Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,130)

Search Parameters:
Keywords = antibody structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1311 KiB  
Review
Super-Resolution Microscopy in the Structural Analysis and Assembly Dynamics of HIV
by Aiden Jurcenko, Olesia Gololobova and Kenneth W. Witwer
Appl. Nano 2025, 6(3), 13; https://doi.org/10.3390/applnano6030013 - 31 Jul 2025
Abstract
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and [...] Read more.
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and SIM) have been applied over the past decade to study HIV structural components and assembly. By categorizing and comparing studies based on SRM methods, HIV components, and labeling strategies, we assess the strengths and limitations of each approach. Our analysis shows that PALM is most commonly used for live-cell imaging of HIV Gag, while STED is primarily used to study the viral envelope (Env). STORM and SIM have been applied to visualize various components, including Env, capsid, and matrix. Antibody labeling is prevalent in PALM and STORM studies, targeting Env and capsid, whereas fluorescent protein labeling is mainly associated with PALM and focused on Gag. A recent emphasis on Gag and Env points to deeper investigation into HIV assembly and viral membrane dynamics. Insights from SRM studies of HIV not only enhance virological understanding but also inform future research in therapeutic strategies and delivery systems, including extracellular vesicles. Full article
(This article belongs to the Collection Review Papers for Applied Nano Science and Technology)
13 pages, 865 KiB  
Article
A Sliding Microfluidic Chip-Integrated Colorimetric Biosensor Using MnO2 Nanoflowers for Rapid Salmonella Detection
by Yidan Niu, Juntao Jiang, Xin Zhi, Jiahui An and Yuhe Wang
Micromachines 2025, 16(8), 904; https://doi.org/10.3390/mi16080904 (registering DOI) - 31 Jul 2025
Abstract
Rapid screening of foodborne pathogens is critical for food safety, yet current detection techniques often suffer from low efficiency and complexity. In this study, we developed a sliding microfluidic colorimetric biosensor for the fast, sensitive, and multiplex detection of Salmonella. First, the [...] Read more.
Rapid screening of foodborne pathogens is critical for food safety, yet current detection techniques often suffer from low efficiency and complexity. In this study, we developed a sliding microfluidic colorimetric biosensor for the fast, sensitive, and multiplex detection of Salmonella. First, the target bacteria were specifically captured by antibody-functionalized magnetic nanoparticles in the microfluidic chip, forming magnetic bead–bacteria complexes. Then, through motor-assisted sliding of the chip, manganese dioxide (MnO2) nanoflowers conjugated with secondary antibodies were introduced to bind the captured bacteria, generating a dual-antibody sandwich structure. Finally, a second sliding step brought the complexes into contact with a chromogenic substrate, where the MnO2 nanoflowers catalyzed a colorimetric reaction, and the resulting signal was used to quantify the Salmonella concentration. Under optimized conditions, the biosensor achieved a detection limit of 10 CFU/mL within 20 min. In spiked pork samples, the average recovery rate of Salmonella ranged from 94.9% to 125.4%, with a coefficient of variation between 4.0% and 6.8%. By integrating mixing, separation, washing, catalysis, and detection into a single chip, this microfluidic biosensor offers a user-friendly, time-efficient, and highly sensitive platform, showing great potential for the on-site detection of foodborne pathogens. Full article
(This article belongs to the Section B1: Biosensors)
15 pages, 2101 KiB  
Article
Identification of Two Critical Contact Residues in a Pathogenic Epitope from Tetranectin for Monoclonal Antibody Binding and Preparation of Single-Chain Variable Fragments
by Juncheng Wang, Meng Liu, Rukhshan Zahid, Wenjie Zhang, Zecheng Cai, Yan Liang, Die Li, Jiasheng Hao and Yuekang Xu
Biomolecules 2025, 15(8), 1100; https://doi.org/10.3390/biom15081100 - 30 Jul 2025
Viewed by 75
Abstract
Sepsis is a fetal disease that requires a clear diagnostic biomarker for timely antibiotic treatment. Recent research has identified a pyroptosis-inducing epitope known as P5-5 in tetranectin (TN), a plasma protein produced by monocytes. Previously, we produced a 12F1 monoclonal antibody against the [...] Read more.
Sepsis is a fetal disease that requires a clear diagnostic biomarker for timely antibiotic treatment. Recent research has identified a pyroptosis-inducing epitope known as P5-5 in tetranectin (TN), a plasma protein produced by monocytes. Previously, we produced a 12F1 monoclonal antibody against the P5-5 and discovered that it could not only diagnose the presence but also monitor the progress of sepsis in the clinic. In the current study, we further investigated the structure site of the P5-5 and the recognition mechanism between the 12F1 mAb and the P5-5 epitope. To this end, 10 amino acids (NDALYEYLRQ) in the P5-5 were individually mutated to alanine, and their binding to the mAb was tested to confirm the most significant antigenic recognition sites. In the meanwhile, the spatial conformation of 12F1 mAb variable regions was modeled, and the molecular recognition mechanisms in detail of the mAb to the P5-5 epitope were further studied by molecular docking. Following epitope prediction and experimental verification, we demonstrated that the motif “DALYEYL” in the epitope sequence position 2−8 of TN-P5-5 is the major binding region for mAb recognition, in which two residues (4L and 8L) were essential for the interaction between the P5-5 epitope and the 12F1 mAb. Therefore, our study greatly narrowed down the previously reported motif from ten to seven amino acids and identified two Leu as critical contact residues. Finally, a single-chain variable fragment (scFv) from the 12F1 hybridoma was constructed, and it was confirmed that the identified motif and residues are prerequisites for the strong binding between P5-5 and 12F1. Altogether, the data of the present work could serve as a theoretic guide for the clinical design of biosynthetic drugs by artificial intelligence to treat sepsis. Full article
Show Figures

Figure 1

18 pages, 6852 KiB  
Article
A Novel Anti-BoNT/A Neutralizing Antibody Possessed Overlapped Epitope with SV2 and Had Prolonged Half-Life In Vivo
by Shangde Peng, Naijing Hu, Fenghao Peng, Huirong Mu, Zihan Yi, Cong Xing, Liang Zhang, Wen Hu, Xinyi Zhou, Yan Wen, Jiannan Feng and Chunxia Qiao
Toxins 2025, 17(8), 376; https://doi.org/10.3390/toxins17080376 - 29 Jul 2025
Viewed by 171
Abstract
The C-terminus of the BoNT/A heavy chain (BoNT/AHC) mediates binding to its receptor, SV2, a critical step for toxicity. Antibody inhibition of this interaction enhances neuronal survival. We previously identified a functional anti-BoNT/AHC nanobody, HM. To extend its in vivo half-life, we designed [...] Read more.
The C-terminus of the BoNT/A heavy chain (BoNT/AHC) mediates binding to its receptor, SV2, a critical step for toxicity. Antibody inhibition of this interaction enhances neuronal survival. We previously identified a functional anti-BoNT/AHC nanobody, HM. To extend its in vivo half-life, we designed and prepared two Fc-optimized nanoparticles, HM-Fc5 and HM-Fc6. Structural modeling (homology/docking) of the HM Fv-AHC complex predicted that HM engages key AHC residues (Tyr1155, Phe1160, Ile1161, Val1184, Asn1188, Lys1189, Glu1190), which overlap with the SV2 binding site. This suggests HM’s protective mechanism involves blocking toxin-receptor binding and cellular entry. HM-Fc5 and HM-Fc6 retained the stability and function of the parental HM antibody while exhibiting prolonged in vivo half-life. These optimized nanobodies offer economical candidates potentially enabling longer dosing intervals, beneficial for prophylaxis or chronic disease treatment. Significance Statement: The purpose of the study is to design and prepare two Fc optimized nanoparticles, HM-Fc5 and HM-Fc6, and predict the key residues involved in the interaction between HMs and AHC. The experimental results showed that HM-Fc5 and HM-Fc6 have the same stability as the parent HM antibody but have a longer half-life in vivo. The key residues Tyr1155, Phe1160, Ile1161, Val1184, Asn1188, Lys1189, and Glu1190 overlap with the SV2 binding site. Our experimental results indicate that these nanobody candidates are not only more economical and convenient, but may also have longer dosing intervals, providing strong evidence and reference for prolonging the in vivo half-life of nanomaterials. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

36 pages, 7948 KiB  
Review
Advancing Food Safety Surveillance: Rapid and Sensitive Biosensing Technologies for Foodborne Pathogenic Bacteria
by Yuerong Feng, Jiyong Shi, Jiaqian Liu, Zhecong Yuan and Shujie Gao
Foods 2025, 14(15), 2654; https://doi.org/10.3390/foods14152654 - 29 Jul 2025
Viewed by 251
Abstract
Foodborne pathogenic bacteria critically threaten public health and food industry sustainability, serving as a predominant trigger of food contamination incidents. To mitigate these risks, the development of rapid, sensitive, and highly specific detection technologies is essential for early warning and effective control of [...] Read more.
Foodborne pathogenic bacteria critically threaten public health and food industry sustainability, serving as a predominant trigger of food contamination incidents. To mitigate these risks, the development of rapid, sensitive, and highly specific detection technologies is essential for early warning and effective control of foodborne diseases. In recent years, biosensors have gained prominence as a cutting-edge tool for detecting foodborne pathogens, owing to their operational simplicity, rapid response, high sensitivity, and suitability for on-site applications. This review provides a comprehensive evaluation of critical biorecognition elements, such as antibodies, aptamers, nucleic acids, enzymes, cell receptors, molecularly imprinted polymers (MIPs), and bacteriophages. We highlight their design strategies, recent advancements, and pivotal contributions to improving detection specificity and sensitivity. Additionally, we systematically examine mainstream biosensor-based detection technologies, with a focus on three dominant types: electrochemical biosensors, optical biosensors, and piezoelectric biosensors. For each category, we analyze its fundamental principles, structural features, and practical applications in food safety monitoring. Finally, this review identifies future research priorities, including multiplex target detection, enhanced processing of complex samples, commercialization, and scalable deployment of biosensors. These advancements are expected to bridge the gap between laboratory research and real-world food safety surveillance, fostering more robust and practical solutions. Full article
Show Figures

Figure 1

15 pages, 770 KiB  
Review
Research Progress on the Gc Proteins of Akabane Virus
by Xiaolin Lan, Fang Liang, Gan Li, Weili Kong, Ruining Wang, Lin Wang, Mengmeng Zhao and Keshan Zhang
Vet. Sci. 2025, 12(8), 701; https://doi.org/10.3390/vetsci12080701 - 27 Jul 2025
Viewed by 188
Abstract
The Akabane virus (AKAV) is a significant member of the Orthobunyavirus genus, with its envelope glycoprotein Gc, focusing on its molecular structural features, immunoregulatory mechanisms, and application value in pathogen diagnosis and vaccine design. As a key structural protein of AKAV, Gc mediates [...] Read more.
The Akabane virus (AKAV) is a significant member of the Orthobunyavirus genus, with its envelope glycoprotein Gc, focusing on its molecular structural features, immunoregulatory mechanisms, and application value in pathogen diagnosis and vaccine design. As a key structural protein of AKAV, Gc mediates virus adsorption and neutralizing antibody recognition through the N-terminal highly variable region (HVR), while the C-terminal conserved region (CR) dominates the membrane fusion process, and its glycosylation modification has a significant regulatory effect on protein function. In clinical diagnostics, serological assays based on Gc proteins (e.g., ELISA, immunochromatographic test strips) have been standardized; in vaccine development, the neutralizing epitope of Gc proteins has become a core target for subunit vaccine design. Follow-up studies were deeply needed to analyze the structure-function interaction mechanism of Gc proteins to provide theoretical support for the construction of a new type of AKAV prevention and control system. Full article
Show Figures

Figure 1

22 pages, 1822 KiB  
Article
Increased Concentration of Anti-Egg Albumin Antibodies in Cerebrospinal Fluid and Serum of Patients with Alzheimer’s Disease—Discussion on Human Serpins’ Similarity and Probable Involvement in the Disease Mechanism
by Dionysia Amanatidou, Magdalini Tsolaki, Vasileios Fouskas, Ioannis Gavriilidis, Maria Myriouni, Anna Anastasiou, Athanasia Papageorgiou, Diona Porfyriadou, Zoi Parcharidi, Eleftheria Papasavva, Maria Fili and Phaedra Eleftheriou
Biomolecules 2025, 15(8), 1085; https://doi.org/10.3390/biom15081085 - 27 Jul 2025
Viewed by 363
Abstract
Alzheimer’s Disease (AD) is a multifactorial process. Amyloid plaque formation constitutes the main characteristic of the disease. Despite the identification of numerous factors associated with AD, the mechanism remains unclear in several aspects. Disturbances in intestinal and blood–brain barrier (BBB) penetration, observed in [...] Read more.
Alzheimer’s Disease (AD) is a multifactorial process. Amyloid plaque formation constitutes the main characteristic of the disease. Despite the identification of numerous factors associated with AD, the mechanism remains unclear in several aspects. Disturbances in intestinal and blood–brain barrier (BBB) penetration, observed in AD, may facilitate immunologic response to food-derived antigens. In the present study, antibodies against egg albumin, bovine-casein, and N-Glycolyl-Neuraminic acid (Neu5Gc) were measured in the cerebrospinal fluid (CSF) and serum of the patients using an enzyme-linked immunosorbent assay (ELISA). Zero anti-Neu5Gc and low concentrations of anti-casein antibodies were detected. Increased anti-native egg albumin antibodies were present in the serum of patients of all stages with 65% positivity (p < 0.001) in mild disease and a higher percentage in females (81.9%, p < 0.001). Lower serum positivity to anti-denatured egg albumin antibodies was observed, showing a gradual increase with severity and higher prevalence also in females. In the CSF, anti-native and anti-denatured egg albumin antibodies were mainly observed in severely ill patients with accumulative positivity to either antigen, reaching 61.8% in severe vs. 15% in mild disease (p < 0.001). Increased values were mainly observed in males. Anti-egg albumin antibodies may be implicated in the disease mechanism through sequence/structural similarity with human proteins, mainly serpins, and it would be worth consideration in further investigations and therapeutic strategies. Full article
Show Figures

Figure 1

22 pages, 1005 KiB  
Review
New Approaches to the Treatment of Alzheimer’s Disease
by Marta Kruk-Słomka, Dominika Kuceł, Maria Małysz, Adrianna Machnikowska, Jolanta Orzelska-Górka and Grażyna Biała
Pharmaceuticals 2025, 18(8), 1117; https://doi.org/10.3390/ph18081117 - 26 Jul 2025
Viewed by 300
Abstract
Alzheimer’s disease (AD) is one of the most common chronic neurodegenerative disorders worldwide. It is characterized by progressive memory loss and cognitive decline, leading to dementia. The pathogenesis of the disease is primarily attributed to two pathological protein structures: amyloid-beta (Aβ) plaques and [...] Read more.
Alzheimer’s disease (AD) is one of the most common chronic neurodegenerative disorders worldwide. It is characterized by progressive memory loss and cognitive decline, leading to dementia. The pathogenesis of the disease is primarily attributed to two pathological protein structures: amyloid-beta (Aβ) plaques and tau protein neurofibrils. The current treatment strategies for AD are mainly symptomatic, highlighting the urgent need for the development of new, more effective therapies for the disease. The purpose of this paper is to provide a comprehensive and scientific review of the latest research regarding novel therapeutic options in the treatment of AD. In recent years, research has focused on more advanced and diversified strategies, including immunotherapy, gene therapy, tyrosine kinase inhibitors, therapies targeting mitochondrial function, and neurogenesis-related process modulation. One of the most promising treatment strategies for AD is immunotherapy. Intensive research is currently underway on both passive immunization, which involves the administration of monoclonal antibodies, and active immunization through vaccinations that stimulate the body to produce specific antibodies. Further research into novel therapeutic directions is essential, particularly concerning the role of the immune system in the pathogenesis of AD. Immunization appears to be a highly promising approach to developing effective methods for preventing AD or delaying the progression of this disease. Full article
(This article belongs to the Special Issue NeuroImmunoEndocrinology)
Show Figures

Figure 1

15 pages, 2688 KiB  
Article
Recombinant Tetrameric Neuraminidase Subunit Vaccine Provides Protection Against Swine Influenza A Virus Infection in Pigs
by Ao Zhang, Bin Tan, Jiahui Wang and Shuqin Zhang
Vaccines 2025, 13(8), 783; https://doi.org/10.3390/vaccines13080783 - 23 Jul 2025
Viewed by 321
Abstract
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza [...] Read more.
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza vaccine development. NA has potential advantages as a vaccine antigen in providing cross-protection, with specific antibodies that have a broad binding capacity for heterologous viruses. In this study, we evaluated the immunogenicity and protective efficacy of a tetrameric recombinant NA subunit vaccine in a swine model. Methods: We constructed and expressed structurally stable soluble tetrameric recombinant NA (rNA) and prepared subunit vaccines by mixing with ISA 201 VG adjuvant. The protective efficacy of rNA-ISA 201 VG was compared to that of a commercial whole inactivated virus vaccine. Pigs received a prime-boost immunization (14-day interval) followed by homologous viral challenge 14 days post-boost. Results: Both rNA-ISA 201 VG and commercial vaccine stimulated robust humoral responses. Notably, the commercial vaccine group exhibited high viral-binding antibody titers but very weak NA-specific antibodies, whereas rNA-ISA 201 VG immunization elicited high NA-specific antibody titers alongside substantial viral-binding antibodies. Post-challenge, both immunization with rNA-ISA 201 VG and the commercial vaccine were effective in inhibiting viral replication, reducing viral load in porcine respiratory tissues, and effectively mitigating virus-induced histopathological damage, as compared to the PBS negative control. Conclusions: These findings found that the anti-NA immune response generated by rNA-ISA 201 VG vaccination provided protection comparable to that of a commercial inactivated vaccine that primarily induces an anti-HA response. Given that the data are derived from one pig per group, there is a requisite to increase the sample size for more in-depth validation. This work establishes a novel strategy for developing next-generation SIV subunit vaccines leveraging NA as a key immunogen. Full article
(This article belongs to the Special Issue Vaccine Development for Swine Viral Pathogens)
Show Figures

Figure 1

12 pages, 1562 KiB  
Article
Intra-Host Evolution During Relapsing Parvovirus B19 Infection in Immunocompromised Patients
by Anne Russcher, Yassene Mohammed, Margriet E. M. Kraakman, Xavier Chow, Stijn T. Kok, Eric C. J. Claas, Manfred Wuhrer, Ann C. T. M. Vossen, Aloys C. M. Kroes and Jutte J. C. de Vries
Viruses 2025, 17(8), 1034; https://doi.org/10.3390/v17081034 - 23 Jul 2025
Viewed by 291
Abstract
Background: Parvovirus B19 (B19V) can cause severe relapsing episodes of pure red cell aplasia in immunocompromised individuals, which are commonly treated with intravenous immunoglobulins (IVIGs). Few data are available on B19V intra-host evolution and the role of humoral immune selection. Here, we report [...] Read more.
Background: Parvovirus B19 (B19V) can cause severe relapsing episodes of pure red cell aplasia in immunocompromised individuals, which are commonly treated with intravenous immunoglobulins (IVIGs). Few data are available on B19V intra-host evolution and the role of humoral immune selection. Here, we report the dynamics of genomic mutations and subsequent protein changes during relapsing infection. Methods: Longitudinal plasma samples from immunocompromised patients with relapsing B19V infection in the period 2011–2019 were analyzed using whole-genome sequencing to evaluate intra-host evolution. The impact of mutations on the 3D viral protein structure was predicted by deep neural network modeling. Results: Of the three immunocompromised patients with relapsing infections for 3 to 9 months, one patient developed two consecutive nonsynonymous mutations in the VP1/2 region: T372S/T145S and Q422L/Q195L. The first mutation was detected in multiple B19V IgG-seropositive follow-up samples and resolved after IgG seroreversion. Computational prediction of the VP1 3D structure of this mutant showed a conformational change in the proximity of the antibody binding domain. No conformational changes were predicted for the other mutations detected. Discussion: Analysis of relapsing B19V infections showed mutational changes occurring over time. Resulting amino acid changes were predicted to lead to a conformational capsid protein change in an IgG-seropositive patient. The impact of humoral response and IVIG treatment on B19V infections should be further investigated to understand viral evolution and potential immune escape. Full article
(This article belongs to the Collection Parvoviridae)
Show Figures

Figure 1

11 pages, 1677 KiB  
Article
Exposure to Treponema pallidum Alters Villous Histomorphology of Human Placentae
by Patience B. Tetteh-Quarcoo, Joana Twasam, John Ahenkorah, Bismarck Afedo Hottor, Nicholas T. K. D. Dayie, Stephen Opoku-Nyarko, Peter Ofori Appiah, Emmanuel Afutu, Fleischer C. N. Kotey, Eric S. Donkor, Emilia Asuquo Udofia, Nii Koney-Kwaku Koney, Benjamin Arko-Boham and Kevin Kofi Adutwum-Ofosu
Acta Microbiol. Hell. 2025, 70(3), 31; https://doi.org/10.3390/amh70030031 - 23 Jul 2025
Viewed by 217
Abstract
Syphilis, which is caused by Treponema pallidum, remains one of the most common congenital infection worldwide and has tremendous consequences for the mother and her developing foetus if left untreated. The complexity of the exposure to this pathogen extends beyond the well-established [...] Read more.
Syphilis, which is caused by Treponema pallidum, remains one of the most common congenital infection worldwide and has tremendous consequences for the mother and her developing foetus if left untreated. The complexity of the exposure to this pathogen extends beyond the well-established clinical manifestations, as it can profoundly affect placental histomorphology. This study aimed to compare T. pallidum-exposed placental villi structures with healthy placentae at term to evaluate the histomorphological differences using stereology. In this case-control study conducted at term (38 weeks ± 2 weeks), 78 placentae were collected from the hospital delivery suites, comprising 39 cases (T. pallidum-exposed) and 39 controls (non-exposed), who were gestational age-matched with other potential confounders excluded. Blood samples from the umbilical vein and placental basal plate were tested for syphilis, using rapid diagnostic test (RDT) kits for T. pallidum (TP) antibodies (IgG and IgM) to classify placentae as exposed to T. pallidum (cases) and non-exposed (controls). Tissue sections were prepared and stained with haematoxylin and eosin, and the mean volume densities of syncytial knots, foetal capillaries, syncytial denuded areas, and intervillous spaces were estimated using stereological methods. Statistical analysis was performed to compare the mean values between the case and control groups. Stereological assessment revealed significant differences between the T. pallidum-exposed and non-exposed groups with regard to syncytial knots (p < 0.0001), syncytial denudation (p < 0.0001), and foetal capillaries (p < 0.0001), but no significant difference in the intervillous space was found (p = 0.1592). Therefore, our study shows, for the first time, that the histomorphology of human placental villi appears to be altered by exposure to T. pallidum. It will, therefore, be interesting to determine whether these changes in the placental villi translate into long-term effects on the baby. Full article
Show Figures

Figure 1

28 pages, 5780 KiB  
Article
Multiscale Modeling and Dynamic Mutational Profiling of Binding Energetics and Immune Escape for Class I Antibodies with SARS-CoV-2 Spike Protein: Dissecting Mechanisms of High Resistance to Viral Escape Against Emerging Variants
by Mohammed Alshahrani, Vedant Parikh, Brandon Foley and Gennady Verkhivker
Viruses 2025, 17(8), 1029; https://doi.org/10.3390/v17081029 - 23 Jul 2025
Viewed by 428
Abstract
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding [...] Read more.
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein using multiscale modeling, which combined molecular simulations with the ensemble-based mutational scanning of the binding interfaces and binding free energy computations. A central theme emerging from this work is that the unique binding strength and resilience to immune escape of the BD55-1205 antibody are determined by leveraging a broad epitope footprint and distributed hotspot architecture, additionally supported by backbone-mediated specific interactions, which are less sensitive to amino acid substitutions and together enable exceptional tolerance to mutational escape. In contrast, BD-604 and OMI-42 exhibit localized binding modes with strong dependence on side-chain interactions, rendering them particularly vulnerable to escape mutations at K417N, L455M, F456L and A475V. Similarly, P5S-1H1 and P5S-2B10 display intermediate behavior—effective in some contexts but increasingly susceptible to antigenic drift due to narrower epitope coverage and concentrated hotspots. Our computational predictions show strong agreement with experimental deep mutational scanning data, validating the accuracy of the models and reinforcing the value of binding hotspot mapping in predicting antibody vulnerability. This work highlights that neutralization breadth and durability are not solely dictated by epitope location, but also by how binding energy is distributed across the interface. The results provide atomistic insight into mechanisms driving resilience to immune escape for broadly neutralizing antibodies targeting the ACE2 binding interface—which stems from cumulative effects of structural diversity in binding contacts, redundancy in interaction patterns and reduced vulnerability to mutation-prone positions. Full article
Show Figures

Graphical abstract

21 pages, 3415 KiB  
Article
SARS-CoV-2 RBD Scaffolded by AP205 or TIP60 Nanoparticles and Delivered as mRNA Elicits Robust Neutralizing Antibody Responses
by Johnathan D. Guest, Yi Zhang, Daniel Flores, Emily Atkins, Kuishu Ren, Yingyun Cai, Kim Rosenthal, Zimeng Wang, Kihwan Kim, Charles Chen, Richard Roque, Bei Cheng, Marianna Yanez Arteta, Liping Zhou, Jason Laliberte and Joseph R. Francica
Vaccines 2025, 13(8), 778; https://doi.org/10.3390/vaccines13080778 - 22 Jul 2025
Viewed by 980
Abstract
Background/Objectives: SARS-CoV-2 vaccine candidates comprising the receptor binding domain (RBD) of the spike protein have been shown to confer protection against infection. Previous research evaluating vaccine candidates with SARS-CoV-2 RBD fused to ferritin (RBD-ferritin) and other scaffolds suggested that multimeric assemblies of RBD [...] Read more.
Background/Objectives: SARS-CoV-2 vaccine candidates comprising the receptor binding domain (RBD) of the spike protein have been shown to confer protection against infection. Previous research evaluating vaccine candidates with SARS-CoV-2 RBD fused to ferritin (RBD-ferritin) and other scaffolds suggested that multimeric assemblies of RBD can enhance antigen presentation to improve the potency and breadth of immune responses. Though RBDs directly fused to a self-assembling scaffold can be delivered as messenger RNA (mRNA) formulated with lipid nanoparticles (LNPs), reports of SARS-CoV-2 vaccine candidates that combine these approaches remain scarce. Methods: Here, we designed RBD fused to AP205 or TIP60 self-assembling nanoparticles following a search of available structures focused on several scaffold properties. RBD-AP205 and RBD-TIP60 were tested for antigenicity following transfection and for immunogenicity and neutralization potency when delivered as mRNA in mice, with RBD-ferritin as a direct comparator. Results: All scaffolded RBD constructs were readily secreted to transfection supernatant and showed antigenicity in ELISA, though clear heterogeneity in assembly was observed. RBD-AP205 and RBD-TIP60 also exhibited robust antibody binding and neutralization titers in mice that were comparable to those elicited by RBD-ferritin or a full-length membrane-bound spike. Conclusions: These data suggest that AP205 and TIP60 can present RBD as effectively as ferritin and induce similar immune responses. By describing additional scaffolds for multimeric display that accommodate mRNA delivery platforms, this work can provide new tools for future vaccine design efforts. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

28 pages, 3099 KiB  
Review
TREM2 in Neurodegenerative Disorders: Mutation Spectrum, Pathophysiology, and Therapeutic Targeting
by Hyewon Yang, Danyeong Kim, YoungSoon Yang, Eva Bagyinszky and Seong Soo A. An
Int. J. Mol. Sci. 2025, 26(15), 7057; https://doi.org/10.3390/ijms26157057 - 22 Jul 2025
Viewed by 251
Abstract
TREM2 (triggering receptor expressed on myeloid cells 2) is a membrane-bound receptor primarily expressed on microglia in the central nervous system (CNS). TREM2 plays a crucial role in regulating immune responses, phagocytosis, lipid metabolism, and inflammation. Mutations in the TREM2 gene have been [...] Read more.
TREM2 (triggering receptor expressed on myeloid cells 2) is a membrane-bound receptor primarily expressed on microglia in the central nervous system (CNS). TREM2 plays a crucial role in regulating immune responses, phagocytosis, lipid metabolism, and inflammation. Mutations in the TREM2 gene have been linked to various neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), Parkinson’s disease (PD), and Nasu–Hakola disease (NHD). These mutations are suggested to impair microglial activation and reduce the ability to clear amyloid aggregates, leading to exacerbated neuroinflammatory responses and accelerating disease progression. This review provides an overview of TREM2 structure, functions, and known pathogenic variants—including Arg47His, Arg62His, His157Tyr, Tyr38Cys, and Thr66Met. Furthermore, the molecular and cellular consequences of TREM2 mutations are introduced, such as impaired ligand binding, altered protein folding and trafficking, enhanced TREM2 shedding, and dysregulated inflammatory signaling. We also highlight recent advances in therapeutic strategies aimed at modulating TREM2 signaling. These include monoclonal antibodies (e.g., AL002, CGX101), small molecule agonists, and gene/cell-based therapies that seek to restore microglial homeostasis, enhance phagocytosis, and reduce neuroinflammation. While these approaches show promise in in vivo/in vitro studies, their clinical translation may be challenged by disease heterogeneity and mutation-specific responses. Additionally, determining the appropriate timing and precise dosing will be essential. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 2068 KiB  
Article
Cellular Rejection Post-Cardiac Transplantation: A 13-Year Single Unicentric Study
by Gabriela Patrichi, Catalin-Bogdan Satala, Andrei Ionut Patrichi, Toader Septimiu Voidăzan, Alexandru-Nicușor Tomuț, Daniela Mihalache and Anca Ileana Sin
Medicina 2025, 61(8), 1317; https://doi.org/10.3390/medicina61081317 - 22 Jul 2025
Viewed by 187
Abstract
Background and Objectives: Cardiac transplantation is currently the elective treatment choice in end-stage heart failure, and cellular rejection is a predictive factor for morbidity and mortality after surgery. We proposed an evaluation of the clinicopathologic factors involved in the mechanism of rejection. [...] Read more.
Background and Objectives: Cardiac transplantation is currently the elective treatment choice in end-stage heart failure, and cellular rejection is a predictive factor for morbidity and mortality after surgery. We proposed an evaluation of the clinicopathologic factors involved in the mechanism of rejection. Materials and Methods: This study included 146 patients who underwent transplantation at the Institute of Cardiovascular Diseases and Transplantation in Targu Mures between 2010 and 2023, and we evaluated the function and structure of the myocardium after surgery by using endomyocardial biopsy. Results: Overall, 120 men and 26 women underwent transplantation, with an approximately equal proportion under and over 40 years old (48.6% and 51.4%). Evaluating the degree of acute cellular rejection according to the International Society for Heart and Lung Transplantation classification showed that most of the patients presented with acute cellular rejection (ACR) and antibody-mediated rejection (AMR) grade 0, and most cases of ACR and AMR were reported with mild changes (13% or 10.3% patients). Therefore, the most frequent histopathologic diagnoses were similar to lesions unrelated to rejection (45.2% of patients) and ischemia–reperfusion lesions (25.3% patients), respectively. Conclusions: Although 82.2% of the transplanted cases showed no rejection (ISHLT score 0), non-rejection-related lesion-like changes were present in 45.2% of cases, and because more of the non-rejection-related criteria could be detected, it may be necessary to adjust the grading of the rejection criteria. The histopathologic changes that characterize rejection are primarily represented by the mononuclear inflammatory infiltrate; in our study, inflammatory changes were mostly mild (71.9%), with myocyte involvement in all cases. These changes are associated with and contribute to the maintenance of the rejection phenomenon. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

Back to TopTop