Design, Synthesis, Spectroscopic Inspection, DFT and Molecular Docking Study of Metal Chelates Incorporating Azo Dye Ligand for Biological Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials, Reagents, and Methods
2.2. Azo Dye Ligand (L) Preparation
2.3. Metal Chelates Preparation
2.4. Spectrophotometric Measurements
2.5. DFT Calculations
2.6. Pharmacological Studies
2.6.1. Anti-Pathogenic Activity
2.6.2. Docking for the Inspected Molecules
3. Results & Discussion
3.1. Structural Inspection of the Azo Dye Ligand
3.2. Structural Identification of Metal Chelates under Inspection
3.2.1. C, H, and N percent in the compounds under investigation
3.2.2. Evaluation of Molar Conductance
3.2.3. IR Spectral Studies
3.2.4. Spectral Studies via 1H NMR
3.2.5. Mass Spectral Investigations
3.2.6. UV–Vis Absorption Studies
3.2.7. Molecular Electronic Transitions and Magnetic Moment Measurements
3.2.8. Analysis of Thermal Findings
3.3. Correlation between All Findings for Structural Inspection
3.4. DFT Calculations
3.5. Biological Activities
3.6. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zollinger, H. Color Chemistry, 2nd ed.; VCH Weinheim: Weinheim, Germany, 1991. [Google Scholar]
- Ganesh, R.; Boardman, G.D.; Michelson, D. Fate of azo dyes in sludges. Water Res. 1994, 28, 1367. [Google Scholar] [CrossRef]
- O’Neill, C.; Hawkes, F.R.; Hawkes, D.L.; Lourenco, N.D.; Pinheiro, H.M.; Delee, W. Colour in Textile Effluents—Sources, Measurement, Discharge Consents and Simula-tion: A Review. J. Chem. Tech. Biotechn. 1999, 74, 1009. [Google Scholar] [CrossRef]
- Khalaf, M.M.; Abd El-Lateef, H.M.; Gouda, M.; Sayed, F.N.; Mohamed, G.G.; Abu-Dief, A.M. Design Structural Inspection and Bio-Medicinal Applications of Some Novel Imine Metal Complexes Based on Acetylferrocene. Materials 2022, 15, 4842. [Google Scholar] [CrossRef] [PubMed]
- Abu-Dief, A.M.; El-Khatib, R.M.; Aljohani, F.S.; Al-Abdulkarim, H.A.; Alzahrani, S.; El-Sarrag, G.; Ismael, M. Synthesis, structuralelucidation, DFT calculation, biological studies and DNA inter-action of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates. Comput. Biol. Chem. 2022, 97, 107643. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; El-Sagher, H.M.; Shehata, M.R. Fabrication, spectroscopic characterization, calf thymus DNA binding investigation, antioxidant and anticancer activities of some antibiotic azomethine Cu(II), Pd(II), Zn(II) and Cr(III) complexes. Appl. Organomet. Chem. 2019, 33, e49432019. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Díaz-Torres, R.; Sañudo, E.C.; Abdel-Rahman, L.H.; Aliaga-Alcalde, N. Novel sandwich triple-decker dinuclear NdIII-(bis-N, N′-p-bromo-salicylideneamine-1, 2-diaminobenzene) complex. Polyhedron 2013, 64, 203–208. [Google Scholar] [CrossRef]
- Aljohani, E.T.; Shehata, M.R.; Alkhatib, F.; Alzahrani, S.O.; Abu-Dief, A.M. Development and structure elucidation of new VO2+, Mn2+, Zn2+, and Pd2+ complexes based on azomethine ferrocenyl ligand: DNA interaction, antimicrobial, antioxidant, anticancer activities, and molecular docking. Appl. Organomet. Chem. 2021, 35, e61542021. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdel-Mawgoud, A.A.H. A robust in vitro anticancer, antioxidant and antimicrobial agents based on new metal-azomethine chelates incorporating Ag (I), Pd (II) and VO (II) cations: Probing the aspects of DNA interaction. Appl. Organomet. Chem. 2020, 34, e53732020. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, F.; Luo, D.; Huang, J.; Ouyang, J.; Nezamzadeh-Ejhieh, A.; Khan, M.S.; Liu, J.; Peng, Y. Recent advances in Ti-based MOFs in biomedical applications. Dalton Trans. 2022, 51, 14817. [Google Scholar] [CrossRef]
- Al-Khateeb1, Z.T.; Karam, F.F.; Al-Adilee, K. Synthesis and characterization of some metals complexes with new heterocyclic azo dye ligand 2-[2 - - (5-Nitro thiazolyl) azo]-4- methyl -5- nitro phenol and their biological activities. J. Phys. Conf. Ser. 2019, 1294, 052043. [Google Scholar] [CrossRef]
- Abdul Karem, L.K.; Ganim, F.H.; Rahem Al-Shemary, R.K. Synthesis, characterization, structural, thermal, POM studies, antimicrobial and DNA cleavage activity of a new schiff base-Azo Ligand and its complexation with selected metal ions. Biochem. Cell. Arch. 2018, 18, 1437–1448. [Google Scholar]
- Modhavadiya, V.A. Synthesis, Characterization, Spectral Studies, Biocidal Activities of Fe (II) and Cu (II) complexes of Azo dye Ligand Derived from Sulfamethoxazole and Substituted p-Cresol. Orient. J. Chem. 2012, 28, 921–925. [Google Scholar] [CrossRef]
- Chakraborty, P.; Adhikary, J.; Sanyal, R.; Khan, A.; Manna, K.; Dey, S.; Zangrando, E.; Bauz, A.; Frontera, A.; Das, D. Role of ligand backbone of tridentate Schiff-base on complex nuclearity and bio-relevant catalytic activities of zinc(II) complexes: Experimental and theoretical investigations. Inorg. Chim. Acta 2014, 421, 364. [Google Scholar] [CrossRef]
- Salehi, M.; Rahimifar, F.; Kubicki, M.; Asadi, A. Structural, spectroscopic, electrochemical and antibacterial studies of some new nickel (II) Schiff base complexes. Inorg. Chim. Acta 2016, 443, 28. [Google Scholar] [CrossRef]
- Metwally, M.A.; Gouda, M.A.; Harmal, N.A.; Khalil, A.M. 3-Iminobutanenitrile as building block for the synthesis of substituted pyrazolo[1,5-a]pyrimidines with antitumor and antioxidant activities. Int. J. Mod. Og. Chem. 2012, 1, 96. [Google Scholar]
- Raman, N.; Selvan, A.; Manisankar, P. Spectral, magnetic, biocidal screening, DNA binding and photocleavage studies of mononuclear Cu(II) and Zn(II) metal complexes of tricoordinate heterocyclic Schiff base ligands of pyrazolone and semicarbazide/thiosemicarbazide based derivatives. Spectrochim. Acta A 2010, 76, 161. [Google Scholar] [CrossRef]
- Xiaoyi, L.; Wu, Y.; Gu, D.; Fuxi, G. Spectral, thermal and optical properties of metal (II)–azo complexes for optical recording media. Dyes Pigm. 2010, 86, 182. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09; Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Casida, M.E.; Jamorski, C.; Casida, K.C.; Salahub, D.R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998, 108, 4439–4449. [Google Scholar] [CrossRef]
- Mohamed, I.; Abdou, A.; Abdel-Mawgoud, A.-M. Synthesis, Characterization, Modeling, and Antimicrobial Activity of FeIII, CoII, NiII, CuII, and ZnII Complexes Based on Tri-substituted Imidazole Ligand. Z. Anorg. Allg. Chem. 2018, 644, 1203–1214. [Google Scholar]
- Mahmoud, W.H.; Mohamed, G.G.; El-Dessouky, M.M.I. Coordination modes of bidentate lornoxicam drug with some transition metal ions. Synthesis, characterization and in vitro antimicrobial and antibreastic cancer activity studies. Spectrochim. Acta A 2014, 122, 598. [Google Scholar] [CrossRef]
- Aljohani, E.T.; Shehata, M.R.; Abu-Dief, A.M. Design, synthesis, structural inspection of Pd2+, VO2+, Mn2+, and Zn2+ chelates incorporating ferrocenyl thiophenol ligand: DNA interaction and pharmaceutical studies. Appl. Organomet. Chem. 2021, 35, e61692021. [Google Scholar] [CrossRef]
- El-Lateef, H.M.A.; Khalaf, M.M.; Shehata, M.R.; Abu-Dief, A.M. Fabrication, DFT calculation, and molecular docking of two Fe (III) imine chelates as anti-COVID-19 and pharmaceutical drug candidate. Int. J. Mol. Sci. 2022, 23, 3994. [Google Scholar] [CrossRef] [PubMed]
- Joseyphus, R.S.; Shiju, C.; Joseph, J.; Dhanaraj, C.J.; Arish, D. Synthesis and characterization of metal complexes of Schiff base ligand derived from imidazole-2-carboxaldehyde and 4-aminoantipyrine. Spectrochim. Acta A 2014, 133, 149. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; Basha, M.; Hassan Abdel-Mawgoud, A.A. Three novel Ni (II), VO (II) and Cr (III) mononuclear complexes encompassing potentially tridentate imine ligand: Synthesis, structural characterization, DNA interaction, antimicrobial evaluation and anticancer activity. Appl. Organomet. Chem. 2017, 31, e3750. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; El-Metwaly, N.M.; Alzahrani, S.O.; Alkhatib, F.M.; Abualnaja, M.; El-Dabea, T.; Ali, M.A.A. Synthesis and characterization of Fe (III), Pd (II) and Cu (II)-thiazole complexes; DFT, pharmacophore modeling, in-vitro assay and DNA binding studies. J. Mol. Liq. 2021, 326, 115277. [Google Scholar] [CrossRef]
- Al-Saeedi, S.I.; Abdel-Rahman, L.H.; Abu-Dief, A.M.; Abdel-Fatah, S.M.; Alotaibi, T.M.; Alsalme, A.M.; Nafady, A. Catalytic Oxidation of Benzyl Alcohol Using Nanosized Cu/Ni Schiff-Base Complexes and Their Metal Oxide Nanoparticles. Catalysts 2018, 8, 452. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Li, Y.; Liang, F.; Li, L.; Lan, Y.; Li, Z.; Lu, X.; Yang, M.; Ma, D. A Microporous 2D Cobalt-Based MOF with Pyridyl Sites and Open Metal Sites for Selective Adsorption of CO2. Microporous Mesoporous Mater. 2022, 341, 112098. [Google Scholar] [CrossRef]
- Qin, L.; Liang, F.; Li, Y.; Wu, J.; Guan, S.; Wu, M.; Xie, S.; Luo, M.; Ma, D. A 2D Porous Zinc-Organic Framework Platform for Loading of 5-Fluorouracil. Inorganics 2022, 10, 202. [Google Scholar] [CrossRef]
- Bouhdada, M.; Amane, M.E.; El Hamzaoui, N. Synthesis, spectroscopic studies, X-ray powder diffraction data and antibacterial activity of mixed transition metal complexes with sulfonate azo dye, sulfamate and caffeine ligands. Inorg. Chem. Commun. 2019, 101, 32–39. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdelhamid, A.A.; Marzouk, A.A.; Shehata, M.R.; Bakheet, M.A.; Almaghrabi, O.A.; Nafady, A. Synthesis and characterization of new Cr (III), Fe (III) and Cu (II) complexes incorporating multi-substituted aryl imidazole ligand: Structural, DFT, DNA binding, and biological implications. Spectrochim. Acta A 2020, 228, 117700. [Google Scholar] [CrossRef] [PubMed]
- Al-Shamry, A.A.; Khalaf, M.M.; El-Lateef, H.M.A.; Yousef, T.A.; Mohamed, G.G.; El-Deen, K.M.K.; Gouda, M.; Abu-Dief, A.M. Development of New Azomethine Metal Chelates Derived from Isatin: DFT and Pharmaceutical Studies. Materials 2023, 16, 83. [Google Scholar] [CrossRef]
- Aljohani, F.S.; Omran, O.A.; Ahmed, E.A.; Al-Farraj, E.S.; Elkady, E.F.; Alharbi, A.; El-Metwaly, N.M.; Barnawi, I.O.; Abu-Dief, A.M. Design, structural inspection of new bis (1H-benzo [d] imidazol-2-yl) methanone complexes: Biomedical applications and theoretical implementations via DFT and docking approaches. Inorg. Chem. Commun. 2023, 128, 110331. [Google Scholar] [CrossRef]
- Subbaraj, P.; Ramub, A.; Raman, N.; Dharmaraja, J. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1, 3-diol and 2-aminophenol/2-aminobenzoic acid: Synthesis, spectral characterization, antimicrobial and nuclease studies. J. Spectrochim. Acta A 2014, 117, 65. [Google Scholar] [CrossRef]
- Gur, M.; Kocaokutgen, H.; Tasx, M. Synthesis, spectral, and thermal characterisations of some azo-ester derivatives containing a 4-acryloyloxy group. Dyes Pigm. 2007, 72, 101. [Google Scholar] [CrossRef]
- Mohamed, G.G.; Omar, M.M.; Ibrahim, A.A. Biological activity studies on metal complexes of novel tridentate Schiff base ligand. Spectroscopic and thermal characterization. Eur. J. Med. Chem. 2009, 44, 4801. [Google Scholar] [CrossRef]
- Aljohani, F.S.; Abu-Dief, A.M.; El-Khatib, R.M.; Al-Abdulkarim, H.A.; Alharbi, A.; Mahran, A.; Khalifa, M.E.; El-Metwaly, N.M. Structural inspection for novel Pd (II), VO (II), Zn (II) and Cr (III)-azomethine metal chelates: DNA interaction, biological screening and theoretical treatments. J. Mol. Stru. 2021, 1246, 131139. [Google Scholar] [CrossRef]
- Abd El-Halim, H.F.; Mohamed, G.G.; El-Dessouky, M.M.I.; Mahmoud, W.H. Ligational behaviour of lomefloxacin drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO2(VI) ions: Synthesis, structural characterization and biological activity studies. Spectrochim. Acta A 2011, 82, 8. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.H.; Mohamed, G.G. Preparation, spectroscopic and thermal characterization of new metal complexes of verlipride drug. In vitro biological activity studies. Spectrochim. Acta A 2012, 91, 11. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; Aboelez, M.O.; Abdel-Mawgoud, A.A.H. DNA interaction, antimicrobial, anticancer activities and molecular docking study of some new VO (II), Cr (III), Mn (II) and Ni (II) mononuclear chelates encompassing quaridentate imine ligand. J. Photochem. Photobiol. B Biol. 2017, 170, 271–285. [Google Scholar] [CrossRef]
- Abd El-Lateef, H.M.; Mohamad, A.D.M.; Shehata, M.R.; Abu-Dief, A.M. Targeted synthesis of two iron (III) tetradentate dibasic chelating Schiff base complexes toward inhibition of acidic induced steel corrosion: Empirical and DFT insights. Appl. Organomet. Chem. 2022, 36, e67182022. [Google Scholar] [CrossRef]
- Alaghaz, A.M.A.; Bayoumi, H.A.; Ammar, Y.A.; Aldhlmani, S.A. Synthesis, characterization, and antipathogenic studies of some transition metal complexes with N,O-chelating Schiff’s base ligand incorporating azo and sulfonamide Moieties. J. Mol. Stru. 2013, 1035, 383. [Google Scholar] [CrossRef]
- Abdel Rahman, L.H.; Abu-Dief, A.M.; El-Khatib, R.M.; Abdel-Fatah, S.M.; Adam, A.M.; Ibrahim, E.M.M. Sonochemical synthesis, structural inspection and semiconductor behavior of three new nano sized Cu (II), Co (II) and Ni (II) chelates based on tri-dentate NOO imine ligand as precursors for metal oxides. Appl. Organomet. Chem. 2018, 32, e41742018. [Google Scholar] [CrossRef]
- Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Abdel-Rahman, L.H.; Adam, M.S.S.; Abu-Dief, A.M.; Moustafa, H.; Basha, M.T.; Aboraia, A.S.; Al-Farhan, B.S.; Ahmed, H.E.S. Synthesis, theoretical investigations, biocidal screening, DNA binding, in vitro cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: Promising antibiotic and anticancer agents. Appl. Organomet. Chem. 2018, 32, e45272018. [Google Scholar] [CrossRef]
- Sakai, H.; Matsuyama, T.; Maeda, Y.; Yamaoka, H.J. An 129I Mössbauer spectroscopic study of iodine doped in poly (vinylpyridines). J. Chem. Phys. 1981, 75, 5155. [Google Scholar] [CrossRef]
- El-Sonbati, A.Z.; Diab, M.A.; El-Bindary, A.A.; Eldesoky, A.M.; Morgan, S.M. Correlation between ionic radii of metals and thermal decomposition of supramolecular structure of azodye complexes. Spectrochim. Acta A. 2015, 135, 774. [Google Scholar] [CrossRef]
- Baran, N.Y.; Demir, M.K.; Saçak, M. Synthesis, characterization, conductivity and antimicrobial study of a novel thermally stable polyphenol containing azomethine group. J. Mol. Struct. 2016, 1123, 153. [Google Scholar] [CrossRef]
- Al-Qahtani, S.D.; Alharbi, A.; Abualnaja, M.M.; Hossan, A.; Alhasani, M.; Abu-Dief, A.M.; Khalifa, M.E.; El-Metwaly, N.M. Synthesis and elucidation of binuclear thiazole-based complexes from Co (II) and Cu (II) ions: Conductometry, cytotoxicity and computational implementations for various verifications. J. Mol. Liq. 2022, 349, 118100. [Google Scholar] [CrossRef]
- Shoair, A.F.; El-Shobaky, A.R.; Abo-Yassin, H.R. Synthesis, spectroscopic characterization, catalytic and antibacterial studies of ruthenium (III) Schiff base complexes. J. Mol. Liq. 2015, 211, 217. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Alotaibi, N.; Al-Farraj, E.; Qasem, H.; Alzahrani, S.; Mahfouz, M.; Abdou, A. Fabrication, structural elucidation, theoretical, TD-DFT, vibrational calculation and molecular docking studies of some novel adenine imine chelates for biomedical applications. J. Mol. Liq. 2022, 365, 119961. [Google Scholar] [CrossRef]
- Abdou, A. Synthesis, Structural, Molecular Docking, DFT, Vibrational Spectroscopy, HOMO-LUMO, MEP Exploration, antibacterial and antifungal activity of new Fe(III), Co(II) and Ni(II) hetero-ligand complexes. J. Mol. Struct. 2022, 1262, 132911. [Google Scholar] [CrossRef]
- Abdou, A.; Hassan, M.M.; Abdel-Mawgoud, M. Seven metal-based bi-dentate NO azocoumarine complexes: Synthesis, physicochemical properties, DFT calculations, drug-likeness, in vitro antimicrobial screening and molecular docking analysis. Inorg. Chim. Acta 2022, 539, 121043. [Google Scholar] [CrossRef]
- Ali El-Remaily, M.A.E.A.A.; El-Dabea, T.; Alsawat, M.; Mahmoud, M.H.; Alfi, A.A.; El-Metwaly, N.; Abu-Dief, A.M. Development of new thiazole complexes as powerful catalysts for synthesis of pyrazole-4-carbonitrile derivatives under ultrasonic irradiation condition supported by DFT studies. ACS Omega 2021, 6, 21071–21086. [Google Scholar] [CrossRef] [PubMed]
- Elkanzi, N.A.A.; Ali, A.M.; Hrichi, H.; Abdou, A. New mononuclear Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) complexes incorporating 4-{[(2 hydroxyphenyl)imino]methyl}phenyl-4-methylbenzenesulfonate (HL): Synthesis, characterization, theoretical, anti-inflammatory, and molecular docking investigation. Appl. Organomet. Chem. 2022, 36, e66652022. [Google Scholar]
- Abu-Dief, A.M.; El-Khatib, R.M.; Salah, M.E.; Alzahrani, S.; Alkhatib, F.; El-Sarrag, G.; Ismael, M. Synthesis and intensive characterization for novel Zn (II), Pd (II), Cr (III) and VO (II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J. Mol. Struct. 2021, 1244, 131017. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Abdel-Rahman, L.H.; Shehata, M.R.; Abdel-Mawgoud, A.A.H. Novel azomethine Pd (II)-and VO (II)-based metallo-pharmaceuticals as anticancer, antimicrobial, and antioxidant agents: Design, structural inspection, DFT investigation, and DNA interaction. J. Phys. Org. Chem. 2019, 32, e40092019. [Google Scholar] [CrossRef]
- Qasem, H.A.; Aouad, M.R.; Al-Abdulkarim, H.A.; Al-Farraj, E.S.; Attar, R.M.; El-Metwaly, N.M.; Abu-Dief, A.M. Tailoring of some novel bis-hydrazone metal chelates, spectral based characterization and DFT calculations for pharmaceutical applications and in-silico treatments for verification. J. Mol. Struc. 2022, 1264, 133263. [Google Scholar] [CrossRef]
- Panchal, P.K.; Pansuria, P.B.; Patel, M.N. In-vitro biological evaluation of some ONS and NS donor Schiff’s bases and their metal complexes. J. Enzym. Inhib. Med. Chem. 2006, 21, 203. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; Moustafa, H.; Abdel-Mawgoud, A.A.H. Design and nonlinear optical properties (NLO) using DFT approach of new Cr (III), VO (II), and Ni (II) chelates incorporating tri-dentate imine ligand for DNA interaction, antimicrobial, anticancer activities and molecular docking studies. Arab. J. Chem. 2020, 13, 649–670. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Abdelhamid, A.A.; Abu-Dief, A.M.; Shehata, M.R.; Bakhe, M.A. Facile synthesis, X-ray structure of new multi-substituted aryl imidazole ligand, biological screening and DNA binding of its Cr (III), Fe (III) and Cu (II) coordination compounds as potential antibiotic and anticancer drugs. J. Mol. Struct. 2020, 1200, 127034. [Google Scholar] [CrossRef]
- El-Sonbati, A.Z.; El-Bindary, A.A.; Mohamed, G.G.; Morgan, S.M.; Hassan, W.M.I.; Elkholy, A.K. Geometrical structures, thermal properties and antimicrobial activity studies of azodye complexes. J. Mol. Liq. 2016, 218, 16–34. [Google Scholar] [CrossRef]
- KofiKyei, S.; Akaranta, O.; Darko, G. Synthesis, characterization and antimicrobial activity of peanut skin extract-azo-compounds. Sci. Afr. 2020, 8, e004062020. [Google Scholar]
EHOMO | ELUMO | ∆E | I | A | χ | CP | H | σ | ω | Nu | ΔNmax | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L | −5.27 | −1.85 | 3.42 | 5.27 | 1.85 | 3.56 | −3.56 | 1.71 | 0.29 | 3.70 | 0.27 | 2.08 |
CrL | −4.57 | −2.30 | 2.28 | 4.57 | 2.30 | 3.44 | −3.44 | 1.14 | 0.44 | 5.19 | 0.19 | 3.02 |
MnL | −3.77 | −1.76 | 2.01 | 3.77 | 1.76 | 2.77 | −2.77 | 1.01 | 0.50 | 3.80 | 0.26 | 2.75 |
FeL | −6.68 | −5.67 | 1.01 | 6.68 | 5.67 | 6.18 | −6.18 | 0.50 | 0.99 | 37.94 | 0.03 | 12.29 |
CoL | −4.56 | −2.61 | 1.95 | 4.56 | 2.61 | 3.59 | −3.59 | 0.97 | 0.51 | 6.60 | 0.15 | 3.68 |
NiL | −8.81 | −6.39 | 2.42 | 8.81 | 6.39 | 7.60 | −7.60 | 1.21 | 0.41 | 23.87 | 0.04 | 6.28 |
CuL | −8.66 | −6.47 | 2.20 | 8.66 | 6.47 | 7.57 | −7.57 | 1.10 | 0.46 | 26.06 | 0.04 | 6.89 |
ZnL | −8.17 | −5.61 | 2.56 | 8.17 | 5.61 | 6.89 | −6.89 | 1.28 | 0.39 | 18.51 | 0.05 | 5.37 |
CdL | −5.58 | −2.30 | 3.28 | 5.58 | 2.30 | 3.94 | −3.94 | 1.64 | 0.30 | 4.73 | 0.21 | 2.40 |
Ligand | Receptor | Interaction | Distance | E (kcal/mol) | S (kcal/mol) | |
---|---|---|---|---|---|---|
L | O 8 | GLN 114 | H-acceptor | 3.25 | −0.90 | −6.78 |
N 7 | ASP 110 | H-donor | 2.81 | −1.30 | ||
CrL | N 7 | PRO 285 | H-donor | 2.75 | −3.40 | −7.36 |
O 8 | ASP 110 | H-donor | 2.92 | −3.90 | ||
O 43 | GLN 247 | H-donor | 2.99 | −3.70 | ||
CL 47 | LEU 109 | H-donor | 3.09 | −0.30 | ||
O 8 | ASP 110 | ionic | 2.92 | −5.00 | ||
O 8 | ASP 110 | ionic | 3.34 | −2.50 | ||
N 10 | ASP 110 | ionic | 3.81 | −0.90 | ||
N 14 | ASP 110 | ionic | 2.98 | −4.60 | ||
O 16 | ASP 110 | ionic | 3.49 | −1.90 | ||
5-ring | ARG 64 | pi-cation | 3.88 | −1.00 | ||
MnL | O 43 | THR 117 | H-donor | 2.73 | −1.60 | −7.55 |
N 10 | ASP 110 | ionic | 3.04 | −4.20 | ||
N 14 | ASP 110 | ionic | 3.77 | −1.00 | ||
O 16 | ASP 110 | ionic | 2.67 | −7.10 | ||
O 16 | ASP 110 | ionic | 3.72 | −1.20 | ||
FeL | N 7 | ASN 252 | H-donor | 2.42 | −1.00 | −8.82 |
O 43 | LEU 109 | H-donor | 2.62 | −2.40 | ||
CL 46 | ASP 110 | H-donor | 2.87 | −0.20 | ||
N 10 | ASP 110 | ionic | 2.79 | −1.00 | ||
N 14 | ASP 110 | ionic | 2.84 | −5.60 | ||
O 16 | ASP 110 | ionic | 3.01 | −4.40 | ||
CoL | O 43 | ASP 110 | H-donor | 2.80 | −3.80 | −8.17 |
O 43 | TYR 65 | H-donor | 2.69 | −3.00 | ||
N 7 | LYS 54 | H-acceptor | 3.12 | −0.20 | ||
O 43 | ASP 110 | ionic | 2.80 | −6.00 | ||
NiL | O 47 | TYR 65 | H-donor | 2.86 | −6.10 | −7.18 |
N 7 | LYS 54 | H-acceptor | 3.32 | −1.90 | ||
O 43 | ASP 110 | ionic | 3.44 | −2.10 | ||
O 47 | ASP 110 | ionic | 3.69 | −1.20 | ||
CuL | O 43 | ASP 110 | H-donor | 2.70 | −2.80 | −7.50 |
O 43 | ASP 110 | H-donor | 2.85 | −1.00 | ||
O 47 | LEU 109 | H-donor | 2.45 | −0.60 | ||
O 8 | ASP 110 | ionic | 2.76 | −6.30 | ||
N 10 | ASP 110 | ionic | 3.00 | −4.50 | ||
O 43 | ASP 110 | ionic | 2.70 | −6.90 | ||
O 43 | ASP 110 | ionic | 2.85 | −5.60 | ||
6-ring | ARG 230 | pi-cation | 3.31 | −0.80 | ||
ZnL | C 4 | ASP 110 | H-donor | 3.32 | −1.20 | −7.11 |
N 7 | THR 117 | H-donor | 2.94 | −1.60 | ||
N 7 | ASP 110 | H-donor | 3.46 | −0.70 | ||
O 43 | ASP 110 | H-donor | 2.93 | −5.20 | ||
O 43 | ASP 110 | ionic | 2.93 | −5.00 | ||
O 43 | ASP 110 | ionic | 3.80 | −0.90 | ||
CdL | N 7 | GLN 247 | H-donor | 3.25 | −1.00 | −6.96 |
CL 47 | GLN 114 | H-donor | 3.23 | −2.50 | ||
O 8 | ASP 110 | ionic | 2.93 | −7.40 | ||
N 10 | ASP 110 | ionic | 3.43 | −2.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Gaber, M.A.I.; Abd El-Lateef, H.M.; Khalaf, M.M.; Shaaban, S.; Shawky, M.; Mohamed, G.G.; Abdou, A.; Gouda, M.; Abu-Dief, A.M. Design, Synthesis, Spectroscopic Inspection, DFT and Molecular Docking Study of Metal Chelates Incorporating Azo Dye Ligand for Biological Evaluation. Materials 2023, 16, 897. https://doi.org/10.3390/ma16030897
Al-Gaber MAI, Abd El-Lateef HM, Khalaf MM, Shaaban S, Shawky M, Mohamed GG, Abdou A, Gouda M, Abu-Dief AM. Design, Synthesis, Spectroscopic Inspection, DFT and Molecular Docking Study of Metal Chelates Incorporating Azo Dye Ligand for Biological Evaluation. Materials. 2023; 16(3):897. https://doi.org/10.3390/ma16030897
Chicago/Turabian StyleAl-Gaber, Mohamed Ali Ibrahim, Hany M. Abd El-Lateef, Mai M. Khalaf, Saad Shaaban, Mohamed Shawky, Gehad G. Mohamed, Aly Abdou, Mohamed Gouda, and Ahmed M. Abu-Dief. 2023. "Design, Synthesis, Spectroscopic Inspection, DFT and Molecular Docking Study of Metal Chelates Incorporating Azo Dye Ligand for Biological Evaluation" Materials 16, no. 3: 897. https://doi.org/10.3390/ma16030897
APA StyleAl-Gaber, M. A. I., Abd El-Lateef, H. M., Khalaf, M. M., Shaaban, S., Shawky, M., Mohamed, G. G., Abdou, A., Gouda, M., & Abu-Dief, A. M. (2023). Design, Synthesis, Spectroscopic Inspection, DFT and Molecular Docking Study of Metal Chelates Incorporating Azo Dye Ligand for Biological Evaluation. Materials, 16(3), 897. https://doi.org/10.3390/ma16030897