Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,429)

Search Parameters:
Keywords = antioxidant and antimicrobial activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2872 KB  
Article
Formulation and Biological Evaluation of Glycyrrhiza glabra L. Methanolic Extract: An Exploratory Study in the Context of Rosacea
by Iulia Semenescu, Larisa Bora, Adina Octavia Dușe, Claudia Geanina Watz, Ștefana Avram, Szilvia Berkó, Gheorghe Emilian Olteanu, Adina Căta, Zorița Diaconeasa, Daliana Ionela Minda, Cristina Adriana Dehelean, Delia Muntean and Corina Danciu
Antioxidants 2026, 15(2), 158; https://doi.org/10.3390/antiox15020158 - 23 Jan 2026
Abstract
Rosacea is a chronic inflammatory skin disorder characterized by oxidative stress, innate immune dysregulation, vascular instability, and microbiome-related triggers. Glycyrrhiza glabra (Gg, licorice) root contains phenolics and triterpenoids with antioxidant, anti-inflammatory, antimicrobial, and anti-angiogenic properties that may benefit rosacea-prone skin. Xanthan-gum hydrogels containing [...] Read more.
Rosacea is a chronic inflammatory skin disorder characterized by oxidative stress, innate immune dysregulation, vascular instability, and microbiome-related triggers. Glycyrrhiza glabra (Gg, licorice) root contains phenolics and triterpenoids with antioxidant, anti-inflammatory, antimicrobial, and anti-angiogenic properties that may benefit rosacea-prone skin. Xanthan-gum hydrogels containing 2% methanolic Gg extract (S1, S2) were prepared and characterized. Rheology, in vitro release, and in vitro permeation were evaluated, with the aim of assessing their suitability as topical formulations for rosacea-prone skin. Antioxidant activity was assessed using DPPH, ABTS, and FRAP assays. Antimicrobial effects were tested against S. pyogenes, S. aureus, and C. acnes. Safety and bioactivity were examined through HaCaT keratinocyte assays (MTT, Neutral Red, LDH), the HET-CAM irritation test, and the CAM angiogenesis assay. Immunocytochemistry was performed on rosacea-related inflammatory markers. Both hydrogels showed suitable rheology, sustained release, and preserved strong antioxidant activity. Moderate antimicrobial effects were observed, particularly against S. pyogenes and C. acnes. HaCaT cell viability remained above 84% for the S2 formulation at the highest concentration (200 µg/mL), indicating improved cytocompatibility compared with formulation S1. The hydrogels were non-irritant in the HET-CAM model and reduced neovascularization in the CAM assay, with a more sustained effect observed for formulation S2. Immunohistochemistry supported potential modulation of inflammatory pathways relevant to rosacea, evidencing suppressed VEGF expression and preserved CD44-mediated integrity, particularly in the Labrasol-based formulation (S2), while Caspase-3 staining indicated a controlled apoptotic profile. Overall, Gg hydrogels are safe, biocompatible, non-irritant, and exhibit antioxidant, antimicrobial, and anti-angiogenic activities, supporting their potential as biocompatible topical formulations with antioxidant and pathway-modulating properties relevant to the biological features associated with rosacea, while underscoring the importance of formulation design. Full article
(This article belongs to the Special Issue Natural Antioxidants in Pharmaceuticals and Dermatocosmetology)
Show Figures

Figure 1

16 pages, 1073 KB  
Review
Hydrogen and Ozone Therapies as Adjunctive Strategies for Gastrointestinal Health in Geriatric Populations
by Joanna Michalina Jurek, Zuzanna Jakimowicz, Runyang Su, Kexin Shi and Yiqiao Qin
Gastrointest. Disord. 2026, 8(1), 8; https://doi.org/10.3390/gidisord8010008 (registering DOI) - 23 Jan 2026
Abstract
Aging is accompanied by progressive gastrointestinal structural and functional decline, increased intestinal permeability, dysbiosis, and impaired mucosal immunity, collectively elevating susceptibility to infections, chronic inflammation, and multimorbidity. These age-related changes are further exacerbated by polypharmacy, metabolic disorders, and lifestyle factors, positioning the gastrointestinal [...] Read more.
Aging is accompanied by progressive gastrointestinal structural and functional decline, increased intestinal permeability, dysbiosis, and impaired mucosal immunity, collectively elevating susceptibility to infections, chronic inflammation, and multimorbidity. These age-related changes are further exacerbated by polypharmacy, metabolic disorders, and lifestyle factors, positioning the gastrointestinal tract as a central driver of systemic physiological decline. Gut-centered interventions have emerged as critical strategies to mitigate these vulnerabilities and support healthy aging. Dietary modulation, prebiotic and probiotic supplementation, and microbiota-targeted approaches have demonstrated efficacy in improving gut microbial diversity, enhancing short-chain fatty acid production, restoring epithelial integrity, and modulating immune signaling in older adults. Beyond nutritional strategies, non-nutritional interventions such as molecular hydrogen and medical ozone offer complementary mechanisms by selectively neutralizing reactive oxygen species, reducing pro-inflammatory signaling, modulating gut microbiota, and promoting mucosal repair. Hydrogen-based therapies, administered via hydrogen-rich water or inhalation, confer antioxidant, anti-inflammatory, and cytoprotective effects, while ozone therapy exhibits broad-spectrum antimicrobial activity, enhances tissue oxygenation, and stimulates epithelial and vascular repair. Economic considerations further differentiate these modalities, with hydrogenated water positioned as a premium wellness product and ozonated water representing a cost-effective, scalable option for geriatric gastrointestinal care. Although preclinical and early clinical studies are promising, evidence in older adults remains limited, emphasizing the need for well-designed, age-specific trials to establish safety, dosing, and efficacy. Integrating dietary, microbiota-targeted, and emerging non-nutritional gut-centered interventions offers a multimodal framework to preserve gut integrity, immune competence, and functional health, potentially mitigating age-related decline and supporting overall health span in older populations. Full article
Show Figures

Figure 1

23 pages, 348 KB  
Article
Phytochemical Composition, Biological Activity and Application of Cymbopogon citratus In Vitro Microshoot Cultures in Cosmetic Formulations
by Ewelina Błońska-Sikora, Jakub Wawrzycki, Paulina Lechwar, Katarzyna Gaweł-Bęben, Paulina Żarnowiec, Klaudia Wojtaszek and Małgorzata Wrzosek
Appl. Sci. 2026, 16(3), 1158; https://doi.org/10.3390/app16031158 - 23 Jan 2026
Abstract
This study investigated the phytochemical composition and biological activity of Cymbopogon citratus microshoot cultures and evaluated their suitability for incorporation into a cosmetic formulation. Microshoot cultures were established on Murashige and Skoog media supplemented with plant growth regulators and served as a reproducible [...] Read more.
This study investigated the phytochemical composition and biological activity of Cymbopogon citratus microshoot cultures and evaluated their suitability for incorporation into a cosmetic formulation. Microshoot cultures were established on Murashige and Skoog media supplemented with plant growth regulators and served as a reproducible source of biomass. Methanolic and ethanolic extracts were analyzed for total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Chemical composition was characterized using LC-MS/MS analysis, which revealed the presence of phenolic acids and flavonoids, with p-coumaric, caffeic, and ferulic acids being among the most abundant detected constituents. In biological assays, the extracts inhibited murine tyrosinase in a concentration-dependent manner and exhibited antimicrobial activity against selected oral and skin-associated microorganisms, including Streptococcus mutans, Streptococcus pyogenes, and Staphylococcus epidermidis, as well as showing fungistatic and fungicidal effects against Candida albicans. Cytotoxicity analysis performed on HaCaT keratinocytes confirmed biocompatibility within the tested concentration range. To assess formulation suitability, the microshoot extract was incorporated into an oil-in-water (O/W) cream, which maintained stable pH, viscosity, and physical properties while preserving the antioxidant activity of the extract. Overall, these findings indicate that C. citratus microshoot cultures represent a reproducible source of bioactive metabolites with potential application in cosmetic formulations. Full article
26 pages, 4110 KB  
Article
Bentonite–Chitosan–Surfactant Composite with Antimicrobial, Antioxidant, and Mycotoxin Adsorption Properties
by Marija Marković, Aleksandra Daković, Milica Ožegović, Milena Obradović, Danina Krajišnik, Milena Pantić, Maja Kozarski and Jugoslav Krstić
Minerals 2026, 16(1), 118; https://doi.org/10.3390/min16010118 - 22 Jan 2026
Abstract
This study aimed to design a new composite with promising antimicrobial and antioxidant properties by a simple modification process of natural bentonite (B) with polysaccharide chitosan isolated from edible mushrooms Agaricus bisporus—ChM (sample B–ChM) and subsequently with a cationic surfactant—hexadecyltrimethylammonium bromide—HB (sample [...] Read more.
This study aimed to design a new composite with promising antimicrobial and antioxidant properties by a simple modification process of natural bentonite (B) with polysaccharide chitosan isolated from edible mushrooms Agaricus bisporus—ChM (sample B–ChM) and subsequently with a cationic surfactant—hexadecyltrimethylammonium bromide—HB (sample B–ChM–HB) for effective removal of mycotoxin zearalenone (ZEN). Characterization confirmed the presence of ChM in B–ChM and both ChM and HB in B–ChM–HB. Compared to non- or slightly inhibitory activity of B and B–ChM, B–ChM–HB showed fungicidal activity against yeast Candida albicans and mycotoxigenic mold Aspergillus flavus, with a reduction of 6.00 log10 (CFU/mL) and 5.32 log10 (CFU/mL), respectively. B–ChM–HB showed a very high neutralization ability on •DPPH (89.03%–95.99%) in the concentration range of 0.625–5.0 mg/mL, the highest ferrous ion chelating ability (80.25%) at a concentration of 0.625 mg/mL, and did not induce lipid peroxidation in the linoleic acid model system. While B and B–ChM exhibited low adsorption of ZEN, its adsorption by B–ChM–HB was significantly higher. The equilibrium results of B–ChM–HB for ZEN were in accordance with the linear isotherm model at pH 3 and 7, pointing out that hydrophobic interactions (partitioning process) were relevant for toxin adsorption by the composite. Similar maximum ZEN adsorbed amounts under the applied experimental conditions (14.4 mg/g) at both pH values suggested that its adsorption was independent of the pH. This study reported for the first time that a novel composite of B with ChM and HB showed promising antimicrobial and antioxidant properties and was an efficient adsorbent for mycotoxin ZEN. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

20 pages, 1761 KB  
Article
Valorization of Turnip Greens (Brassica rapa subsp. sylvestris) Wastes: Investigation on the Sustainable Recovery of Bioactive Extracts with Antioxidant and Antibiofilm Properties
by Anna Maria Maurelli, Davide Coniglio, Francesco Milano, Sara Mancarella, Barbara Laddomada, Vincenzo De Leo, Francesco Longobardi, Francesca Coppola, Florinda Fratianni, Michelangelo Pascale, Filomena Nazzaro and Lucia Catucci
Molecules 2026, 31(2), 388; https://doi.org/10.3390/molecules31020388 - 22 Jan 2026
Abstract
The valorization of agri-food residues is crucial for advancing circular bioeconomy strategies and mitigating environmental impacts. Turnip greens (Brassica rapa subsp. sylvestris) are a traditional vegetable cultivated in southern Italy. While the edible portions include flower sprouts, buds, and young leaves, [...] Read more.
The valorization of agri-food residues is crucial for advancing circular bioeconomy strategies and mitigating environmental impacts. Turnip greens (Brassica rapa subsp. sylvestris) are a traditional vegetable cultivated in southern Italy. While the edible portions include flower sprouts, buds, and young leaves, the more leathery leaves and stems are typically discarded. These wastes represent valuable sources of compounds with antioxidant and antimicrobial potential. This study aims to develop the extraction of phenolic compounds from turnip green residues using two techniques: silent maceration and ultrasound-assisted extraction (UAE). Ethanol was selected over methanol as a food-safe alternative solvent, with preliminary tests confirming equivalent efficiency. A Design of Experiments (DoE) approach was applied to both leaves and stems to assess the effects of solvent composition, solvent-to-matrix ratio, and extraction time on Total Phenolic Content and Trolox Equivalent Antioxidant Capacity. DoE results identified UAE as the most effective method for stems, while for leaves, the solvent-to-dry-mass ratio was the key parameter. HPLC-DAD analysis was performed to identify and quantify the phenolic acids in selected extracts. The antibacterial activity of these extracts against biofilms of six pathogenic strains was evaluated using crystal violet and MTT assays, confirming efficacy in both biofilm formation and mature stages. Full article
Show Figures

Figure 1

20 pages, 832 KB  
Article
Effect of Wheat Gluten Films Infused with Mint and Clove Essential Oils on the Shelf Life of Fresh Minced Chicken
by Arsenios Anthomelides, Alexia Gkourogianni, Ioanna S. Kosma and Anastasia V. Badeka
Foods 2026, 15(2), 390; https://doi.org/10.3390/foods15020390 - 21 Jan 2026
Abstract
The need for active biodegradable packaging materials with the ability to improve the microbiological stability of highly perishable foods was investigated in the present study. Specifically, wheat gluten-based films infused with spearmint (Mentha spicata L.) and clove (Syzygium aromaticum L.) essential [...] Read more.
The need for active biodegradable packaging materials with the ability to improve the microbiological stability of highly perishable foods was investigated in the present study. Specifically, wheat gluten-based films infused with spearmint (Mentha spicata L.) and clove (Syzygium aromaticum L.) essential oils (EOs)were studied by linking the physicochemical and mechanical properties of the film to the microbiological quality and shelf-life behavior of minced chicken under aerobic refrigerated storage. The packaged samples tested were packaging without film (Control), a wheat gluten film (WGF), WGF with 2% spearmint EO (WGF + 2% SPR), and 2% clove EO (WGF + 2% CL) stored at 4 ± 1 °C for 8 days, under aerobic conditions. Shelf-life extension was evaluated based on established microbiological spoilage criteria, indicating delayed microbial growth in samples packaged with EO-enhanced films compared with the Control. Microbiological analyses (TVC, yeast, Pseudomonas spp., B. Thermosphacta, Enterobacteriaceae, LAB) showed that WGF + 2% CL delayed the time required to reach the spoilage threshold for TVC (7 log CFU/g) by 2 days compared with the Control, while WGF and WGF + 2% SPR extended shelf life by 1 day. Physicochemical properties (pH and objective color) also showed better pH stability and limited color changes in the packaged samples. Mechanical properties resulted in improved film antioxidant activity and flexibility and reduced tensile strength for the EO-enhanced films. Overall, WGFs enhanced with EOs seem to improve minced chicken meat quality during refrigerated storage through the combined effect of antimicrobial activity and modified film properties, highlighting their potential as active packaging materials under the specific conditions studied. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

27 pages, 2553 KB  
Article
Biotechnological Potential of Algerian Saffron Floral Residues: Recycling Phytochemicals with Antimicrobial Activity
by Nouria Meliani, Bouchra Loukidi, Larbi Belyagoubi, Nabila Belyagoubi-Benhammou, Salim Habi, Alessia D’Agostino, Antonella Canini, Saber Nahdi, Nassima Mokhtari Soulimane, Angelo Gismondi, Abdel Halim Harrath, Erdi Can Aytar and Gabriele Di Marco
Biology 2026, 15(2), 197; https://doi.org/10.3390/biology15020197 - 21 Jan 2026
Abstract
This study investigates the phytochemical profile, antioxidant capacity, and antimicrobial potential of Crocus sativus L. (saffron) tepal extracts obtained via different solvent systems. Here, a biochemical screening was performed using spectrophotometry and HPLC-DAD, while molecular docking simulations were carried out to evaluate the [...] Read more.
This study investigates the phytochemical profile, antioxidant capacity, and antimicrobial potential of Crocus sativus L. (saffron) tepal extracts obtained via different solvent systems. Here, a biochemical screening was performed using spectrophotometry and HPLC-DAD, while molecular docking simulations were carried out to evaluate the possible interactions between saffron tepal metabolites and bacterial target proteins. In parallel, antioxidant activity was assessed using radical scavenging assays, whereas antimicrobial potential (i.e., MIC, MBC, and MFC) was tested against selected bacterial strains. Results indicated that aqueous successive and crude extracts yielded the highest concentrations of polyphenols, flavonoids, and condensed tannins. In detail, HPLC-DAD analysis specifically identified significant levels of gallic acid, epicatechin, and various anthocyanins. These extracts demonstrated robust antioxidant and antimicrobial activities. This latter evidence was corroborated by the docking analyses, which revealed that chlorogenic acid and petunidin-3-glucoside exhibited high binding affinities for 2NRK and 2NZF, whereas epicatechin and pelargonidin effectively targeted 8ACR. These findings underscore the therapeutic potential of C. sativus tepals as natural bioactive agents, suggesting a promising role in overcoming antibiotic resistance and supporting their development for pharmaceutical applications. Full article
(This article belongs to the Special Issue Young Researchers in Plant Sciences)
Show Figures

Graphical abstract

37 pages, 3289 KB  
Review
Essential Oil of Prangos ferulacea (L.) Lindl.: Chemistry and Bioactivities
by Mijat Božović, Vanja Tadić, Milan Mladenović and Rino Ragno
Plants 2026, 15(2), 317; https://doi.org/10.3390/plants15020317 - 21 Jan 2026
Abstract
Prangos ferulacea (L.) Lindl. (Apiaceae) is an orophilous species with notable traditional uses, particularly across the broader Middle East region. Over the past 50 years, research on its essential oil has revealed the existence of several chemotypes. In addition to its chemical composition, [...] Read more.
Prangos ferulacea (L.) Lindl. (Apiaceae) is an orophilous species with notable traditional uses, particularly across the broader Middle East region. Over the past 50 years, research on its essential oil has revealed the existence of several chemotypes. In addition to its chemical composition, there is also data on the biological activities of the essential oil. Among these activities, the most extensively studied are its antimicrobial and, to a lesser extent, antioxidant properties. Recent findings suggest the presence of additional biological effects, including cytotoxic, insecticidal, and phytotoxic effects. This review summarizes current knowledge and provides a foundation for future research, including more in-depth chemical and chemotaxonomic analyses, as well as exploration of the full therapeutic potential of this species. Full article
Show Figures

Figure 1

15 pages, 568 KB  
Review
Trends and Opportunities in Crustacean Shell Waste Valorization: Towards Sustainable Application in Packaging Materials and Wastewater Treatment
by Zorica Tomičić, Senka Popović, Nevena Hromiš, Dragana Lukić, Vesna Vasić and Ivana Čabarkapa
Environments 2026, 13(1), 54; https://doi.org/10.3390/environments13010054 - 20 Jan 2026
Abstract
Every year, crustacean shell waste amounts to nearly 8 million tons worldwide, representing both an environmental challenge and a valuable resource. Crustacean shells can be repurposed as raw material for products in various industries, including agriculture, construction, and biomedicine. They are a valuable [...] Read more.
Every year, crustacean shell waste amounts to nearly 8 million tons worldwide, representing both an environmental challenge and a valuable resource. Crustacean shells can be repurposed as raw material for products in various industries, including agriculture, construction, and biomedicine. They are a valuable resource for creating functional materials due to their high content of chitin, protein, and calcium carbonate. These compounds can be extracted and processed to create various products, such as the biopolymer chitosan, antioxidants like astaxanthin, and adsorbents for water treatment, aligning with a circular economy approach by converting waste into valuable by-products. Chitosan films from crustacean waste are promising active packaging materials developed over the last decade, featuring enhanced antimicrobial and antioxidant properties. Extensive research confirms that crustacean shell waste is an excellent, low-cost adsorbent for removing heavy metals from water. This review analyzes current trends and opportunities for crustacean shell waste utilization in packaging materials and wastewater treatment. Key applications include replacing conventional plastic in biodegradable packaging and improving water treatment, which enhances resource efficiency and minimizes environmental pollution. Full article
Show Figures

Graphical abstract

14 pages, 1004 KB  
Article
Chemical Profiling and Multimodal Anti-Inflammatory Activity of Eugenia pyriformis Leaves Essential Oil
by Larissa Saviani Ribeiro, Vitor Guimarães Lourenço, Kaique Gonçalves de Souza, Yasmin Cometti Sardinha, Kevin Costa Miranda, Francisco Paiva Machado, Rômulo Augusto de Abreu Franchini, Mariana Toledo Martins Pereira, Leandro Rocha, Vinicius D’Avila Bitencourt Pascoal and Aislan Cristina Rheder Fagundes Pascoal
Molecules 2026, 31(2), 342; https://doi.org/10.3390/molecules31020342 - 19 Jan 2026
Viewed by 35
Abstract
Eugenia pyriformis Cambess., popularly known as uvaia, is a native Brazilian species belonging to the Myrtaceae family that has attracted pharmacological interest due to its richness in bioactive secondary metabolites. Previous studies have reported antimicrobial and antioxidant activities of the essential oil obtained [...] Read more.
Eugenia pyriformis Cambess., popularly known as uvaia, is a native Brazilian species belonging to the Myrtaceae family that has attracted pharmacological interest due to its richness in bioactive secondary metabolites. Previous studies have reported antimicrobial and antioxidant activities of the essential oil obtained from its leaves, reinforcing its therapeutic potential. In this context, the present study aimed to extract and characterize the essential oil from E. pyriformis leaves cultivated in the mountainous region of Rio de Janeiro, Brazil, and to evaluate its anti-inflammatory potential through in vitro and in vivo models. Gas chromatography mass spectrometry (GC–MS) analysis revealed a predominance of sesquiterpene hydrocarbons, mainly γ-muurolene, δ-cadinene, and β-caryophyllene. The oil exhibited significant anti-edematogenic activity in carrageenan-, prostaglandin E2-, and bradykinin-induced paw edema models in adult female Swiss mice, suggesting modulation of inflammatory mediators, possibly through inhibition of the cyclooxygenase (COX) pathway. Conversely, no effect was observed in the compound 48/80-induced model, indicating the absence of activity on histamine- and serotonin-mediated processes. In vitro assays demonstrated that the oil reduced TNF-α and IL-1β gene expression in RAW 264.7 macrophages, confirming its ability to modulate pro-inflammatory cytokines. Taken together, these findings demonstrate that the essential oil of E. pyriformis exerts anti-inflammatory activity through multiple targets. Full article
(This article belongs to the Special Issue Essential Oils: Chemical Composition, Bioactive, and Application)
Show Figures

Graphical abstract

35 pages, 3594 KB  
Article
Novel Carvacrol or trans-Cinnamaldehyde@ZnO/Natural Zeolite Ternary Nanohybrid for Poly-L-lactide/tri-ethyl Citrate Based Sustainable Active Packaging Films
by Areti A. Leontiou, Achilleas Kechagias, Eleni Kollia, Anna Kopsacheili, Andreas Giannakas, Ioanna Farmaki, Yelyzaveta K. Oliinychenko, Alexandros C. Stratakos, Charalampos Proestos and Aris E. Giannakas
Appl. Sci. 2026, 16(2), 999; https://doi.org/10.3390/app16020999 - 19 Jan 2026
Viewed by 56
Abstract
The shift toward sustainable packaging requires biodegradable, active alternatives. This study developed ternary nanohybrids by loading carvacrol (CV) or trans-cinnamaldehyde (tCN) onto zinc oxide/natural zeolite (ZnO/NZ) hybrids, which were incorporated into a poly-L-lactide/tri-ethyl citrate (PLA/TEC) matrix via melt extrusion to produce [...] Read more.
The shift toward sustainable packaging requires biodegradable, active alternatives. This study developed ternary nanohybrids by loading carvacrol (CV) or trans-cinnamaldehyde (tCN) onto zinc oxide/natural zeolite (ZnO/NZ) hybrids, which were incorporated into a poly-L-lactide/tri-ethyl citrate (PLA/TEC) matrix via melt extrusion to produce active films. A key finding was the distinct interaction mechanism: tCN underwent strong chemisorption with ZnO, creating a sustained-release reservoir, while CV was predominantly physisorbed, leading to rapid release. This interfacial divergence dictated functional performance. Antibacterial assessment of nanohybrids revealed that tCN@ZnO/NZ0.25 exhibited the highest inhibition zones against pathogens, correlating with its chemisorbed reservoir. In films, however, CV-based formulations (especially CV@ZnO/NZ0.25) showed superior immediate antioxidant activity (EC50, ~DPPH~ = 34.43 mg/mL) and an 82% reduction in oxygen permeability. In contrast, tCN-based films (especially tCN@ZnO/NZ1.0) demonstrated superior, sustained antibacterial efficacy. In a minced pork preservation study, both films delayed lipid oxidation and preserved heme iron, while the tCN-based film provided better long-term microbial control. This work demonstrates that engineering the nanocarrier–active compound interface enables precise tailoring of release kinetics, which can be optimized for either high immediate antioxidant power or long-term antimicrobial action, depending on specific food preservation requirements. Full article
(This article belongs to the Special Issue Innovative Materials and Technologies for Sustainable Packaging)
Show Figures

Graphical abstract

20 pages, 323 KB  
Article
Phenolic Compounds, Antioxidant and Antimicrobial Activities of Punica granatum L. Fruit Extracts
by Mijat Božović, Vanja Tadić, Alessandra Oliva, Milan Mladenović, Roberta Astolfi and Rino Ragno
Molecules 2026, 31(2), 334; https://doi.org/10.3390/molecules31020334 - 19 Jan 2026
Viewed by 60
Abstract
Pomegranate is valued for its abundant polyphenolic content and its capacity to promote health. In this study, pomegranate juice or pericarp extracts from two Mediterranean regions (Montenegro and Italy) were systematically and comparatively evaluated for the first time with respect to their polyphenolic [...] Read more.
Pomegranate is valued for its abundant polyphenolic content and its capacity to promote health. In this study, pomegranate juice or pericarp extracts from two Mediterranean regions (Montenegro and Italy) were systematically and comparatively evaluated for the first time with respect to their polyphenolic composition, antioxidant capacity, and antimicrobial activity. The extraction of juice extracts was accomplished by means of the Kutscher–Steudel liquid–liquid extraction technique, which was employed to selectively recover phenolics. In contrast, the extraction of pericarp extracts from the solid matrix was achieved via Soxhlet extraction. A thorough high-performance liquid chromatography (HPLC) analysis was conducted to identify and quantify the major phenolic compounds present in the sample. This analysis revealed the presence of ellagitannin punicalagin isomers, with concentrations reaching up to 254.75 mg/g of the sample, as well as ellagic acid and gallic acid. The antioxidant potential of the samples was assessed using the antioxidant activity index (AAI) from the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test and by a ferric reducing antioxidant power (FRAP) assay. Juice extracts demonstrated a range of activity levels, with AAI values ranging from 0.17 to 2.12 and FRAP values ranging from 2.49 to 19.41 mmol Fe2+/g. In contrast, pericarp extracts exhibited notably higher activity, with AAI values ranging from 0.18 to 27.57 and FRAP values ranging from 2.99 to 372.17 mmol Fe2+/g. This study demonstrates the markedly higher functional potential of pericarp extracts compared to juice extracts by linking detailed phenolic profiles with bioactivity data. Antimicrobial testing, inclusive of the determination of minimum bactericidal concentration (MBC), demonstrated that certain pericarp extracts manifested bactericidal properties at low concentrations against selected clinically pertinent strains, including methicillin-resistant Staphylococcus aureus (0.109% p/v), methicillin-sensitive S. aureus (0.109% p/v), carbapenem-resistant Acinetobacter baumannii (0.109% p/v), and Escherichia coli (0.563% p/v). Candida albicans and Klebsiella pneumoniae strains exhibited minimal sensitivity to these extracts. The findings indicate that pomegranate pericarp is a valuable by-product, and they demonstrate the potential of both juice and pericarp extracts as functional ingredients. Full article
(This article belongs to the Special Issue Analyses and Applications of Phenolic Compounds in Food—3rd Edition)
14 pages, 632 KB  
Article
Substrate-Driven Differential Sensitivity of Gram-Positive and Gram-Negative Bacteria to Pine and Birch Liquid Pyrolysis Products
by Grażyna B. Dąbrowska, Marcel Antoszewski, Filip Rejman, Tomasz Jędrzejewski, Monika Bartkowiak, Zbigniew Katolik, Jakub Brózdowski, Grzegorz Cofta and Magdalena Zborowska
Processes 2026, 14(2), 344; https://doi.org/10.3390/pr14020344 - 19 Jan 2026
Viewed by 60
Abstract
Recent studies have shown that wood tar exhibits excellent potential as an additive to polymers for food packaging. In this study, we demonstrated that the differential temperature of dry pyrolysis of wood affects the antioxidant and antibacterial activities of the liquid pyrolysis products [...] Read more.
Recent studies have shown that wood tar exhibits excellent potential as an additive to polymers for food packaging. In this study, we demonstrated that the differential temperature of dry pyrolysis of wood affects the antioxidant and antibacterial activities of the liquid pyrolysis products (LPP). Birch LPP showed, on average, approximately 16% higher reducing power in the ferric-reducing antioxidant power (FRAP) assay and, on average, approximately 29% lower free radical scavenging activity than pine LPP. Thermal characterization suggests a qualitatively similar chemical composition among the tested fractions, with the 500 °C pyrolysis fraction showing the highest thermal resistance (lowest mass loss). Thermal characterization indicated similarities in the qualitative chemical composition of the tested fractions. Analyzed products demonstrated bactericidal activity against human- or plant-pathogenic bacteria and exhibited poor antimicrobial activity towards probiotic bacteria. Specifically, Lactoplantibacillus sp. and L. rhamnosus were, on average, approximately 61% and 45% less affected, respectively, compared to the most sensitive E. coli. We demonstrate apparent, predominantly substrate-driven differences in antibacterial activity, with Gram-negative bacteria being more susceptible to pine products and Gram-positive bacteria being more susceptible to birch products. Full article
(This article belongs to the Special Issue Biomass Pyrolysis Characterization and Energy Utilization)
Show Figures

Figure 1

20 pages, 3566 KB  
Article
In Situ Green Synthesis of Red Wine Silver Nanoparticles on Cotton Fabrics and Investigation of Their Antibacterial Effects
by Alexandria Erasmus, Nicole Remaliah Samantha Sibuyi, Mervin Meyer and Abram Madimabe Madiehe
Int. J. Mol. Sci. 2026, 27(2), 952; https://doi.org/10.3390/ijms27020952 - 18 Jan 2026
Viewed by 239
Abstract
Antimicrobial resistance (AMR) is a major global health concern, which complicates treatment of microbial infections and wounds. Conventional therapies are no longer effective against drug resistant microbes; hence, novel antimicrobial approaches are urgently required. Silver nanoparticles (AgNPs) offer stronger antimicrobial activity, and in [...] Read more.
Antimicrobial resistance (AMR) is a major global health concern, which complicates treatment of microbial infections and wounds. Conventional therapies are no longer effective against drug resistant microbes; hence, novel antimicrobial approaches are urgently required. Silver nanoparticles (AgNPs) offer stronger antimicrobial activity, and in situ synthesis improves stability, uniformity, cost efficiency, and bioactivity while minimising contamination. These features make AgNPs well-suited for incorporation into textiles and wound dressings. Red wine extract (RW-E), rich in antioxidant and anti-inflammatory compounds was used to hydrothermally synthesise RW-AgNPs and RW-AgNPs-loaded on cotton (RWALC) by optimising pH and RW-E concentration. Characterisation was performed using UV–Vis spectroscopy, dynamic light scattering (DLS), and High Resolution and Scanning electron microscopy (HR-TEM and SEM). Antibacterial activities were evaluated against human pathogens through agar disc diffusion assay for RWALC and microdilution assay for RW-AgNPs. RWALC showed higher potency against both Gram-negative and Gram-positive bacteria, with inhibition zones of 12.33 ± 1.15 to 23.5 ± 5.15 mm, that surpassed those of ciprofloxacin (10 ± 3 to 19.17 ± 1.39 mm at 10 μg/mL). RW-AgNPs exhibited low minimum inhibitory concentrations (MIC: 0.195–3.125 μg/mL) and minimum bactericidal concentrations (MBC: 0.78–6.25 μg/mL). Preincubation with β-mercaptoethanol (β-ME) inhibited the antibacterial activity of RWALC, suggesting that thiolated molecules are involved in AgNPs-mediated effects. This study demonstrated that green-synthesised RW-AgNPs, incorporated in situ into cotton, conferred strong antibacterial properties, warranting further investigation into their mechanisms of action. Full article
Show Figures

Graphical abstract

17 pages, 1782 KB  
Article
Production of Antimicrobial and Antioxidant Metabolites by Penicillium crustosum Using Lemon Peel as a Co-Substrate in Submerged Fermentation
by Arely Núñez-Serrano, Refugio B. García-Reyes, Juan A. Ascasio-Valdés, Cristóbal N. Aguilar-González and Alcione García-González
Foods 2026, 15(2), 348; https://doi.org/10.3390/foods15020348 - 18 Jan 2026
Viewed by 126
Abstract
Fungal secondary metabolites are valuable sources of natural antioxidants and antimicrobials. This study evaluated the submerged fermentation of Penicillium crustosum OR889307 supplemented with lemon peel as a co-substrate to enhance the production of bioactive compounds. Lemon peel was selected for its phenolic precursors [...] Read more.
Fungal secondary metabolites are valuable sources of natural antioxidants and antimicrobials. This study evaluated the submerged fermentation of Penicillium crustosum OR889307 supplemented with lemon peel as a co-substrate to enhance the production of bioactive compounds. Lemon peel was selected for its phenolic precursors and sustainable availability as an agro-industrial byproduct. Crude extracts, aqueous and organic fractions, and molecular-weight partitions were assessed for antioxidant activity using the DPPH assay and for antimicrobial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Pseudomonas aeruginosa, and Candida albicans. Semi-purified extracts from co-substrate fermentations exhibited enhanced bioactivity, showing MIC values of 185 µg/mL against P. aeruginosa and 225 µg/mL against MRSA, along with strong ABTS radical-scavenging capacity (238.95 ± 2.17 µmol TE). RP-HPLC-ESI-MS profiling revealed phenolic acids, flavanones, flavonols, and lignans, including ferulic acid 4-O-glucoside, bisdemethoxycurcumin, secoisolariciresinol, and quercetin 3-O-xylosyl-glucuronide. These findings demonstrate that lemon peel supplementation promotes the biosynthesis of antimicrobial and antioxidant metabolites by P. crustosum. This approach supports sustainable agro-waste valorization and offers a promising strategy for obtaining natural bioactive compounds with potential applications in food preservation and health-related formulations. Full article
Show Figures

Figure 1

Back to TopTop