S.; Ling, T.C.; Lam, S.S.; Juan, J.C. Conventional and emerging technologies for removal of antibiotics from wastewater. J. Hazard. Mater. 2020, 400, 122961. [Google Scholar] [CrossRef] [PubMed]
- Gopal, C.M.; Bhat, K.; Praveenkumarreddy, Y.; Shailesh; Kumar, V.; Basu, H.; Joshua, D.I.; Singhal, R.K.; Balakrishna, K. Evaluation of selected pharmaceuticals and personal care products in water matrix using ion trap mass spectrometry: A simple weighted calibration curve approach. J. Pharm. Biomed. Anal. 2020, 185, 113214. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, A.; Zovi, A.; Trama, U.; Ferrara, F. Overview of pharmacotherapy targeting COVID-19 disease based on ACE-2: Current challenges and future directions. Herz 2023, 48, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Villa, S.; Nica, V.D.; Castiglioni, S.; Finizio, A. Environmental risk classification of emerging contaminants in an alpine stream influenced by seasonal tourism. Ecol. Indic. 2020, 115, 106428. [Google Scholar] [CrossRef]
- Manikandan, S.K.; Pallavi, P.; Shetty, K.; Bhattacharjee, D.; Giannakoudakis, D.A.; Katsoyiannis, I.A.; Nair, V. Effective usage of biochar and microorganisms for the removal of heavy metal ions and pesticides. Molecules 2023, 28, 719. [Google Scholar] [CrossRef]
- Liu, J.-L.; Wong, M.-H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2013, 59, 208–224. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U., Jr.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef]
- Blair, B.; Nikolaus, A.; Hedman, C.; Klaper, R.; Grundl, T. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere 2015, 134, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Ding, Y.J.; Li, H.; Xagoraraki, I. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: Mass balance and removal processes. Chemosphere 2012, 88, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Baig, U.; Waheed, A.; Aljundi, I.H.; AbuMousa, R.A. Facile fabrication of graphitic carbon nitride nanosheets and its integrated polyamide Hyper-cross-linked TFC nanofiltration membrane with intrinsicmolecular porosity for salts and organic pollutant rejection from water. J. Mater. Res. Technol. 2021, 15, 6319–6328. [Google Scholar] [CrossRef]
- Wang, Y.F.; Huang, H.O.; Wei, X.M. Influence of wastewater precoagulation on adsorptive filtration of pharmaceutical and personal care products by carbon nanotube membranes. Chem. Eng. J. 2018, 333, 66–75. [Google Scholar] [CrossRef]
- Chianese, S.; Fenti, A.; Blotevogel, J.; Musmarra, D.; Iovino, P. Trimethoprim removal from wastewater: Adsorption and Electro-oxidation comparative case study. Case Stud. Chem. Environ. Eng. 2023, 8, 100433. [Google Scholar] [CrossRef]
- Zheng, X.S.; Wang, Z.Q.; Chen, T.S.; Ran, J.; Wu, Y.L.; Tan, C.W.; Zhang, Q.X.; Chen, P.; Wang, F.L.; Liu, H.J.; et al. One-step synthesis of carbon nitride nanobelts for the enhanced photocatalytic degradation of organic pollutants through peroxydisulfate activation. Environ. Sci. Nano 2021, 8, 245–257. [Google Scholar] [CrossRef]
- Eniola, J.O.; Kumar, R.; Barakat, M.A.; Rashid, J. A review on conventional and advanced hybrid technologies for pharmaceutical wastewater treatment. J. Clean. Prod. 2022, 356, 131826. [Google Scholar] [CrossRef]
- Yang, R.T. Adsorbents: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Barczak, M.; Pietras-Ożga, D.; Seliem, M.K.; de Falco, G.; Giannakoudakis, D.A.; Triantafyllidis, K. Mesoporous silicas obtained by Time-controlled Co-condensation: A strategy for tuning structure and sorption properties. Nanomaterials 2023, 13, 2065. [Google Scholar] [CrossRef]
- Arkas, M.; Giannakopoulos, K.; Favvas, E.P.; Papageorgiou, S.; Theodorakopoulos, G.V.; Giannoulatou, A.; Vardavoulias, M.; Giannakoudakis, D.A.; Triantafyllidis, K.S.; Georgiou, E.; et al. Comparative study of the U(VI) adsorption by hybrid Silica-hyperbranched poly(ethylene imine) nanoparticles and xerogels. Nanomaterials 2023, 13, 1794. [Google Scholar] [CrossRef]
- Peng, Q.; Zhao, H.W.; Wang, R.Y.; Cao, X.X.; Liu, H.; Liu, Q.Q. Ferrocene-based hypercrosslinked polymers derived from phenolic polycondensation with unexpected H2 adsorption capacity. Mater. Today Chem. 2022, 24, 100854. [Google Scholar] [CrossRef]
- Ravi, S.; Choi, Y.J.; Choe, J.K. Novel Phenyl-phosphate-based porous organic polymers for removal of pharmaceutical contaminants in water. Chem. Eng. J. 2020, 379, 122290. [Google Scholar] [CrossRef]
- Gan, Y.Q.; Chen, G.; Sang, Y.F.; Zhou, F.; Man, R.L.; Huang, J.H. Oxygen-rich Hyper-cross-linked polymers with hierarchical porosity for aniline adsorption. Chem. Eng. J. 2019, 368, 29–36. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, Q.X.; Chen, P.; Zheng, X.S.; Wu, Y.L.; Ma, D.; Wei, D.D.; Liu, H.J.; Liu, G.G.; Lv, W.Y. Removal of pharmaceuticals and personal care products (PPCPs) from water and wastewater using novel sulfonic acid (-SO3H) functionalized covalent organic frameworks. Environ. Sci. Nano 2019, 6, 3374. [Google Scholar] [CrossRef]
- Li, W.Q.; Zhang, A.J.; Gao, H.; Chen, M.J.; Liu, A.H.; Bai, H.; Li, L. Massive preparation of Pitch-based organic microporous polymers for gas storage. Chem. Commun. 2016, 52, 2780–2783. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; He, Z.P.; Liu, Y.; Wang, S.L.; Wang, H.G.; Zhu, G.S. Facile preparation of N-doped hierarchically porous carbon derived from Pitch-based Hyper-cross-linked polymers as an efficient Metal-free catalyst for Oxygen-reduction. Appl. Surf. Sci. 2021, 565, 150579. [Google Scholar] [CrossRef]
- Dharmaratne, N.U.; Jouaneh, T.M.M.; Kiesewetter, M.K.; Mathers, R.T. Quantitative measurements of polymer hydrophobicity based on functional group identity and oligomer length. Macromolecules 2018, 51, 8461–8468. [Google Scholar] [CrossRef]
- Tang, Z.H.; He, C.L.; Tian, H.Y.; Ding, J.X.; Hsiao, B.S.; Chu, B.; Chen, X.S. Polymeric nanostructured materials for biomedical applications. Prog. Polym. Sci. 2016, 60, 86–128. [Google Scholar] [CrossRef]
- Sato, K.; Oaki, Y.; Imai, H. A hydrophobic adsorbent based on hierarchical porous polymers derived from morphologies of a biomineral. Chem. Commun. 2015, 51, 7919–7922. [Google Scholar] [CrossRef]
- Peng, Q.; Zhao, H.W.; Chen, G.; Yang, Q.L.; Cao, X.X.; Xiong, S.H.; Xiao, A.G.; Li, G.; Liu, B.; Liu, Q.Q. Synthesis of novel magnetic Pitch-based hypercrosslinked polymers as adsorbents for effective recovery of Ag+ with high selectivity. J. Environ. Manag. 2023, 339, 117763. [Google Scholar] [CrossRef]
- Bautista-Toledo, I.; Ferro-García, M.A.; Rivera-Utrilla, J.; Moreno-Castilla, C.; Fernández, F.J.V. Bisphenol a removal from water by activated carbon. Effects of carbon characteristics and solution chemistry. Environ. Sci. Technol. 2005, 39, 6246–6250. [Google Scholar] [CrossRef]
- Mi, X.; Zhou, S.X.; Zhou, Z.M.; Vakili, M.; Qi, Y.; Jia, Y.; Zhu, D.H.; Wang, W. Adsorptive removal of diclofenac sodium from aqueous solution by magnetic COF: Role of hydroxyl group on COF. Colloids Surf. A Physicochem. Eng. Asp. 2022, 603, 125238. [Google Scholar] [CrossRef]
- Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe. K. Sven. Vetenskapsakademiens Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Nesic, A.R.; Velickovic, S.J.; Antonovic, D.G. Novel composite films based on amidated pectin for cationic dye adsorption. Colloids Surf. B Biointerfaces 2014, 116, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Song, J.Y.; He, Q.L.; Wang, H.Y.; Lyu, W.L.; Feng, H.J.; Xiong, W.Q.; Guo, W.B.; Wu, J.; Chen, L. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal. J. Hazard. Mater. 2020, 384, 121445. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, I. The constitution and fundamental properties of solids and liquids part I solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Über die adsorption in lösungen. Z. Phys. Chem. A 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Hutson, N.D.; Yang, R.T. Theoretical basis for the Dubinin-radushkevitch (D-R) adsorption isotherm equation. Adsorption 1997, 3, 189–195. [Google Scholar] [CrossRef]
- Li, Z.Y.; Liu, X.R.; Zhang, X.; Zhang, T.Y.; Chen, J.; Li, Q.; Yu, Y.C.; Zhao, X.Y.; Wei, Y. Fabrication of Hydroxyl-carboxyl bifunctional Hyper-crosslinked polymers for selective adsorption of methylene blue. Chem. Eng. Technol. 2022, 45, 2178–2185. [Google Scholar] [CrossRef]
- Savić, J.Z.; Vasić, V.M. Thermodynamics and kinetics of 1,8-dihydroxy-2-(imidazol-5-ylazo)-naphthalene-3,6-disulphonic acid immobilization on dowex resin. Colloids Surf. A Physicochem. Eng. Asp. 2006, 278, 197–203. [Google Scholar] [CrossRef]
- Pan, B.J.; Pan, B.C.; Zhang, W.M.; Zhang, Q.R.; Zhang, Q.X.; Zheng, S.R. Adsorptive removal of phenol from aqueous phase by using a porous acrylic ester polymer. J. Hazard. Mater. 2008, 157, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Uzun, İ.; Güzel, F. Kinetics and thermodynamics of the adsorption of some dyestuffs and P-nitrophenol by chitosan and MCM-chitosan from aqueous solution. J. Colloid Interface Sci. 2004, 274, 398–412. [Google Scholar] [CrossRef] [PubMed]
- Barczak, M.; Dobrowolski, R.; Borowski, P.; Giannakoudakis, D.A. Pyridine-, thiol- and amine-functionalized mesoporous silicas for adsorptive removal of pharmaceuticals. Microporous Mesoporous Mater. 2022, 299, 110132. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Seo, P.W.; Jhung, S.H. Adsorption of diclofenac sodium from water using oxidized activated carbon. Chem. Eng. J. 2016, 301, 27–34. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Ahmed, I.; Kim, S.; Jhung, S.H. Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. Chem. Eng. J. 2017, 314, 50–58. [Google Scholar] [CrossRef]
- Andrew Lin, K.Y.; Yang, H.; Lee, W.D. Enhanced removal of diclofenac from water using a zeolitic imidazole framework functionalized with cetyltrimethylammonium bromide (CTAB). RSC Adv. 2015, 5, 81330–81340. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, J.L.; Xue, X.L.; Liu, W.X.; Kong, Y.D.; Cheng, R.; Yuan, D.H. Facile synthesis of Fe3O4@MOF-100(Fe) magnetic microspheres for the adsorption of diclofenac sodium in aqueous solution. Environ. Sci. Pollut. Res. 2018, 25, 31705–31717. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.B.; Zhou, L.M.; Liu, Z.R.; Heng, J.Y.Y.; Chen, W.Q. Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: A review. Sep. Purif. Technol. 2020, 253, 117536. [Google Scholar] [CrossRef]
- Paunovic, O.; Pap, S.; Maletic, S.; Taggart, M.A.; Boskovic, N.; Sekulic, M.T. Ionisable emerging pharmaceutical adsorption onto microwave functionalised biochar derived from novel lignocellulosic waste biomass. J. Colloid Interface Sci. 2019, 547, 350–360. [Google Scholar] [CrossRef]
- Baccar, R.; Sarrà, M.; Bouzid, J.; Feki, M.; Blánquez, P. Removal of pharmaceutical compounds by activated carbon prepared from agricultural By-product. Chem. Eng. J. 2012, 211–212, 310–317. [Google Scholar] [CrossRef]
- Sangster, J. Phase Diagrams and Thermodynamic Properties of Binary Organic Systems Based on 1,2-, 1,3-, 1,4-Diaminobenzene or Benzidine. J. Phys. Chem. Ref. Data 1994, 23, 295–338. [Google Scholar] [CrossRef]
- Mark, F.H.; Jennifer, L.L. Determination of logKow Values for Four Drugs. J. Chem. Educ. 2014, 91, 915–918. [Google Scholar]
- Lee, S.; Kim, Y.; Choi, P.J.; Jang, A. Predicting the removal efficiency of pharmaceutical and personal care products using heated metal oxides as adsorbents based on their physicochemical characteristics. Chemosphere 2023, 339, 139665. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.N.; Wang, Y.-F.; You, S.-J.; Chao, H.-P. Insights into the mechanism of cationic dye adsorption on activated charcoal: The importance of π-π interactions. Process Saf. Environ. Prot. 2017, 107, 168–180. [Google Scholar] [CrossRef]
- Lladó, J.; Lao-Luque, C.; Ruiz, B.; Fuente, E.; Solé-Sardans, M.; Dorado, A.D. Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics. Process Saf. Environ. Prot. 2015, 95, 51–59. [Google Scholar] [CrossRef]
- Wang, M.Q.; Wang, C.Y.; Song, Y.J.; Zhang, C.H.; Shao, L.; Jiang, Z.X.; Huang, Y.D. Facile method to functionalize graphene oxide nanoribbons and its application to poly(p-phenylene benzobisoxazole) composite. Compos. Sci. Technol. 2018, 165, 124–130. [Google Scholar] [CrossRef]
- Ortiz-Martínez, K.; Guerrero-Medina, K.J.; Román, F.R.; Hernández-Maldonado, A.J. Transition metal modified mesoporous silica adsorbents with zero microporosity for the adsorption of contaminants of emerging concern (CECs) from aqueous solutions. Chem. Eng. J. 2015, 264, 152–164. [Google Scholar] [CrossRef]
- Pan, N.; Li, L.; Ding, J.; Wang, R.B.; Jin, Y.D.; Xia, C.Q. A Schiff base/quaternary ammonium salt bifunctional graphene oxide as an efficient adsorbent for removal of Th(IV)/U(VI). J. Colloid Interface Sci. 2017, 508, 303–312. [Google Scholar] [CrossRef]
- Duguet, T.; Gavrielides, A.; Esvan, J.; Mineva, T.; Lacaze-Dufaure, C. DFT Simulation of XPS reveals Cu/Epoxy polymer interfacial bonding. J. Phys. Chem. C 2019, 123, 30917–30925. [Google Scholar] [CrossRef]
- Vedenyapina, M.D.; Borisova, D.A.; Simakova, A.P.; Proshina, L.P.; Vedenyapin, A.A. Adsorption of diclofenac sodium from aqueous solutions on expanded graphite. Solid Fuel Chem. 2013, 47, 59–63. [Google Scholar] [CrossRef]
- Ravi, S.; Choi, Y.; Wu, S.; Xiao, R.; Bae, Y.S. Porous organic nanofiber polymers as superfast adsorbents for capturing pharmaceutical contaminants from water. Environ. Sci. Nano 2022, 9, 730–741. [Google Scholar] [CrossRef]
- Krajišnik, D.; Daković, A.; Milojević, M.; Malenović, A.; Kragović, M.; Bogdanović, D.B.; Dondur, V.; Milić, J. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride. Colloids Surf. B Biointerfaces 2011, 83, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Deng, S.; Huang, Q.; Nie, Y.; Wang, B.; Huang, J.; Yu, G. Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. Water Res. 2013, 47, 4139–4147. [Google Scholar] [CrossRef] [PubMed]
Sample | PPCP | Pseudo-First Order Kinetic Model | Pseudo-Second Order Kinetic Model | ||||
---|---|---|---|---|---|---|---|
qe (cal) (mg g−1) | K1 (min−1) | R2 | qe (cal) (mg g−1) | K2 (g mg−1 min−1) | R2 | ||
PHCP | DFS | 40.62 | 0.0045 | 0.5767 | 73.09 | 0.0012 | 0.9985 |
AMP | 25.64 | 0.0081 | 0.6665 | 54.97 | 0.00092 | 0.9959 | |
Antipyrine | 40.58 | 0.0077 | 0.7569 | 81.36 | 0.00088 | 0.9993 | |
MPHCP | DFS | 106.80 | 0.0024 | 0.5128 | 133.51 | 0.00093 | 0.9997 |
AMP | 25.82 | 0.0060 | 0.6910 | 67.24 | 0.0023 | 0.9999 | |
Antipyrine | 26.51 | 0.0095 | 0.8066 | 94.25 | 0.0021 | 0.9998 | |
P-MPHCP | DFS | 81.09 | 0.0050 | 0.6963 | 175.43 | 0.00076 | 0.9994 |
AMP | 27.13 | 0.011 | 0.9471 | 82.64 | 0.0021 | 0.9996 | |
Antipyrine | 25.09 | 0.009 | 0.6517 | 110.01 | 0.0023 | 0.9998 |
Sample | PPCP | Langmuir Isotherm | Freundlich Isotherm | Dubinin–Redushkevich Isotherm | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
qmax | KL | R2 | n | KF | R2 | qDR | B | Ea | R2 | ||
PHCP | DFS | 229.30 | 0.022 | 0.9054 | 2.76 | 28.89 | 0.8088 | 0.0028 | 0.0044 | 10.66 | 0.8407 |
AMP | 145.32 | 0.0038 | 0.9356 | 1.60 | 2.30 | 0.9031 | 0.0040 | 0.0084 | 7.72 | 0.9420 | |
Antipyrine | 163.70 | 0.0046 | 0.9626 | 1.66 | 3.25 | 0.9322 | 0.0050 | 0.0079 | 7.96 | 0.9666 | |
MPHCP | DFS | 282.56 | 0.15 | 0.9804 | 4.24 | 95.94 | 0.8375 | 0.0026 | 0.0025 | 14.17 | 0.9005 |
AMP | 156.80 | 0.0058 | 0.9567 | 1.81 | 4.48 | 0.9222 | 0.0036 | 0.0070 | 8.47 | 0.8802 | |
Antipyrine | 186.01 | 0.0061 | 0.9823 | 1.80 | 5.45 | 0.9573 | 0.0036 | 0.0063 | 8.91 | 0.9525 | |
P-MPHCP | DFS | 444.93 | 0.092 | 0.9116 | 2.30 | 75.06 | 0.8165 | 0.0053 | 0.0080 | 7.93 | 0.9195 |
AMP | 180.89 | 0.0052 | 0.9327 | 1.72 | 4.23 | 0.8958 | 0.0034 | 0.0057 | 9.36 | 0.9885 | |
Antipyrine | 223.62 | 0.0058 | 0.9763 | 1.72 | 5.57 | 0.9579 | 0.0114 | 0.0044 | 10.64 | 0.8216 |
Sample | PPCP | T (°C) | ∆H° (kJ mol−1) | ∆S° (J mol−1) | ∆G° (kJ mol−1) |
---|---|---|---|---|---|
PHCP | DCF | 25 | −9.6507 | −71.52 | −7.7365 |
35 | −7.3997 | ||||
45 | −6.3060 | ||||
AMP | 25 | −3.4053 | 7.12 | −3.3673 | |
35 | −4.0867 | ||||
45 | −3.5096 | ||||
Antipyrine | 25 | −3.65246 | −1.89 | −3.7936 | |
35 | −3.2094 | ||||
45 | −3.7557 | ||||
MPHCP | DCF | 25 | −12.3543 | 1.69 | −12.543 |
35 | −4.9310 | ||||
45 | −6.0347 | ||||
AMP | 25 | −2.5186 | 65.05 | −11.753 | |
35 | −5.3425 | ||||
45 | −5.2577 | ||||
Antipyrine | 25 | −3.31449 | 45.84 | −11.213 | |
35 | −4.1104 | ||||
45 | −3.7338 | ||||
P-MPHCP | DCF | 25 | −10.1730 | 49.67 | −12.577 |
35 | −6.3273 | ||||
45 | −4.1057 | ||||
AMP | 25 | −4.3284 | 30.98 | −12.914 | |
35 | −5.6500 | ||||
45 | −4.3574 | ||||
Antipyrine | 25 | −5.2217 | 4.31 | −12.747 | |
35 | −5.7737 | ||||
45 | −5.2127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Zhao, H.; Peng, Q.; Chen, G.; Liu, J.; Cao, X.; Xiong, S.; Li, G.; Liu, Q. Elimination of Pharmaceutical Compounds from Aqueous Solution through Novel Functionalized Pitch-Based Porous Adsorbents: Kinetic, Isotherm, Thermodynamic Studies and Mechanism Analysis. Molecules 2024, 29, 463. https://doi.org/10.3390/molecules29020463
Yang Q, Zhao H, Peng Q, Chen G, Liu J, Cao X, Xiong S, Li G, Liu Q. Elimination of Pharmaceutical Compounds from Aqueous Solution through Novel Functionalized Pitch-Based Porous Adsorbents: Kinetic, Isotherm, Thermodynamic Studies and Mechanism Analysis. Molecules. 2024; 29(2):463. https://doi.org/10.3390/molecules29020463
Chicago/Turabian StyleYang, Qilin, Hongwei Zhao, Qi Peng, Guang Chen, Jiali Liu, Xinxiu Cao, Shaohui Xiong, Gen Li, and Qingquan Liu. 2024. "Elimination of Pharmaceutical Compounds from Aqueous Solution through Novel Functionalized Pitch-Based Porous Adsorbents: Kinetic, Isotherm, Thermodynamic Studies and Mechanism Analysis" Molecules 29, no. 2: 463. https://doi.org/10.3390/molecules29020463
APA StyleYang, Q., Zhao, H., Peng, Q., Chen, G., Liu, J., Cao, X., Xiong, S., Li, G., & Liu, Q. (2024). Elimination of Pharmaceutical Compounds from Aqueous Solution through Novel Functionalized Pitch-Based Porous Adsorbents: Kinetic, Isotherm, Thermodynamic Studies and Mechanism Analysis. Molecules, 29(2), 463. https://doi.org/10.3390/molecules29020463