Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (725)

Search Parameters:
Keywords = antiobesity activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 984 KiB  
Review
Anti-Obesity Mechanisms of Plant and Fungal Polysaccharides: The Impact of Structural Diversity
by Guihong Fang, Baolian Li, Li Zhu, Liqian Chen, Juan Xiao and Juncheng Chen
Biomolecules 2025, 15(8), 1140; https://doi.org/10.3390/biom15081140 - 7 Aug 2025
Abstract
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified [...] Read more.
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified efforts to develop plant and fungal polysaccharide therapeutic alternatives. These polysaccharide macromolecules have emerged as promising candidates because of their diverse biological activities and often act as natural prebiotics, exerting beneficial effects through multiple pathways. Plant and fungal polysaccharides can reduce blood glucose levels, alleviate inflammation and oxidative stress, modulate metabolic signaling pathways, inhibit nutrient absorption, and reshape gut microbial composition. These effects have been shown in cellular and animal models and are associated with mechanisms underlying obesity and related metabolic disorders. This review discusses the complexity of obesity and multifaceted role of plant and fungal polysaccharides in alleviating its symptoms and complications. Current knowledge on the anti-obesity properties of plant and fungal polysaccharides is also summarized. We highlight their regulatory effects, potential intervention pathways, and structure–function relationships, thereby providing novel insights into polysaccharide-based strategies for obesity management. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

24 pages, 1165 KiB  
Review
Neoxanthin: A Promising Medicinal and Nutritional Carotenoid
by Jiarong Zhao, Gengjie Zhuang and Jinrong Zhang
Mar. Drugs 2025, 23(8), 317; https://doi.org/10.3390/md23080317 - 1 Aug 2025
Viewed by 257
Abstract
Neoxanthin is a xanthophyll carotenoid with high-value nutritional functions for human health due to its anti-cancer, anti-oxidative, and anti-obesity activities. In this present work, we systematically reviewed the structure, source, and biosynthetic pathways of neoxanthin, and discussed the advantages and disadvantages of the [...] Read more.
Neoxanthin is a xanthophyll carotenoid with high-value nutritional functions for human health due to its anti-cancer, anti-oxidative, and anti-obesity activities. In this present work, we systematically reviewed the structure, source, and biosynthetic pathways of neoxanthin, and discussed the advantages and disadvantages of the prevailing extraction methods of neoxanthin. Meanwhile, this review described the latest research progress on the pharmacological activities of neoxanthin. Finally, we concluded with a discussion on the main challenges of neoxanthin production from microalgae, and proposed some future development prospects and potential solutions. Full article
(This article belongs to the Special Issue Marine Carotenoids and Potential Therapeutic Benefits)
Show Figures

Figure 1

23 pages, 8387 KiB  
Article
Solvent Fractionation of Polygonum cuspidatum Sieb. et Zucc. for Antioxidant, Biological Activity, and Chromatographic Characterization
by Yuchen Cheng, Yuri Kang and Woonjung Kim
Int. J. Mol. Sci. 2025, 26(14), 7011; https://doi.org/10.3390/ijms26147011 - 21 Jul 2025
Viewed by 330
Abstract
This study investigated the natural bioactive compounds in Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum) by fractionating a 70% ethanol extract using n-hexane, chloroform, ethyl acetate, n-butanol, and water. The total polyphenol and flavonoid contents of each fraction were [...] Read more.
This study investigated the natural bioactive compounds in Polygonum cuspidatum Sieb. et Zucc. (P. cuspidatum) by fractionating a 70% ethanol extract using n-hexane, chloroform, ethyl acetate, n-butanol, and water. The total polyphenol and flavonoid contents of each fraction were determined, and their antioxidant activities were evaluated using DPPH, ABTS, and FRAP assays. Additionally, the anti-diabetic potential was assessed via α-glucosidase inhibitory activity, while anti-obesity activity was evaluated using lipase inhibitory activity. The fractions were also tested for tyrosinase and elastase inhibitory activities to assess their skin-whitening and anti-wrinkle potential, and their antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa was determined using the agar diffusion method. Finally, bioactive compounds were identified and quantified using HPLC and GC–MSD. The results showed that the ethyl acetate fraction possessed the highest total polyphenol content (0.53 ± 0.01 g GAE/g) and total flavonoid content (0.19 ± 0.02 g QE/g). It also exhibited strong antioxidant activity, with the lowest DPPH radical scavenging IC50 (0.01 ± 0.00 mg/mL), ABTS radical scavenging IC50 (0.06 ± 0.00 mg/mL), and the highest FRAP value (6.02 ± 0.30 mM Fe2+/mg). Moreover, it demonstrated potent enzyme inhibitory activities, including tyrosinase inhibitory activity (67.78 ± 2.50%), elastase inhibitory activity (83.84 ± 1.64%), α-glucosidase inhibitory activity (65.14 ± 10.29%), and lipase inhibitory activity (85.79 ± 1.04%). In the antibacterial activity, the ethyl acetate fraction produced a clear inhibitory zone of 19.50 mm against Staphylococcus aureus, indicating notable antibacterial activity. HPLC-PDA and GC–MSD analyses identified tannic acid and emodin as the major bioactive constituents. These findings suggest that the ethyl acetate fraction of P. cuspidatum extract, rich in polyphenol and flavonoid compounds, is a promising natural source of bioactive ingredients for applications in the food, pharmaceutical, and cosmetic industries. Further research is needed to explore its mechanisms and therapeutic applications. Full article
Show Figures

Figure 1

22 pages, 2637 KiB  
Article
Anti-Obesity and Hepatoprotective Effects of Probiotic Goat Milk in Mice: Insights from Hepatic Proteomics
by Antonela Marquez, Estefanía Andrada, Matias Russo, Jaime Daniel Babot, Roxana Medina and Paola Gauffin-Cano
Fermentation 2025, 11(7), 419; https://doi.org/10.3390/fermentation11070419 - 20 Jul 2025
Viewed by 551
Abstract
Dietary administration of fermented goat milk (FGM) with the starter strain Lactobacillus delbrueckii subsp. indicus CRL1447 and supplemented with different functional cultures (FCs) of lactobacilli strains (FC1: Limosilactobacillus fermentum CRL1446 + Lactiplantibacillus paraplantarum CRL1449 + Lactiplantibacillus paraplantarum CRL1472; FC2: CRL1446 + CRL1449; FC3: [...] Read more.
Dietary administration of fermented goat milk (FGM) with the starter strain Lactobacillus delbrueckii subsp. indicus CRL1447 and supplemented with different functional cultures (FCs) of lactobacilli strains (FC1: Limosilactobacillus fermentum CRL1446 + Lactiplantibacillus paraplantarum CRL1449 + Lactiplantibacillus paraplantarum CRL1472; FC2: CRL1446 + CRL1449; FC3: CRL1446 + CRL1472; and FC4: CRL1449 + CRL1472) was investigated in mice fed a high-fat diet (HFD). FGM supplemented with different FCs, referred to as Probiotic Goat Milk (PGM), demonstrated significant anti-obesity activity by reducing body weight and improving blood lipid profiles in obese mice. The animals that received the PGM showed less fat infiltration in the hepatocytes compared to the obese mice fed FGM. Hepatic proteomics data show that HFD generally upregulates proteins involved in fatty acid oxidation and downregulates proteins implicated in lipid synthesis, whereas the administration of FGM supplemented with FC3 (PGM3) improves the proteomic profile. These results suggest that PGM exerts systemic metabolic effects through modulation of the gut–liver axis, highlighting its potential as a dietary strategy against obesity-related disorders. Full article
Show Figures

Figure 1

21 pages, 3692 KiB  
Article
Anti-Obesity Effects of Rosa rugosa Thunb. Flower Bud Extracts on Lipid Metabolism Regulation in 3T3-L1 Adipocytes and Sprague Dawley Rats
by Jung Min Kim, Kyoung Kon Kim, Hye Rim Lee, Jae Cheon Im and Tae Woo Kim
Int. J. Mol. Sci. 2025, 26(14), 6963; https://doi.org/10.3390/ijms26146963 - 20 Jul 2025
Viewed by 278
Abstract
In modern society, obesity and its associated complications have emerged as serious public health concerns, primarily stemming from sedentary lifestyles and carbohydrate-rich diets. Due to the severe side effects often associated with pharmacological anti-obesity agents, emerging global efforts focus on preventive strategies, e.g., [...] Read more.
In modern society, obesity and its associated complications have emerged as serious public health concerns, primarily stemming from sedentary lifestyles and carbohydrate-rich diets. Due to the severe side effects often associated with pharmacological anti-obesity agents, emerging global efforts focus on preventive strategies, e.g., dietary modifications and weight gain-suppressing functional foods. In this context, plant-derived metabolites are extensively investigated for their beneficial anti-obesity effects. In this study, we evaluated how Rosa rugosa Thunb. flower bud extract affects fat metabolism in 3T3-L1 preadipocyte cells. The extract significantly inhibited adipocyte differentiation and intracellular triglyceride accumulation in 3T3-L1 cells, enhanced lipolysis, suppressed lipogenesis, and promoted energy metabolism in differentiated adipocytes. In vivo, it reduced body and organ weights and fat mass in high-fat diet-induced obese rats, along with marked adipocyte size and hepatic lipid accumulation reductions. In the epididymal adipose tissue, the extract similarly enhanced lipolytic activity, suppressed lipogenic enzyme expression, and stimulated energy expenditure. Taken together, our results demonstrate the potential of R. rugosa Thunb. flower bud extract in reducing fat accumulation through lipid metabolism modulation both in cellular and animal models. Further studies are warranted to identify the active constituents and evaluate the safety and efficacy of the extract in clinical applications. Full article
(This article belongs to the Special Issue High Fat Diet Metabolism and Diseases)
Show Figures

Figure 1

23 pages, 3832 KiB  
Article
Novel Probiotic Strain Lactiplantibacillus plantarum CNTA 628 Modulates Lipid Metabolism and Improves Healthspan in C. elegans
by Ignacio Goyache, Lorena Valdés-Varela, Raquel Virto, Miguel López-Yoldi, Noelia López-Giral, Ana Sánchez-Vicente, Fermín I. Milagro and Paula Aranaz
Appl. Sci. 2025, 15(14), 8007; https://doi.org/10.3390/app15148007 - 18 Jul 2025
Viewed by 308
Abstract
The call for new approaches to prevent and treat metabolic syndrome-related diseases has led to research on the use of lacto-fermentative probiotics with beneficial metabolic properties like Lactobacilli. Here, we characterize the probiotic properties of a novel strain, Lactiplantibacillus plantarum CNTA 628, [...] Read more.
The call for new approaches to prevent and treat metabolic syndrome-related diseases has led to research on the use of lacto-fermentative probiotics with beneficial metabolic properties like Lactobacilli. Here, we characterize the probiotic properties of a novel strain, Lactiplantibacillus plantarum CNTA 628, and investigate its potential anti-obesity and health-promoting activities in the Caenorhabditis elegans model, additionally elucidating the molecular mechanisms involved. Lactiplantibacillus plantarum CNTA 628 exhibited sensitivity to the entire spectrum of antibiotics analyzed, gastric and intestinal resistance in vitro, β-galactosidase and bile-salt hydrolysate activities, and the capacity to form biofilms and produce SCFAs. In addition, it reduced the binding of the pathogenic E. coli O157:H7 to intestinal epithelial cells (Caco-2) and exerted immune-modulating effects in cellular models. Supplementation with this probiotic significantly reduced C. elegans fat accumulation by more than 18% under control and high-glucose conditions, lowered senescence, improved oxidative stress, and significantly enhanced lifespan without affecting the development of the worms. Gene expression analyses evidenced that L. plantarum CNTA 628 plays a role in regulating daf-22 and maoc-1 gene expression, both linked to beta-oxidation pathways. Our results demonstrate the health-benefiting properties of this novel strain and suggest its potential as probiotic candidate for the prevention and treatment of metabolic syndrome-related conditions. Full article
(This article belongs to the Special Issue Probiotics, Prebiotics, Postbiotics: From Mechanisms to Applications)
Show Figures

Figure 1

25 pages, 4595 KiB  
Article
Probiotic Potentials and Protective Effects of Ligilactobacillus animalis LA-1 Against High-Fat Diet-Induced Obesity in Mice
by Qingya Wang, Yuyin Huang, Kun Meng, Haiou Zhang, Yunsheng Han, Rui Zhang, Xiling Han, Guohua Liu, Hongying Cai and Peilong Yang
Nutrients 2025, 17(14), 2346; https://doi.org/10.3390/nu17142346 - 17 Jul 2025
Viewed by 550
Abstract
Background/Objectives: Obesity is increasingly recognized as a global health concern due to its association with metabolic disorders and gut microbiota dysbiosis. While probiotics offer promise in regulating gut microbiota and improving host metabolism, strain-specific effects remain underexplored, particularly for canine-derived probiotics. This [...] Read more.
Background/Objectives: Obesity is increasingly recognized as a global health concern due to its association with metabolic disorders and gut microbiota dysbiosis. While probiotics offer promise in regulating gut microbiota and improving host metabolism, strain-specific effects remain underexplored, particularly for canine-derived probiotics. This study aimed to isolate and characterize a novel probiotic strain, Ligilactobacillus animalis LA-1, and evaluate its anti-obesity effects and underlying mechanisms using a high-fat diet (HFD)-induced obese mouse model. Methods: LA-1 was isolated from the feces of a healthy dog and assessed for probiotic potential in vitro, including gastrointestinal tolerance, bile salt hydrolase activity, cholesterol-lowering capacity, and fatty acid absorption. Male C57BL/6J mice were fed either a standard chow diet or an HFD for 16 weeks, with HFD mice receiving oral LA-1 supplementation (2 × 109 CFU/day). Multi-omics analyses, including 16S rRNA gene sequencing, short-chain fatty acid (SCFA) quantification, and untargeted liver metabolomics, were employed to investigate the effects of LA-1 on gut microbiota composition, metabolic pathways, and obesity-related phenotypes. Results: LA-1 supplementation significantly alleviated HFD-induced weight gain, hepatic lipid accumulation, and adipose tissue hypertrophy, without affecting food intake. It improved serum lipid profiles, reduced liver injury markers, and partially restored gut microbiota composition, decreasing the Firmicutes/Bacteroidetes ratio and enriching SCFA-producing genera. Total SCFA levels, particularly acetate, propionate, and butyrate, increased following LA-1 treatment. Liver metabolomics revealed that LA-1 modulated pathways involved in lipid and amino acid metabolism, resulting in decreased levels of acetyl-CoA, triglycerides, and bile acids. Conclusions: L. animalis LA-1 exerts anti-obesity effects via gut microbiota modulation, enhanced SCFA production, and hepatic metabolic reprogramming. These findings highlight its potential as a targeted probiotic intervention for obesity and metabolic disorders. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

16 pages, 5542 KiB  
Article
Anti-Obesity and Metabolic Effects of Forskolin in Obese C57BL/6J Mice
by Mehrnaz Abbasi, Fang Zhou, Ngoc Kim Ly, Austin Taylor, Qiaobin Hu, Jinhua Chi, Haiwei Gu and Shu Wang
Int. J. Mol. Sci. 2025, 26(14), 6607; https://doi.org/10.3390/ijms26146607 - 10 Jul 2025
Viewed by 484
Abstract
Forskolin (FSK) induces the browning of white adipose tissue (WAT) through the activation of adenylate cyclase (AC) and cyclic adenosine monophosphate (cAMP) generation. When administered intravenously or orally, FSK undergoes significant metabolism and accumulation in the liver and other tissues, resulting in high [...] Read more.
Forskolin (FSK) induces the browning of white adipose tissue (WAT) through the activation of adenylate cyclase (AC) and cyclic adenosine monophosphate (cAMP) generation. When administered intravenously or orally, FSK undergoes significant metabolism and accumulation in the liver and other tissues, resulting in high side effects and low anti-obesity effects due to trivial amounts reaching WAT. This study examines the potential anti-obesity and metabolic effects of the inguinal WAT (IWAT) delivery of FSK in high-fat diet-induced C57BL/6J obese mice. Mice received one of the following treatments twice weekly for 4 weeks: 1. Control into both IWAT depots (Conboth); 2. FSK 15 mg/kg body weight (BW)/injection into both inguinal WAT (IWAT) depots (FSK15both); 3. FSK 7.5 mg/kg BW/injection into both IWAT depots (FSK7.5both); and 4. FSK 7.5 mg/kg BW/injection into the left IWAT depot (FSK7.5left). Both the FSK15both and FSK7.5both treatments improved metabolic parameters by lowering blood glucose, enhancing glucose tolerance, and reducing serum insulin and cholesterol. The FSK15both treatment had a greater impact on IWAT, resulting in smaller adipocytes and increased expression of Ucp1 and Tmem26 mRNA levels. All FSK treatments also reduced inflammatory and lipogenic markers in the liver, indicating improved hepatic metabolism. These findings suggest that local delivery of FSK into subcutaneous WAT is a potential strategy for combating obesity and improving metabolic health. However, further studies are needed to confirm the statistical and biological significance of these effects. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

17 pages, 4949 KiB  
Article
Apple Juice Fermented with Lactiplantibacillus plantarum Improves Its Flavor Profile and Probiotic Potential
by Boqian Zhou, Zhuobin Xing, Yiting Wang, Xin Guan, Fuyi Wang, Jiaqi Yin, Zhibo Li, Qiancheng Zhao, Hongman Hou and Xue Sang
Foods 2025, 14(13), 2373; https://doi.org/10.3390/foods14132373 - 4 Jul 2025
Viewed by 469
Abstract
Fermented apple juice (FAJ), a nutrient-dense beverage rich in vitamins, offers multiple health benefits, including improved digestion, enhanced fat metabolism, and sustained energy provision with reduced caloric intake. To advance the development of probiotic-enriched flavored and functional juices, this study establishes Lactiplantibacillus plantarum [...] Read more.
Fermented apple juice (FAJ), a nutrient-dense beverage rich in vitamins, offers multiple health benefits, including improved digestion, enhanced fat metabolism, and sustained energy provision with reduced caloric intake. To advance the development of probiotic-enriched flavored and functional juices, this study establishes Lactiplantibacillus plantarum (L. plantarum) as a safe and effective starter culture for apple juice fermentation. The selected strain exhibited minimal biogenic amine synthesis, producing only 30.55 ± 1.2 mg/L of putrescine and 0.59 ± 0.55 mg/L of cadaverine, while histamine and tyramine were undetectable. Furthermore, the strain demonstrated no hemolytic activity and exhibited robust biofilm-forming capacity, reinforcing its suitability for fermentation applications. An electronic nose analysis revealed that L. plantarum significantly enriched the volatile compound profile of FAJ, leading to an improved flavor profile. The strain also displayed excellent growth adaptability in the apple juice matrix, further optimizing fermentation efficiency and sensory quality. Crucially, 16S rRNA sequencing demonstrated that FAJ specifically restructures the gut microbiota in obese individuals, significantly elevating the relative abundance of beneficial genera, including Enterococcus, Parabacteroides, and Bifidobacterium (p < 0.05). Concurrently, FAJ enhanced glycolytic activity, suggesting a potential role in metabolic regulation. Collectively, these findings confirm that L. plantarum-fermented FAJ combines favorable sensory properties and safety with promising anti-obesity effects mediated through gut microbiome modulation and metabolic pathway activation. This study provides a critical scientific foundation for designing next-generation functional fermented beverages with targeted health benefits. Full article
Show Figures

Figure 1

18 pages, 1769 KiB  
Article
Antioxidant and Pancreatic Lipase Inhibitory Activities of Panax japonicus (T. Nees) C.A. Meyer
by Jinfeng Yang, Wenxuan Jiang, Ju Hee Park, Eun Soo Seong, Yong Soo Kwon and Myong Jo Kim
Plants 2025, 14(13), 2003; https://doi.org/10.3390/plants14132003 - 30 Jun 2025
Viewed by 316
Abstract
Obesity and its associated complications, including oxidative stress, pose significant global health challenges. Natural products offer a promising avenue for developing novel therapeutic strategies. In this study, we investigated the potential of Panax japonicus (T. Nees) C.A. Meyer, a traditional medicinal plant known [...] Read more.
Obesity and its associated complications, including oxidative stress, pose significant global health challenges. Natural products offer a promising avenue for developing novel therapeutic strategies. In this study, we investigated the potential of Panax japonicus (T. Nees) C.A. Meyer, a traditional medicinal plant known for its antioxidant and anti-obesity properties. A methanol extract of Panax japonicus and its fractions were evaluated for their in vitro antioxidant activities (tested using DPPH and reducing power assays), pancreatic lipase (PL) inhibitory capacities, and underlying mechanisms of action. The results indicated that the ethyl acetate fraction of P. japonicus (PJEA) exhibited the greatest potency, demonstrating strong antioxidant activity and significantly inhibiting digestive enzyme activity (pancreatic lipase). Mechanistic studies revealed that the PL inhibition was of a mixed type, combining both competitive and non-competitive mechanisms. Furthermore, PJEA demonstrated the ability to inhibit the differentiation of preadipocytes, primarily exerting its anti-adipogenic effects by downregulating the mRNA expression of PPARγ and the gene expression of C/EBPα. In addition, the extract suppressed the gene expression of FAS and ACC in adipose tissue. Isolation of the bioactive compounds from PJEA identified kaempferol 3-O-α-L-rhamnoside and catechin, which potentially contribute to the observed anti-obesity effects. Overall, this study highlights P. japonicus as a promising natural ingredient for scavenging free radicals and managing obesity, suggesting its potential for development into functional foods or therapeutic agents. Full article
Show Figures

Figure 1

14 pages, 2021 KiB  
Article
Fucosylation-Mediated Suppression of Lipid Droplet Accumulation Induced by Low-Level L-Fucose Administration in 3T3-L1 Adipocytes
by Tomoya Nakamura, Tomohiko Nakao, Yuri Kominami, Miho Ito, Teruki Aizawa, Yusuke Akahori and Hideki Ushio
Kinases Phosphatases 2025, 3(3), 13; https://doi.org/10.3390/kinasesphosphatases3030013 - 24 Jun 2025
Viewed by 272
Abstract
Obesity causes lifestyle-related diseases such as hypertension and type 2 diabetes and has become a global health concern. L-fucose (Fuc), a monosaccharide that can be derived from brown algae, has been shown to strongly suppress lipid droplet accumulation in 3T3-L1 murine adipocytes at [...] Read more.
Obesity causes lifestyle-related diseases such as hypertension and type 2 diabetes and has become a global health concern. L-fucose (Fuc), a monosaccharide that can be derived from brown algae, has been shown to strongly suppress lipid droplet accumulation in 3T3-L1 murine adipocytes at high concentrations via the activation of AMP-activated kinase (AMPK). Although low concentrations of Fuc also exhibited similar effects, the underlying mechanisms remain unclear. In this study, we investigated the effects of low-level Fuc on lipid metabolism, focusing on the role of fucosylation. Low-level Fuc did not induce AMPK phosphorylation but suppressed lipid droplet accumulation. This suppressive effect was abolished by co-treatment with the fucosylation inhibitor 2F-Peracetyl-Fucose (2F-PAF), suggesting that fucosylation plays a key role in the observed metabolic regulation. Furthermore, proteomic analysis combined with click chemistry pulldown suggested that proteins involved in the regulation of lipid metabolism, such as acetoacetyl-CoA synthetase enzymes and catalytic subunit alpha of cAMP-dependent protein kinase, are fucosylated or interact with fucose. These findings provide novel insights into the anti-obesity mechanisms of Fuc and highlight the physiological significance of protein fucosylation in adipocyte lipid metabolism. Full article
Show Figures

Figure 1

23 pages, 4651 KiB  
Article
High-Expansion Natural Composite Films for Controlled Delivery of Hydroxycitric Acid in Obesity Therapy
by Kantiya Fungfoung, Ousanee Issarachot, Rachanida Praparatana and Ruedeekorn Wiwattanapatapee
Polymers 2025, 17(12), 1697; https://doi.org/10.3390/polym17121697 - 18 Jun 2025
Viewed by 643
Abstract
Expandable films represent a promising gastroretentive drug delivery system, offering prolonged gastric retention and sustained drug release features particularly advantageous for obesity treatment. This study developed high-expansion films using konjac and various low glycemic index starches, including purple potato, brown rice, resistant, and [...] Read more.
Expandable films represent a promising gastroretentive drug delivery system, offering prolonged gastric retention and sustained drug release features particularly advantageous for obesity treatment. This study developed high-expansion films using konjac and various low glycemic index starches, including purple potato, brown rice, resistant, and red jasmine rice starches, in combination with chitosan and hydroxypropyl methylcellulose (HPMC) E15. Garcinia extract was incorporated into the films using the solvent casting technique. Among 27 formulations, all demonstrated rapid unfolding (within 15 min) and significant expansion (2-4 folds). Hydroxycitric acid (HCA), the active component, was encapsulated at efficiencies exceeding 80% w/w. The konjac-based films exhibited favorable mechanical properties, expansion capacity, and drug content uniformity. Notably, the CK3-H1 formulation (2% w/v chitosan, 3% w/v konjac, 1% w/v HPMC E15) provided sustained HCA release over 8 h via diffusion. Cytotoxicity tests showed no toxic effects on RAW 264.7 macrophages at concentrations up to 400 μg/mL. Furthermore, CK3-H1 achieved notable nitric oxide inhibition (35.80 ± 1.21%) and the highest reduction in lipid accumulation (31.09 ± 3.15%) in 3T3-L1 adipocytes, outperforming pure HCA and garcinia extract. These results suggest that expandable konjac-based films are a viable and effective delivery system for herbal anti-obesity agents. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Medical Applications)
Show Figures

Graphical abstract

22 pages, 7114 KiB  
Article
Antrodia cinnamomea Extract Attenuates Obesity by Targeting Adipogenic Pathways and Gut Dysbiosis in High-Fat Diet-Fed Mice
by Kuen-Tze Lin, Shih-Yu Lee, Lee Ya-Jy, Po-Jui Wu, Tsu-Chung Chang, Wen-Liang Chang and I-Chuan Yen
Int. J. Mol. Sci. 2025, 26(12), 5856; https://doi.org/10.3390/ijms26125856 - 18 Jun 2025
Viewed by 776
Abstract
Obesity is a major metabolic disorder driven by excessive adipogenesis and lipid accumulation. This study investigated the anti-obesity effects and molecular mechanisms of Antrodia cinnamomea alcohol extract (ACE) in 3T3-L1 preadipocytes and a high-fat diet (HFD)-induced obesity mouse model. In vitro, Antrodia cinnamomea [...] Read more.
Obesity is a major metabolic disorder driven by excessive adipogenesis and lipid accumulation. This study investigated the anti-obesity effects and molecular mechanisms of Antrodia cinnamomea alcohol extract (ACE) in 3T3-L1 preadipocytes and a high-fat diet (HFD)-induced obesity mouse model. In vitro, Antrodia cinnamomea alcohol extract significantly inhibited adipocyte differentiation and lipid accumulation in 3T3-L1 cells by downregulating PPARγ and C/EBPα, while activating the AMPK pathway and suppressing MAPK signaling. In vivo, Antrodia cinnamomea alcohol extract administration reduced body weight, adipose tissue mass, and liver lipid accumulation in high-fat diet-fed mice, ameliorating non-alcoholic fatty liver disease (NAFLD) symptoms. Transcriptomic analysis of adipose tissue revealed that Antrodia cinnamomea alcohol extract modulated key gene expression profiles related to fatty acid metabolism and adipogenesis, suppressing lipid synthesis while enhancing β-oxidation. Furthermore, Antrodia cinnamomea alcohol extract rebalanced gut microbiota, increasing beneficial bacterial populations such as Akkermansia and Bifidobacterium, while reducing pro-inflammatory Escherichia-Shigella species. These findings demonstrate that Antrodia cinnamomea alcohol extract exerts multifaceted anti-obesity effects by regulating lipid metabolism, adipogenesis pathways, and gut microbiota composition, highlighting its potential as a natural therapeutic agent for obesity management. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

26 pages, 1150 KiB  
Review
Therapeutic Potential of Ellagic Acid in Liver Diseases
by Karolina Wojtunik-Kulesza, Przemysław Niziński, Anna Krajewska, Tomasz Oniszczuk, Maciej Combrzyński and Anna Oniszczuk
Molecules 2025, 30(12), 2596; https://doi.org/10.3390/molecules30122596 - 15 Jun 2025
Viewed by 1154
Abstract
Ellagic acid (EA) is a natural polyphenol found in various fruits, nuts, and mushrooms. It exhibits a variety of biological activities, including potent antioxidant, anti-inflammatory, anti-obesity, and neuroprotective properties. EA exerts hepatoprotective effects through multiple mechanisms, including (1) scavenging reactive oxygen species (ROS) [...] Read more.
Ellagic acid (EA) is a natural polyphenol found in various fruits, nuts, and mushrooms. It exhibits a variety of biological activities, including potent antioxidant, anti-inflammatory, anti-obesity, and neuroprotective properties. EA exerts hepatoprotective effects through multiple mechanisms, including (1) scavenging reactive oxygen species (ROS) and enhancing endogenous antioxidant defenses (e.g., by activating Nrf2/ARE), (2) modulating inflammatory signaling pathways (e.g., inhibiting NF-κB, TNF-α, and IL-6), and (3) regulating apoptosis (e.g., downregulating the Bax/Bcl-2 ratio) and fibrosis (e.g., inhibiting TGF-β/Smad signaling). Despite its promising preclinical efficacy, the clinical applicability of EA is currently limited by its poor bioavailability. This could potentially be overcome by advanced delivery systems or by directly administering its active microbial metabolites, known as urolithins. EA and its derivatives also modulate the gut microbiota, promoting the growth of beneficial species and reducing gut permeability and hepatic inflammation. Preliminary clinical trials and other emerging evidence suggest that EA may reduce liver inflammation, oxidative stress, and metabolic dysregulation. However, more extensive human studies are needed to confirm its efficacy and safety in managing liver disease. This review highlights the therapeutic potential of EA in the treatment of liver diseases, particularly metabolic-dysfunction-associated steatotic liver disease (MASLD). Full article
Show Figures

Figure 1

20 pages, 2129 KiB  
Article
Anoectochilus burmannicus Extract Rescues Aging-Related Phenotypes in Drosophila Susceptible to Oxidative Stress-Induced Senescence
by Pensiri Buacheen, Jirarat Karinchai, Woorawee Inthachat, Chutikarn Butkinaree, Ariyaphong Wongnoppawich, Arisa Imsumran, Piya Temviriyanukul, Yoshihiro H. Inoue and Pornsiri Pitchakarn
Int. J. Mol. Sci. 2025, 26(12), 5694; https://doi.org/10.3390/ijms26125694 - 13 Jun 2025
Viewed by 613
Abstract
Aging is a significant risk factor for various conditions, including neurodegeneration, cardiovascular disease, and type 2 diabetes. The accumulation of reactive oxygen species (ROS) and a decline in antioxidant defense are mechanisms that are widely acknowledged as causing the acceleration of both aging [...] Read more.
Aging is a significant risk factor for various conditions, including neurodegeneration, cardiovascular disease, and type 2 diabetes. The accumulation of reactive oxygen species (ROS) and a decline in antioxidant defense are mechanisms that are widely acknowledged as causing the acceleration of both aging and the onset of age-related diseases. To promote longevity and reduce the risk of the development of aging-related disorders, it is essential to prevent or minimize oxidative stress and enhance antioxidant defense. It has been shown that Anoectochilus burmannicus (AB), a jewel orchid rich in phenolic compounds, can impact various biological activities associated with aging prevention. These activities include antioxidant, anti-inflammation, anti-insulin resistance, and anti-obesity effects. The aim of this study was to explore whether AB extract (ABE) could serve as an anti-aging agent using a Sod1-deficient Drosophila model, which accelerates the process of aging through ROS production. The results demonstrated that ABE, at a concentration of 2.5 mg/mL, significantly extended the lifespan of the flies and helped maintain their locomotor activity as they aged. ABE also reduced the age-related accumulation of damaged proteins in the muscle of the flies by inhibiting the expression of Gstd1, a genetic marker for oxidative stress. This finding agrees with those from in vitro experiments, which have shown the potential for ABE to reduce the production of ROS induced by H2O2 in myoblasts. ABE has been shown to attenuate insulin resistance, an age-related disorder, by inhibiting the pro-inflammatory cytokine TNF-α, which in turn increased insulin-stimulated glucose uptake in adipocytes. These findings suggest a promising role of ABE as an ingredient in functional foods or nutraceuticals aimed at promoting health, preventing oxidative stress, and potentially managing age-associated diseases. Full article
(This article belongs to the Special Issue Drosophila: A Versatile Model in Biology and Medicine—2nd Edition)
Show Figures

Figure 1

Back to TopTop