Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (526)

Search Parameters:
Keywords = antibacterial dressings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3797 KiB  
Article
Amygdalin-Doped Biopolymer Composites as Potential Wound Dressing Films: In Vitro Study on E. coli and S. aureus
by Dorinel Okolišan, Gabriela Vlase, Mihaela Maria Budiul, Mariana Adina Matica and Titus Vlase
Gels 2025, 11(8), 609; https://doi.org/10.3390/gels11080609 - 2 Aug 2025
Viewed by 468
Abstract
Biopolymer films doped with active substances may become a promising alternative to traditional dressings for skin wounds, as they can deliver drugs while maintaining wound moisture, thus contributing to the healing process. This article describes the preparation of amygdalin-doped biopolymer films for in [...] Read more.
Biopolymer films doped with active substances may become a promising alternative to traditional dressings for skin wounds, as they can deliver drugs while maintaining wound moisture, thus contributing to the healing process. This article describes the preparation of amygdalin-doped biopolymer films for in vitro testing against the bacterial strains typical of chronic wounds: E. coli and S. aureus. Thus, FTIR characterization suggests minimal chemical interaction between amygdalin and the biopolymer matrix components, indicating potential compatibility, while thermogravimetric analysis highlights the thermal behavior of the films as well as the influence of the polymer matrix composition on the amount of bound water and the shift of Tpeak value for the decomposition process of the base polymer. Moreover, the identity of the secondary biopolymer (gelatin or CMC) significantly influences film morphology and antibacterial performance. Full article
(This article belongs to the Special Issue Novel Functional Gels for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

16 pages, 4215 KiB  
Article
Ag/TA@CNC Reinforced Hydrogel Dressing with Enhanced Adhesion and Antibacterial Activity
by Jiahao Yu, Junhao Liu, Yicheng Liu, Siqi Liu, Zichuan Su and Daxin Liang
Gels 2025, 11(8), 591; https://doi.org/10.3390/gels11080591 - 31 Jul 2025
Viewed by 254
Abstract
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) [...] Read more.
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) and in-situ reduced silver nanoparticles for multifunctional enhancement. The rigid CNC framework significantly improved mechanical properties (elastic modulus of 146 kPa at 1 wt%), while TA catechol groups provided excellent adhesion (36.4 kPa to pigskin, 122% improvement over pure system) through dynamic hydrogen bonding and coordination interactions. TA served as a green reducing agent for uniform AgNPs loading, with CNC negative charges preventing particle aggregation. Antibacterial studies revealed synergistic effects between TA-induced membrane disruption and Ag+-triggered reactive oxygen species generation, achieving >99.5% inhibition against Staphylococcus aureus and Escherichia coli. The TA@CNC-regulated porous structure balanced swelling performance and water vapor transmission, facilitating wound exudate management and moist healing. This composite hydrogel successfully integrates mechanical toughness, tissue adhesion, antibacterial activity, and biocompatibility, providing a novel strategy for advanced wound dressing development. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Figure 1

19 pages, 3200 KiB  
Article
Polyphosphoramidate Glycohydrogels with Biorecognition Properties and Potential Antibacterial Activity
by Zornica Todorova, Oyundari Tumurbaatar, Violeta Mitova, Neli Koseva, Iva Ugrinova, Penka Petrova and Kolio Troev
Molecules 2025, 30(15), 3140; https://doi.org/10.3390/molecules30153140 - 26 Jul 2025
Viewed by 250
Abstract
In the present study, for the first time, a biodegradable and non-toxic polyphosphoramidate glycohydrogel (PPAGHGel) was prepared by crosslinking a polyphosphoramidate glycoconjugate (PPAG) with hexamethylene diisocyanate (HMDI) under mild conditions. Poly(oxyethylene H-phosphonate) (POEHP) was used as a precursor and was converted into PPAG [...] Read more.
In the present study, for the first time, a biodegradable and non-toxic polyphosphoramidate glycohydrogel (PPAGHGel) was prepared by crosslinking a polyphosphoramidate glycoconjugate (PPAG) with hexamethylene diisocyanate (HMDI) under mild conditions. Poly(oxyethylene H-phosphonate) (POEHP) was used as a precursor and was converted into PPAG via the Staudinger reaction with glucose-containing azide (2-p-azidobenzamide-2-deoxy-1,3,4,6-tetra-O-trimethylsilyl-α-D-glucopyranose). Then, crosslinking of PPAG was performed to yield PPAGHGel, which was thoroughly characterized. The gel showed a gel fraction of 83%, a swelling degree of 1426 ± 98%, and G″ = 1560 ± 65 Pa. The gel was fully degraded by alkaline phosphatase (400 U/L, pH 9) in 19 days, while hydrolytically, up to 52% degradation was observed under similar conditions. Multivalent studies of the obtained hydrogel with lectin–Concanavalin A were performed. PPAGHGel binds 92% of Concanavalin A within 24 h and the complex remains stable until the amount of glucose reaches 0.3 mM. PPAGHGel acts as a stabilizer for silver nanoparticles (12 nm). SEM shows pores measuring 10 µm (surface) and 0.1 mm (interior) with capillary channels, confirming the gel’s suitability for biosensors, drug delivery, or wound dressings. The cytotoxic (IC50) and cell-adhesive properties of the obtained hydrogel were investigated on human cell lines (HeLa). Antibacterial activity tests were also performed with gel containing silver nanoparticles against skin-associated pathogenic bacteria. The results show that PPAGHGel possesses excellent biocompatibility, non-adhesive properties and antibacterial activity. Full article
Show Figures

Figure 1

23 pages, 2594 KiB  
Article
Formation and Characterization of Xylitol-Modified Glycidyl Methacrylate-co-Ethyl Methacrylate Matrices for Controlled Release of Antimicrobial Compounds
by Adam Chyzy, Przemysław Gnatowski, Edyta Piłat, Maciej Sienkiewicz, Katarzyna Wozniak, Marta Wojnicka, Krzysztof Brzezinski and Marta E. Plonska-Brzezinska
Molecules 2025, 30(15), 3083; https://doi.org/10.3390/molecules30153083 - 23 Jul 2025
Viewed by 198
Abstract
Wounds are undeniably important gateways for pathogens to enter the body. In addition to their detrimental local effects, they can also cause adverse systemic effects. For this reason, developing methods for eradicating pathogens from wounds is a challenging medical issue. Polymers, particularly hydrogels, [...] Read more.
Wounds are undeniably important gateways for pathogens to enter the body. In addition to their detrimental local effects, they can also cause adverse systemic effects. For this reason, developing methods for eradicating pathogens from wounds is a challenging medical issue. Polymers, particularly hydrogels, are one of the more essential materials for designing novel drug-delivery systems, thanks to the ease of tuning their structures. This work exploits this property by utilizing copolymerization, microwave modification, and drug-loading processes to obtain antibacterial gels. Synthesized xylitol-modified glycidyl methacrylate-co-ethyl methacrylate ([P(EMA)-co-(GMA)]-Xyl]) matrices were loaded with bacitracin, gentian violet, furazidine, and brilliant green, used as active pharmaceutical ingredients (APIs). The hydrophilic properties, API release mechanism, and antibacterial properties of the obtained hydrogels against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis containing [P(EMA)-co-(GMA)]-Xyl] were studied. The hydrogels with the APIs efficiently inhibit bacteria growth with low doses of drugs, and our findings are statistically significant, confirmed with ANOVA analysis at p = 0.05. The results confirmed that the proposed system is hydrophilic and has extended the drug-release capabilities of APIs with a controlled burst effect based on [P(EMA)-co-(GMA)]-Xyl] content in the hydrogel. Hydrogels are characterized by the prolonged release of APIs in a very short time (a few minutes). Although the amount of released APIs is about 10%, it still exceeds the minimum inhibitory concentrations of drugs. Several kinetic models (first-order, second-order, Baker–Lonsdale, and Korsmeyer–Peppas) were applied to fit the API release data from the [P(EMA)-co-(GMA)]-Xyl-based hydrogel. The best fit of the Korsmeyer–Peppas kinetic model to the experimental data was determined, and it was confirmed that a diffusion-controlled release mechanism of the APIs from the studied hydrogels is dominant, which is desirable for applications requiring a consistent, controlled release of therapeutic agents. A statistical analysis of API release using Linear Mixed Model was performed, examining the relationship between % mass of API, sample (hydrogels and control), time, sample–time interaction, and variability between individuals. The model fits the data well, as evidenced by the determination coefficients close to 1. The analyzed interactions in the data are reliable and statistically significant (p < 0.001). The outcome of this study suggests that the presented acrylate-based gel is a promising candidate for developing wound dressings. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Their Applications)
Show Figures

Figure 1

18 pages, 3243 KiB  
Article
Potential Use of Cefiderocol and Nanosilver in Wound Dressings to Control Multidrug-Resistant Gram-Negative Bacteria
by Żaneta Binert-Kusztal, Agata Krakowska, Iwona Skiba-Kurek, Magdalena Luty-Błocho, Anna Kula, Aldona Olechowska-Jarząb, Przemysław Dorożyński and Tomasz Skalski
Molecules 2025, 30(15), 3072; https://doi.org/10.3390/molecules30153072 - 23 Jul 2025
Viewed by 272
Abstract
This study evaluated the antimicrobial efficacy of cefiderocol and various forms of silver (ionic and nanoparticulate) as potential components of wound-dressing reagents against both reference and multidrug-resistant (MDR) Gram-negative bacteria. The anticipated synergistic effect between cefiderocol and nanosilver was not consistently observed; in [...] Read more.
This study evaluated the antimicrobial efficacy of cefiderocol and various forms of silver (ionic and nanoparticulate) as potential components of wound-dressing reagents against both reference and multidrug-resistant (MDR) Gram-negative bacteria. The anticipated synergistic effect between cefiderocol and nanosilver was not consistently observed; in fact, for reference strains, the combination was less effective than cefiderocol alone. However, in MDR and cefiderocol-resistant A. baumannii strains, combining both agents enhanced antibacterial efficacy. Notably, the effectiveness of silver did not increase with concentration, and low or medium nanosilver concentrations were often more effective. Mechanistically, high concentrations of silver may antagonize cefiderocol’s action by inhibiting bacterial surface proteins involved in siderophore-mediated uptake. Generalized linear modeling confirmed that the strain type, silver form, concentration, and their interactions significantly influenced inhibition zones. These findings highlight the importance of agent selection, concentration, and formulation in designing effective antimicrobial wound dressings. They also suggest that further research is needed to optimize such combination therapies for clinical use. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Graphical abstract

13 pages, 2744 KiB  
Article
Preliminary Evaluation of the Synergistic Antibacterial Effects of Selected Commercial Essential Oil Compounds Against Methicillin-Resistant Staphylococcus aureus ATCC 43300
by Kacper Hartman, Maja Świerczyńska, Amelia Wieczorek, Piotr Baszuk, Iwona Wojciechowska-Koszko, Katarzyna Garbacz, Monika Sienkiewicz and Paweł Kwiatkowski
Antibiotics 2025, 14(7), 733; https://doi.org/10.3390/antibiotics14070733 - 21 Jul 2025
Viewed by 519
Abstract
Background/Objectives: Growing antibiotic resistance is one of the most significant problems of current medicine. Various research efforts are focused on the search for new substances and their combinations as potential solutions to this problem. Essential oil compounds (EOCs) are considered promising candidates [...] Read more.
Background/Objectives: Growing antibiotic resistance is one of the most significant problems of current medicine. Various research efforts are focused on the search for new substances and their combinations as potential solutions to this problem. Essential oil compounds (EOCs) are considered promising candidates in this regard. However, the interactions between these natural compounds remain understudied. This study conducted a preliminary evaluation of the antimicrobial action of various commercial EOCs (1,8-cineole, eugenol, linalyl acetate, (-)-α-pinene, limonene, α-terpineol, DL-menthol, geraniol, farnesol, carvacrol, and myrcene) alone and in combination (n = 56) against methicillin-resistant Staphylococcus aureus strain (ATCC 43300). Methods: The following parameters were studied: antibacterial activity of EOCs alone and in combination using microdilution and checkerboard assays. Results: After the initial screening, geraniol, farnesol, linalyl acetate, carvacrol, (−)-α-pinene, α-terpineol, 1,8-cineole, and eugenol exhibited antibacterial activity against the tested strain and were, therefore, selected for further evaluation in the checkerboard assay. The checkerboard assay revealed 10 synergistic interactions, with farnesol demonstrating the highest number of synergistic combinations among the tested compounds. The results highlighted its high synergistic potential in combination with eugenol, linalyl acetate, (-)-α-pinene, α-terpineol, geraniol, and carvacrol. Conclusions: In conclusion, the results help elucidate the different interactions between EOCs and may be helpful in further applications of natural compounds as antimicrobial agents in wound dressings. Overall, the most promising compound was found to be farnesol. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

23 pages, 3632 KiB  
Article
Composite HPMC-Gelatin Films Loaded with Cameroonian and Manuka Honeys Show Antibacterial and Functional Wound Dressing Properties
by Joshua Boateng and Sana Khan
Gels 2025, 11(7), 557; https://doi.org/10.3390/gels11070557 - 19 Jul 2025
Viewed by 790
Abstract
Antimicrobial resistance in infected chronic wounds present significant risk of complications (e.g., amputations, fatalities). This research aimed to formulate honey-loaded hydrocolloid film comprising gelatin and HPMC, for potential treatment of infected chronic wounds. Honeys from different sources (Cameroonian and Manuka) were used as [...] Read more.
Antimicrobial resistance in infected chronic wounds present significant risk of complications (e.g., amputations, fatalities). This research aimed to formulate honey-loaded hydrocolloid film comprising gelatin and HPMC, for potential treatment of infected chronic wounds. Honeys from different sources (Cameroonian and Manuka) were used as the bioactive ingredients and their functional characteristics evaluated and compared. The formulated solvent cast films were functionally characterized for tensile, mucoadhesion and moisture handling properties. The morphology and physical characteristics of the films were also analyzed using FTIR, X-ray diffraction and scanning electron microscopy. Antibacterial susceptibility testing was performed to study the inhibition of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus by honey components released from the films. The % elongation values (8.42–40.47%) increased, elastic modulus (30.74–0.62 Nmm) decreased, the stickiness (mucoadhesion) (0.9–1.9 N) increased, equilibrium water content (32.9–72.0%) and water vapor transmission rate (900–298 gm2 day−1) generally decreased, while zones of inhibition (2.4–6.5 mm) increased with increasing honey concentration for 1 and 5% w/v, respectively. The results generally showed similar performance for the different honeys and demonstrate the efficacy of honey-loaded hydrocolloid films as potential wound dressing against bacterial growth and potential treatment of infected chronic wounds. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Pharmaceutical Applications of Gels)
Show Figures

Graphical abstract

14 pages, 1574 KiB  
Article
Antimicrobial Efficacy of Impregnated Human Acellular Dermal Substitutes in Burn Wound Models
by Marianna Hajská, Elena Kurin, Silvia Bittner Fialová, Marian Vidiščák and Arpád Panyko
Antibiotics 2025, 14(7), 707; https://doi.org/10.3390/antibiotics14070707 - 14 Jul 2025
Viewed by 358
Abstract
Burn wound infections remain a major clinical challenge due to delayed healing, scarring, and the risk of sepsis, especially when complicated by multidrug-resistant (MDR) Gram-negative pathogens and biofilm formation. Acellular dermal matrices (ADMs) are widely used in reconstructive and burn surgery, yet they [...] Read more.
Burn wound infections remain a major clinical challenge due to delayed healing, scarring, and the risk of sepsis, especially when complicated by multidrug-resistant (MDR) Gram-negative pathogens and biofilm formation. Acellular dermal matrices (ADMs) are widely used in reconstructive and burn surgery, yet they lack intrinsic antimicrobial activity, necessitating their combination with topical agents. Background/Objectives: This study investigates the antimicrobial and cytocompatibility profiles of ADMs impregnated with various antimicrobial agents, using in vitro planktonic and biofilm burn wound models. While the incorporation of antimicrobials into scaffolds has been previously explored, this study is, to our knowledge, the first to directly compare seven clinically relevant antimicrobial agents after they were impregnated into an ADM in a standardized in vitro model. Methods: Seven topical antimicrobials were tested against MDR Pseudomonas aeruginosa and Acinetobacter baumannii from burn patients. Results: The ADM with 1% acetic acid (AA) showed superior antimicrobial activity, achieving > 7 log10 reductions in planktonic assays and complete inhibition of P. aeruginosa biofilms. In NIH 3T3 fibroblast cytotoxicity assays, the 1% AA ADM maintained cell viability at control levels, indicating excellent biocompatibility. Compared with agents such as Betadine®, Octenilin®, and colistin, which showed cytotoxicity, and Prontosan®, which showed low efficacy, 1% AA uniquely combined potent antibacterial effects with minimal toxicity. Conclusions: Among the seven antimicrobial agents impregnated into ADMs, 1% AA demonstrated a unique efficacy and safety profile, supporting its potential for clinical application in integrated wound dressings and implantable biomaterials for infection control in burn care. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Therapy in Intensive Care Unit)
Show Figures

Graphical abstract

42 pages, 1721 KiB  
Review
Electrospinning Enables Opportunity for Green and Effective Antibacterial Coatings of Medical Devices
by Saverio Caporalini, Bahareh Azimi, Samir Zergat, Mahdi Ansari Chaharsoughi, Homa Maleki, Giovanna Batoni and Serena Danti
J. Funct. Biomater. 2025, 16(7), 249; https://doi.org/10.3390/jfb16070249 - 6 Jul 2025
Cited by 1 | Viewed by 1018
Abstract
The growing antimicrobial resistance and the increasing environmental concerns associated with conventional antibacterial agents have prompted a search for more effective and sustainable alternatives. Biopolymer-based nanofibers are promising candidates to produce environment-friendly antibacterial coatings, owing to their high surface-to-volume ratio, structural adaptability, and [...] Read more.
The growing antimicrobial resistance and the increasing environmental concerns associated with conventional antibacterial agents have prompted a search for more effective and sustainable alternatives. Biopolymer-based nanofibers are promising candidates to produce environment-friendly antibacterial coatings, owing to their high surface-to-volume ratio, structural adaptability, and tunable porosity. These features make them particularly well-suited for delivering antimicrobial agents in a controlled manner and for physically modifying the surface of medical devices. This review critically explores recent advances in the use of electrospun fibers enhanced with natural antimicrobial agents as eco-friendly surface coatings. The mechanisms of antibacterial action, key factors affecting their efficacy, and comparisons with conventional antibacterial agents are discussed herein. Emphasis is placed on the role of a “green electrospinning” process, which utilizes bio-based materials and nontoxic solvents, to enable coatings able to better combat antibiotic-resistant pathogens. Applications in various clinical settings, including implants, wound dressings, surgical textiles, and urinary devices, are explored. Finally, the environmental benefits and prospects for the scalability and sustainability of green coatings are discussed to underscore their relevance to next-generation, sustainable solutions in healthcare. Full article
(This article belongs to the Special Issue Advanced Technologies for Processing Functional Biomaterials)
Show Figures

Graphical abstract

24 pages, 9971 KiB  
Article
Development of Bioactive Cotton, Wool, and Silk Fabrics Functionalized with Origanum vulgare L. for Healthcare and Medical Applications: An In Vivo Study
by Aleksandra Ivanovska, Anica Petrović, Tamara Lazarević-Pašti, Tatjana Ilic-Tomic, Katarina Dimić-Mišić, Jelena Lađarević and Jovana Bradić
Pharmaceutics 2025, 17(7), 856; https://doi.org/10.3390/pharmaceutics17070856 - 30 Jun 2025
Viewed by 482
Abstract
Background: This study presents an innovative approach to developing bioactive natural fabrics for healthcare and medical applications. Methods: An ethanol extract of Origanum vulgare L. (in further text: OE), exhibiting exceptional antioxidant (100%) and antibacterial activity (>99% against E.coli and S.aureus), was [...] Read more.
Background: This study presents an innovative approach to developing bioactive natural fabrics for healthcare and medical applications. Methods: An ethanol extract of Origanum vulgare L. (in further text: OE), exhibiting exceptional antioxidant (100%) and antibacterial activity (>99% against E.coli and S.aureus), was employed to biofunctionalize cotton, wool, and silk fabrics. Results: All biofunctionalized fabrics demonstrated strong antioxidant activity (>99%), while antibacterial efficacy varied by fabric: cotton > 54%, wool > 99%, and silk > 89%. OE-biofunctionalized wool possessed the highest release of OE’s bioactive compounds, followed by silk and cotton, indicating substrate-dependent release behavior. This tunable fabrics’ OE release profile, along with their unique bioactivity, supports targeted applications: OE-functionalized silk for luxury or prolonged therapeutic use (skin-care textiles, post-surgical dressings, anti-aging products), cotton for disposable or short-term use (protective wipes, minor wound coverings), and wool for wound dressings. The biocompatibility and cytotoxicity of OE-biofunctionalized wool were evaluated via in vitro assays using healthy human keratinocytes and in vivo testing in Wistar albino male rats. The obtained results revealed that OE-functionalized wool significantly accelerated wound closure (97.8% by day 14), enhanced collagen synthesis (6.92 µg/mg hydroxyproline), and improved tissue and systemic antioxidant defense while reducing oxidative stress markers in skin and blood samples of rats treated with OE-biofunctionalized wool. Conclusions: OE-biofunctionalized wool demonstrates strong potential as an advanced natural solution for managing chronic wounds. Further clinical validation is recommended to confirm its performance in real-world healthcare settings. This work introduces an entirely new application of OE in textile biofunctionalization, offering alternatives for healthcare and medical textiles. Full article
Show Figures

Graphical abstract

21 pages, 5750 KiB  
Article
Artemisia argyi-Mediated Synthesis of Monodisperse Silver Nanoparticles as Components of Bioactive Nanofibrous Dressings with Dual Antibacterial and Regenerative Functions
by Jiale Wang, Jiawei Guan, Xingyu Ma, Dongyang Zhao, Yongqiang Han, Dongdong Guo, Jialin Bai, Zisheng Guo and Xiaojun Zhang
J. Funct. Biomater. 2025, 16(7), 236; https://doi.org/10.3390/jfb16070236 - 27 Jun 2025
Viewed by 472
Abstract
The effective healing of chronic wounds requires balancing antimicrobial activity with tissue regeneration. In this study, we developed a novel, eco-friendly synthesis method using Artemisia argyi extract to produce silver nanoparticles (AgNPs), addressing toxicity concerns associated with conventional chemical synthesis methods. Through optimization [...] Read more.
The effective healing of chronic wounds requires balancing antimicrobial activity with tissue regeneration. In this study, we developed a novel, eco-friendly synthesis method using Artemisia argyi extract to produce silver nanoparticles (AgNPs), addressing toxicity concerns associated with conventional chemical synthesis methods. Through optimization of multiple synthesis parameters, monodisperse spherical AgNPs with an average diameter of 6.76 ± 0.27 nm were successfully obtained. Plant-derived compounds from Artemisia argyi extract acted as efficient mediators for both reduction and stabilization, yielding nanoparticles with high crystallinity. The synthesized AgNPs exhibited potent antibacterial activity against both Gram-negative and Gram-positive bacteria, with minimum inhibitory concentrations of 8 μg/mL against Escherichia coli and 32 μg/mL against Staphylococcus aureus, while maintaining high biocompatibility with L929 fibroblasts at concentrations ≤ 8 μg/mL. When integrated into polylactic acid/collagen type I (PLA/Col1) nanofibrous matrices, the optimized 0.03% AgNPs/PLA/Col1 dressing significantly accelerated wound healing in a diabetic rat model, achieving 94.62 ± 2.64% wound closure by day 14 compared to 65.81 ± 1.80% observed in untreated controls. Histological analyses revealed a dual-functional mechanism wherein controlled silver ion release provided sustained antibacterial protection, while concurrently promoting tissue regeneration characterized by enhanced collagen deposition, reduced inflammation, and increased neovascularization. This innovative approach effectively addresses critical challenges in diabetic wound care by providing simultaneous antimicrobial and regenerative functions within a single biomaterial platform. Full article
Show Figures

Figure 1

14 pages, 2179 KiB  
Article
One-Pot Anodic Electrodeposition of Dual-Cation-Crosslinked Sodium Alginate/Carboxymethyl Chitosan Interpenetrating Hydrogel with Vessel-Mimetic Heterostructures
by Xuli Li, Yuqing Qu, Yong Zhang, Pei Chen, Siyu Ding, Miaomiao Nie, Kun Yan and Shefeng Li
J. Funct. Biomater. 2025, 16(7), 235; https://doi.org/10.3390/jfb16070235 - 26 Jun 2025
Viewed by 669
Abstract
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), [...] Read more.
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), with the ethylenediaminetetraacetic acid calcium disodium salt hydrate (EDTA·Na2Ca) incorporated to provide a secondary ionic crosslinker (i.e., Ca2+) and modulate the cascade reaction diffusion process. The copper wire electrodes serve as templates for electrochemical oxidation and enable a copper ion (i.e., Cu2+)-induced tubular hydrogel coating formation, while pulsed electric fields regulate layer-by-layer deposition. The dual-cation-crosslinked interpenetrating hydrogels (CMC/SA-Cu/Ca) exhibit rapid growth rates and tailored mechanical strength, along with excellent antibacterial performance. By integrating the unique pulsed electro-fabrication with biomimetic self-assembly, this study addresses challenges in vessel-mimicking structural complexity and mechanical compatibility. The approach enables scalable production of customizable multilayered hydrogels for artificial vessel grafts, smart wound dressings, and bioengineered organ interfaces, demonstrating broad biomedical potential. Full article
Show Figures

Figure 1

29 pages, 6293 KiB  
Review
Advances in Nanohybrid Hydrogels for Wound Healing: From Functional Mechanisms to Translational Prospects
by Yunfei Mo, Tao Zhou, Weichang Li, Yuqing Niu and Chialin Sheu
Gels 2025, 11(7), 483; https://doi.org/10.3390/gels11070483 - 23 Jun 2025
Viewed by 872
Abstract
Chronic wounds, such as diabetic ulcers and pressure injuries, remain a major global health burden, affecting over 40 million people worldwide and imposing significant socioeconomic strain. Hydrogel-based wound dressings have gained clinical attention for their ability to maintain moisture, mimic the extracellular matrix, [...] Read more.
Chronic wounds, such as diabetic ulcers and pressure injuries, remain a major global health burden, affecting over 40 million people worldwide and imposing significant socioeconomic strain. Hydrogel-based wound dressings have gained clinical attention for their ability to maintain moisture, mimic the extracellular matrix, and support tissue regeneration. However, traditional hydrogels often lack the mechanical robustness, antimicrobial efficacy, and dynamic responsiveness needed to treat complex wound environments effectively. To address these limitations, nanohybrid hydrogels, composite systems that integrate functional nanomaterials into hydrogel matrices, have emerged as intelligent platforms for advanced wound care. These systems enable multifunctional therapeutic action, including antibacterial activity, antioxidant regulation, angiogenesis promotion, immune modulation, and stimuli-responsive drug delivery. This review synthesizes recent advances in nanohybrid hydrogel design, beginning with an overview of traditional polymeric systems and their constraints. We categorize functional mechanisms according to biological targets and classify nanohybrid architectures by material type, including metal-based nanoparticles, nanozymes, carbon-based nanomaterials, polymeric nanogels, and metal–organic frameworks. Representative studies are summarized in a comparative table, and challenges related to biosafety, clinical translation, and design optimization are discussed. Nanohybrid hydrogels represent a rapidly evolving frontier in wound care, offering bioresponsive, multifunctional platforms with the potential to transform chronic wound management. Full article
(This article belongs to the Special Issue Chemical Properties and Application of Gel Materials)
Show Figures

Figure 1

21 pages, 9127 KiB  
Article
Antibacterial Composites Based on Alginate/Egg White and ZnO Nanoparticles with the Addition of Essential Oils
by Adrian-Ionuț Nicoară, Adelina Valentina Anton, Roxana Doina Trușcă, Alexandra Cătălina Bîrcă, Cornelia-Ioana Ilie and Lia-Mara Dițu
Gels 2025, 11(6), 459; https://doi.org/10.3390/gels11060459 - 16 Jun 2025
Viewed by 439
Abstract
A series of hydrogels containing sodium alginate at different concentrations (2%, 3%, and 4%) and egg white were prepared through ionic cross-linking with calcium chloride (CaCl2) to obtain composite dressing materials. ZnO nanoparticles coated with eucalyptus or lavender essential oil were [...] Read more.
A series of hydrogels containing sodium alginate at different concentrations (2%, 3%, and 4%) and egg white were prepared through ionic cross-linking with calcium chloride (CaCl2) to obtain composite dressing materials. ZnO nanoparticles coated with eucalyptus or lavender essential oil were introduced into the hydrogel matrix to enhance antibacterial properties. The resulting hydrogels were freeze-dried to enhance mechanical properties, increase the porosity of the dressing, and facilitate further evaluations. A variety of analytical methods, including scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR) were employed to characterize the composites. The developed composites exhibited high porosity and a swelling degree exceeding 200% after 3 days. Additionally, water absorption capacity increased with higher alginate concentrations in the samples. Furthermore, they demonstrated significant antibiofilm activity against Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli, with the samples containing 4% alginate showing the best results. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Graphical abstract

13 pages, 1676 KiB  
Article
Biological Evaluation of Silver-Treated Silk Fibroin Scaffolds for Application as Antibacterial and Regenerative Wound Dressings
by Federica Paladini, Carmen Lanzillotti, Angelica Panico and Mauro Pollini
Nanomaterials 2025, 15(12), 919; https://doi.org/10.3390/nano15120919 - 13 Jun 2025
Viewed by 523
Abstract
Chronic wounds represent a major clinical challenge due to their prolonged healing process and susceptibility to bacterial colonization, particularly by biofilm-forming bacteria. To address these issues, in this work, silver-treated silk fibroin scaffolds were developed and tested as multifunctional wound dressings, combining antimicrobial [...] Read more.
Chronic wounds represent a major clinical challenge due to their prolonged healing process and susceptibility to bacterial colonization, particularly by biofilm-forming bacteria. To address these issues, in this work, silver-treated silk fibroin scaffolds were developed and tested as multifunctional wound dressings, combining antimicrobial and regenerative properties. Silk fibroin, a natural protein derived from Bombyx mori cocoons, is widely recognized for its biocompatibility and suitability for tissue engineering. In this study, porous silk fibroin scaffolds were functionalized with silver nanoparticles through a photo-reduction process and were comprehensively tested for their cytocompatibility and wound healing potential. The excellent antibacterial activity of the silver-treated scaffolds was demonstrated against Escherichia coli and antibiotic-resistant Pseudomonas aeruginosa, as was extensively reported in a previous work. Biological assays were performed using 3T3 fibroblasts cultured on both untreated and silver-treated silk fibroin scaffolds. Biocompatibility assays, such as MTT, Live/Dead, and cytoskeleton analyses, demonstrated biocompatibility in both scaffold types, comparable to the control. Wound healing potential was assessed using in vitro scratch assays, revealing full wound closure (100%) after 24 h in cells cultured with untreated and silver-treated silk fibroin scaffolds, in contrast to 78.5% closure in the control. Notably, silver-treated scaffolds exhibited enhanced fibroblast repopulation within the wound gap, suggesting a synergistic effect of silver and fibroin in promoting tissue regeneration. These findings demonstrate that silver-treated silk fibroin scaffolds possess both anti-microbial and regenerative properties, making them promising candidates for chronic wound management applications. Full article
(This article belongs to the Special Issue Nanostructured Materials and Coatings for Biomedical Applications)
Show Figures

Graphical abstract

Back to TopTop